Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Sci ; 12: e103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771507

RESUMO

This review discusses epigenetic mechanisms and the relationship of infertility in men and women in relation to parameters pertaining to nutrition. The prevalence of infertility worldwide is 8-12 %, and one out of every eight couples receives medical treatment. Epigenetic mechanisms, aging, environmental factors, dietary energy and nutrients and non-nutrient compounds; more or less energy intake, and methionine come into play in the occurrence of infertility. It also interacts with vitamins B12, D and B6, biotin, choline, selenium, zinc, folic acid, resveratrol, quercetin and similar factors. To understand the molecular mechanisms regulating the expression of genes that affect infertility, the environment, the role of genotype, age, health, nutrition and changes in the individual's epigenotype must first be considered. This will pave the way for the identification of the unknown causes of infertility. Insufficient or excessive intake of energy and certain macro and micronutrients may contribute to the occurrence of infertility as well. In addition, it is reported that 5-10 % of body weight loss, moderate physical activity and nutritional interventions for improvement in insulin sensitivity contribute to the development of fertility. Processes that pertain to epigenetics carry alterations which are inherited yet not encoded via the DNA sequence. Nutrition is believed to have an impact over the epigenetic mechanisms which are effective in the pathogenesis of several diseases like infertility. Epigenetic mechanisms of individuals with infertility are different from healthy individuals. Infertility is associated with epigenetic mechanisms, nutrients, bioactive components and numerous other factors.


Assuntos
Infertilidade Feminina , Humanos , Masculino , Feminino , Infertilidade Feminina/genética , Epigênese Genética , Genótipo
2.
Front Physiol ; 14: 1145233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064892

RESUMO

Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.

3.
J Med Life ; 16(11): 1597-1605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38406773

RESUMO

Dysmenorrhea, affecting approximately 80% of adolescents, significantly impairs quality of life, disrupts sleep patterns, and induces mood changes. Furthermore, its economic impact is substantial, accounting for an estimated $200 billion in the United States and $4.2 million in Japan annually. This review aimed to identify the effects of vitamin D and calcium on primary dysmenorrhea. We conducted a comprehensive literature search across Web of Science, PubMed, Scopus, and Science Direct, focusing on studies published from 2010 to 2020. Keywords included 'primary dysmenorrhea', 'vitamin D', '25-OH vitamin D3', 'cholecalciferol', and 'calcium'. The quality assessment of the articles was done using the Consolidated Standards of Reporting Trials (CONSORT) and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklists, and the risk bias was assessed using the Cochrane assessment tool. Abnormal low Vit. D levels increased the severity of primary dysmenorrhea through increased prostaglandins and decreased calcium absorption. Vitamin D and calcium supplements could reduce the severity of primary dysmenorrhea and the need for analgesics. This systematic review found an inverse relation between the severity of dysmenorrhea and low serum Vit. D and calcium.. Vitamin D and calcium supplements could reduce the severity of primary dysmenorrhea and the need for analgesics.

4.
J Med Life ; 16(11): 1658-1662, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38406787

RESUMO

Vitamin D receptor (VDR) expression in the female reproductive tract explains the regulatory role of vitamin D on inflammatory cytokine and prostaglandin (PGD) synthesis. This study aimed to evaluate the effect of vitamin D on adolescents' primary dysmenorrhea and the relationship between Vit. D and adolescents' primary dysmenorrhea. Eighty-five adolescents were included in the current study. After a detailed evaluation, pelvic sonography was performed for all participants to rule out any pelvic pathology. Blood samples were collected to measure thyroid stimulating hormone (TSH), prolactin, glycosylated hemoglobin (HbA1C), and 25-hydroxyvitamin D (25[OH]D). Participants were administered vitamin D (50,000 IU weekly for five months), and their dysmenorrhea symptoms were evaluated before and after this period using the Visual Analog Scale (VAS) and the Verbal Multidimensional Scoring (VMS). The mean VAS and VMS scores of dysmenorrhea statistically decreased from 8.7±0.91 and 2.65±0.93 to 4.8±0.75 and 0.80±0.75, respectively, after vitamin D intake (p=0.03 and 0.025, respectively). Significant negative associations between 25(OH)D and VAS (R = -0.886; p<0.00001) and VMS of dysmenorrhea (R = -0.885; p<0.00001) were detected in this study. Vit. D could be a useful therapeutic option to reduce the severity of primary dysmenorrhea and could limit the use of non-steroidal anti-inflammatory drugs.


Assuntos
Dismenorreia , Deficiência de Vitamina D , Feminino , Adolescente , Humanos , Dismenorreia/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas , Calcifediol
5.
Biochem Biophys Rep ; 31: 101313, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35935021

RESUMO

The active hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3, is reported to have 1000s of biological targets. The growth-suppressive properties of 1α,25-dihydroxyvitamin D3 and its synthetic analogs have attracted interest for the development of treatment and/or prevention of cancer. We examined effects of 1α,25-dihydroxyvitamin D3 and the vitamin D analog tacalcitol on signaling pathways and anchorage-independent growth in T98G and U251 glioblastoma cells. Assay of signaling proteins important for cellular growth indicated suppression of p70-S6 kinase levels by 1α,25-dihydroxyvitamin D3 and tacalcitol in T98G cells, whereas the levels of PLCγ, a target for phospholipid signaling, was slightly increased. Activation of STAT3, an important regulator of malignancy, was suppressed by 1α,25-dihydroxyvitamin D3 and tacalcitol in T98G and U251 cells. However, despite the close structural similarity of these compounds, suppression was stronger by tacalcitol (1α,24-dihydroxyvitamin D3), indicating that even minor modifications of a vitamin D analog can impact its effects on signaling. Experiments using soft agar colony formation assay in T98G and U251 cells revealed significant suppression by 1α,25-dihydroxyvitamin D3 and tacalcitol on anchorage-independent growth, a property for cancer invasion and metastasis known to correlate with tumorigenicity. These findings indicate that vitamin D and its analogs may be able to counteract the oncogenic transformation, invasion and metastatic potential of glioblastoma and prompt further study of these compounds in the development of improved therapy for brain cancer.

6.
Acta Pharm Sin B ; 12(5): 2129-2149, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646540

RESUMO

Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.

7.
Front Cardiovasc Med ; 9: 823133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282351

RESUMO

Pulmonary Arterial Hypertension (PAH) is a rare disease caused by the obliteration of the pulmonary arterioles, increasing pulmonary vascular resistance and eventually causing right heart failure. Endothelin-1 (EDN1) is a vasoconstrictor peptide whose levels are indicators of disease progression and its pathway is one of the most common targeted by current treatments. We sequenced the EDN1 untranslated regions of a small subset of patients with PAH, predicted the effect in silico, and used a luciferase assay with the different genotypes to analyze its influence on gene expression. Finally, we used siRNAs against the major transcription factors (TFs) predicted for these regions [peroxisome proliferator-activated receptor γ (PPARγ), Krüppel-Like Factor 4 (KLF4), and vitamin D receptor (VDR)] to assess EDN1 expression in cell culture and validate the binding sites. First, we detected a single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR; rs397751713) and another in the 3'regulatory region (rs2859338) that altered luciferase activity in vitro depending on their genotype. We determined in silico that KLF4/PPARγ could bind to the rs397751713 and VDR to rs2859338. By using siRNAs and luciferase assays, we determined that PPARγ binds differentially to rs397751713. PPARγ and VDR Knock-Down (KD) increased the EDN1 mRNA levels and EDN1 production in porcine aortic endothelial cells (PAECs), while PPARγ and KLF4 KD increased the EDN1 production in HeLa. In conclusion, common variants in EDN1 regulatory regions could alter EDN1 levels. We were able to validate that PPARγ binds in rs397751713 and is a key regulator of EDN1. In addition, KLF4 and VDR regulate EDN1 production in a cell-dependent manner, but VDR does not bind directly to the regions we studied.

8.
J Clin Exp Hepatol ; 12(1): 155-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068796

RESUMO

Chronic liver disease (CLD) is one of the leading causes of disability-adjusted life years in many countries. A recent understanding of nuclear bile acid receptor pathways has increased focus on the impact of crosstalk between the gut, bile acids, and liver on liver pathology. While conventionally used in cholestatic disorders and to dissolve gallstones, the discovery of bile acids' influence on the gut microbiome and human metabolism offers a unique potential for their utility in early and advanced liver diseases because of diverse etiologies. Based on these findings, preclinical studies using bile acid-based molecules have shown encouraging results at addressing liver inflammation and fibrosis. Emerging data also suggest that bile acid profiles change distinctively across various causes of liver disease. We summarize the current knowledge and evidence related to bile acids in health and disease and discuss culminated and ongoing therapeutic trials of bile acid derivatives in CLD. In the near future, further evidence in this area might help clinicians better detect and manage liver diseases.

9.
Ann Med Surg (Lond) ; 73: 103150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34917354

RESUMO

OBJECTIVES: Vitamin D deficiency is a driving force of common cancers like breast cancer. Vitamin D receptor (VDR) can play a tumor suppressor role by helping the precise function of vitamin D in cells such as modulation TGF-ß signaling pathway. This study aimed to investigate the association of VDR gene variants and susceptibility to breast cancer in Iranian women. METHODS: Genomic DNAs were isolated from blood samples of 161 women with breast cancer and 150 healthy women. After amplification of five positions of VDR gene, the prepared amplicons were digested with TaqI, ApaI, BsmI, Cdx2, and FokI restriction enzymes. RESULTS: Subsequently, the digested products were electrophoresed on the 1.5% agarose gel. Odds ratios (ORs) for breast cancer were calculated for genotypes and estimated haplotypes. Binary logistic regression analysis showed FokI (rs2228570), BsmI (rs1544410), and ApaI (rs7975232) polymorphisms had the significant distribution in patients than to the normal group. Analysis of linkage disequilibrium for all pairs of SNPs showed that D'-value between SNP TaqI and SNP BsmI was significantly (p ≤ 0.05). We observed that four major haplotypes of ApaI, BsmI, FokI, Cdx2, and TaqI SNPs significantly were in high frequency than predicted frequency. Among these four haplotypes, CGTAT haplotype was in a higher significant association than others with breast cancer risk (p-value = 0.0001). CONCLUSION: Our results showed that FokI, BsmI, and ApaI of VDR polymorphisms associated with the risk of breast cancer in Iranian population.

10.
J Nutr Sci ; 11: e107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588541

RESUMO

The aim of the present study was to assess the seasonal relationship between serum 25(OH)D concentration, lean mass and muscle strength. This was a secondary data analysis of a subgroup of 102 postmenopausal women participating in the 2006-2007 D-FINES (Vitamin D, Food Intake, Nutrition and Exposure to Sunlight in Southern England) study. The cohort was assessed as two age subgroups: <65 years (n=80) and ≥65 years (n=22). Outcome measures included lean mass (DXA), muscle strength (handgrip dynamometry) and serum 25(OH)D concentration (enzymeimmunoassay). Derived outcomes included appendicular skeletal muscle mass (ASM) and relative appendicular skeletal muscle index (RASM). Sarcopenia status was assessed using the European Working Group on Sarcopenia in Older People 2018 criteria. Non-parametric partial correlation using BMI as a covariate was used to evaluate the study aims. There were no statistically significant associations between total lean mass, ASM or RASM and 25(OH)D in any group at any season. There was a trend for handgrip strength to be positively associated with serum 25(OH)D concentration. There was a trend showing a higher prevalence of sarcopenia in women ≥65 years. Sarcopenia status appeared transient for five women. In conclusion, the present study found no significant association between vitamin D status and functional indicators of musculoskeletal health, which were additionally not affected by season.


Assuntos
Sarcopenia , Humanos , Feminino , Idoso , Sarcopenia/epidemiologia , Estações do Ano , Força da Mão/fisiologia , Estudos Longitudinais , Pós-Menopausa , Vitamina D , Vitaminas , Músculos
11.
Front Pharmacol ; 12: 727704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867333

RESUMO

Recent epidemiological and preclinical evidence indicates that vitamin D3 inhibits colorectal cancer (CRC) progression, but the mechanism has not been completely elucidated. This study was designed to determine the protective effects of vitamin D3 and identify crucial targets and regulatory mechanisms in CRC. First, we confirmed that 1,25(OH)2D3, the active form of vitamin D3, suppressed the aggressive phenotype of CRC in vitro and in vivo. Based on a network pharmacological analysis, N-acetyltransferase 2 (NAT2) was identified as a potential target of vitamin D3 against CRC. Clinical data of CRC patients from our hospital and bioinformatics analysis by online databases indicated that NAT2 was downregulated in CRC specimens and that the lower expression of NAT2 was correlated with a higher metastasis risk and lower survival rate of CRC patients. Furthermore, we found that NAT2 suppressed the proliferation and migration capacity of CRC cells, and the JAK1/STAT3 signaling pathway might be the underlying mechanism. Moreover, Western blot and immunofluorescence staining assays demonstrated that 1,25(OH)2D3 promoted NAT2 expression, and the chromatin immunoprecipitation assay indicated that the vitamin D receptor (VDR) transcriptionally regulated NAT2. These findings expand the potential uses of vitamin D3 against CRC and introduce VDR signaling via the enzyme NAT2 as a potential diagnostic and therapeutic target for CRC.

12.
Bone Rep ; 15: 101143, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746337

RESUMO

BACKGROUND: Efficient differentiation of stem cells into three-dimensional (3D) osteogenic construct is still an unmet challenge. These constructs can be crucial for patients with bone defects due to congenital or traumatic reasons. The modulation of cell fate and function as a consequence of interaction with the physical and chemical properties of materials is well known. METHODS: The current study has examined the osteogenic differentiation potential of human skeletal populations following culture on glass surfaces, as a monolayer, or in glass tubes as a pellet culture. The 3D prosperities were assessed morphometrically and the differentiation was evaluated through molecular characterization as well as matrix formation. RESULTS: Early temporal expression of alkaline phosphatase expression of skeletal populations was observed following culture on glass surfaces. Skeletal populations seeded on glass tubes, adhered as a monolayer to the tube base and subsequently formed 3D pellets at the air -media interface. The pellets cultured on glass displayed 4.9 ± 1.3 times the weight and 2.9 ± 0.1 the diameter of their counterpart cultured in plastic tubes and displayed enhanced production of osteogenic matrix proteins, such a collagen I and osteonectin. The size and weight of the pellets correlated with surface area in contrast to cell numbers seeded. Global DNA methylation level was decreased in pellets cultured on glass. In contrast, gene expression analysis confirmed upregulation extracellular matrix proteins and osteogenesis-related growth factors. CONCLUSION: This simple approach to the culture of skeletal cells on glass tubes provides a scaffold-free, 3D construct platform for generating pellets enabling analysis and evaluation of tissue development and integration of multiple constructs with implications for tissue repair and regenerative application on scale-up.

13.
Saudi J Biol Sci ; 28(7): 4016-4021, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220259

RESUMO

Vitamin D deficiency and periodontitis are commonly prevalent among Saudi adults. However, the association between periodontitis and vitamin D status has not been well documented. This study aims to examine the association between periodontitis and vitamin D status among adults in the Albaha region of Saudi Arabia. A case-control study of 123 Saudi adults was conducted; 60 had severe or moderate periodontitis, and 63 were periodontally healthy. Data was collected by an online self-reported sociodemographic questionnaire. All participants then underwent a full periodontal examination. Blood samples were also provided to assess participants' vitamin D statuses through serum levels of 25-hydroxyvitamin D (25(OH)D). A total of 60 cases and 63 controls matched for BMI (30.2 ± 4.86 kg/m2), age (40.01 ± 7.73 years), and sex (46.3% and 53.7% male and female, respectively) participated in the study. Mean levels of 25(OH)D were significantly lower in periodontitis participants than in controls (25.03 ± 8.55 ng/ml, 29.19 ± 12.82 ng/ml, p = 0.037, respectively). Lower odds of periodontitis were detected per unit of 25(OH)D level (OR 0.964, 95% CI; 0.931-0.999, p = 0.043). In conclusion, periodontitis is significantly associated with deficient and insufficient levels of vitamin D among Saudi adults in the Albaha region. Future longitudinal research with a larger sample size may be suggested to confirm these results.

14.
Gene Rep ; 24: 101270, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250314

RESUMO

SARS-CoV-2 virus, the main culprit for COVID-19 disaster, has triggered a gust of curiosity both in the mechanism of action of this infection as well as potential risk factors for disease generation and regimentation. The prime focus of the present review, which is basically a narrative one, is in utilizing the current concepts of vitamin D3 as an agent with myriad functions, one of them being immunocompetence and a promising weapon for both innate and adaptive immunity against COVID-19 infection. Some of the manifestations of SARS-CoV-2 virus such as Acute Respiratory Distress Syndrome (ARDS) overlap with the pathophysiological effects that are overcome due to already established role of vitamin D3 e.g., amelioration of cytokine outburst. Additionally, the cardiovascular complications due to COVID-19 infection may also be connected to vitamin D3 levels and the activity of its active forms. Eventually, we summarise the clinical, observational and epidemiological data of the respiratory diseases including COVID-19 disease and try to bring its association with the potential role of vitamin D3, in particular, the activity of its active forms, circulating levels and its supplementation, against dissemination of this disease.

15.
Autophagy ; 17(9): 2273-2289, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917126

RESUMO

Macrophage derived foam cells in atherosclerotic plaques are the major factor responsible for the pathogenesis of atherosclerosis (AS). During advanced AS, macrophage-specific macroautophagy/autophagy is dysfunctional. 1, 25-dihydroxy vitamin D3 (VitD3) and its receptor VDR (vitamin D receptor) are reported to inhibit foam cell formation and induce autophagy; however, the role of VitD3-VDR-induced autophagy and foam cell formation in AS has not been explored. Here we find that VitD3 significantly recovered oxidized low-density lipoprotein-impaired autophagy, as well as increased autophagy-mediated lipid breakdown in mouse bone marrow-derived macrophages and human monocyte-derived macrophages, thus inhibiting the conversion of macrophages into foam cells. Importantly, VitD3 functions through its receptor VDR to upregulate autophagy and attenuate the accumulation of lipids in macrophages. Moreover, this study is the first occasion to report the interesting link between VitD3 signaling and PTPN6/SHP-1 (protein tyrosine phosphatase non-receptor type 6) in macrophages. VitD3-induced autophagy was abrogated in the presence of the PTPN6/Ptpn6 shRNA or inhibitor. VDR along with RXRA (retinoid X receptor alpha), and NCOA1 (nuclear receptor coactivator 1), are recruited to a specific response element located on the gene promoter and induce PTPN6 expression. PTPN6 contributes to VitD3-mediated autophagy by regulating autophagy-related genes via activation of MAPK1 (mitogen-activated protein kinase 1) and CEBPB (CCAAT enhancer binding protein beta). Furthermore, expression of PTPN6 is also crucial for VitD3-mediated inhibition of macrophage foam cell formation through autophagy. Thus, VitD3-VDR-PTPN6 axis-regulated autophagy attenuates foam cell formation in macrophages.


Assuntos
Autofagia , Colecalciferol , Células Espumosas , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Receptores de Calcitriol , Animais , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Calcitriol/metabolismo
16.
J Clin Exp Hepatol ; 9(5): 574-580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695247

RESUMO

BACKGROUND: Vitamin D deficiency is extremely common in chronic liver disease (CLD) patients. Up to 93% of these patients have some degree of vitamin D insufficiency. Liver plays an important role in the metabolism and pleiotropic functions of vitamin D. Vitamin D deficiency has been associated with increased mortality, bacterial infections, portal hypertension complications, and fibrosis severity. We aimed to determine the impact of vitamin D level in CLD. METHODS: One hundred fifty individuals consisting of 75 cirrhotic patients (cases) and 75 respective attendants (controls) were enrolled between July 2015 and July 2017. A detailed clinical and laboratory evaluation was done along with estimation of vitamin D level. Unpaired t-test and analysis of variance was used to compare difference in the level of continuous variables between different groups. Linear regression analysis was performed to analyze the correlation between vitamin D deficiency and severity of liver disease. RESULTS: The age of patients ranged from 18 years to 69 years with mean of 48.85 ± 13.6 years in the case group and 46.57 ± 17.24 years in the control group. Out of 75 CLD patients, vitamin D deficiency (<20 ng/dl) was found in 31 (41.4%) patients, out of which 14(18.7%) suffered from severe vitamin D deficiency (<10 ng/ml). On applying analysis of variance test, there was significant difference in vitamin D level and serum albumin and serum bilirubin (P < 0.05). On linear regression, vitamin D level showed significant negative correlation with Child-Pugh score (r = -0.7379, P < 0.0001) and Model For End-Stage Liver Disease score (r = -0.6671, P < 0.0001). CONCLUSION: Our study concluded that CLD is associated with a significantly low level of vitamin D, which was independent to patient's gender, body mass index, residence, and education level. The findings of our study suggest that awareness of serum vitamin D level in patients with CLD is important. Further studies are required to validate the importance of vitamin D levels and impact of vitamin D supplementation on CLD.

17.
Acta Pharm Sin B ; 9(3): 639-647, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193825

RESUMO

Drug-metabolizing enzymes, transporters, and nuclear receptors are essential for the absorption, distribution, metabolism, and excretion (ADME) of drugs and xenobiotics. MicroRNAs participate in the regulation of ADME gene expression via imperfect complementary Watson-Crick base pairings with target transcripts. We have previously reported that Cytochrome P450 3A4 (CYP3A4) and ATP-binding cassette sub-family G member 2 (ABCG2) are regulated by miR-27b-3p and miR-328-3p, respectively. Here we employed our newly established RNA bioengineering technology to produce bioengineered RNA agents (BERA), namely BERA/miR-27b-3p and BERA/miR-328-3p, via fermentation. When introduced into human cells, BERA/miR-27b-3p and BERA/miR-328-3p were selectively processed to target miRNAs and thus knock down CYP3A4 and ABCG2 mRNA and their protein levels, respectively, as compared to cells treated with vehicle or control RNA. Consequently, BERA/miR-27b-3p led to a lower midazolam 1'-hydroxylase activity, indicating the reduction of CYP3A4 activity. Likewise, BERA/miR-328-3p treatment elevated the intracellular accumulation of anticancer drug mitoxantrone, a classic substrate of ABCG2, hence sensitized the cells to chemotherapy. The results indicate that biologic miRNA agents made by RNA biotechnology may be applied to research on miRNA functions in the regulation of drug metabolism and disposition that could provide insights into the development of more effective therapies.

18.
Acta Pharm Sin B ; 9(2): 203-219, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30972274

RESUMO

Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components. Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, we summarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.

19.
Acta Pharm Sin B ; 9(2): 220-236, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976490

RESUMO

Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.

20.
Br J Nutr ; 121(12): 1334-1344, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924427

RESUMO

Reduced plasma vitamin D (VD) levels may contribute to excessive white adipose tissue, insulin resistance (IR) and dyslipidaemia. We evaluated the effect of chronic oral VD supplementation on adiposity and insulin secretion in monosodium glutamate (MSG)-treated rats. During their first 5 d of life, male neonate rats received subcutaneous injections of MSG (4 g/kg), while the control (CON) group received saline solution. After weaning, groups were randomly distributed into VD supplemented (12 µg/kg; three times/week) and non-supplemented (NS) rats, forming four experimental groups (n 15 rats/group): CON-NS, CON-VD, MSG-NS and MSG-VD. At 76 d of life, rats were submitted to an oral glucose tolerance test (OGTT; 2 g/kg), and at 86 d, obesity, IR and plasma metabolic parameters were evaluated. Pancreatic islets were isolated for glucose-induced insulin secretion (GIIS), cholinergic insulinotropic response and muscarinic 3 receptor (M3R), protein kinase C (PKC) and protein kinase A (PKA) expressions. Pancreas was submitted to histological analyses. VD supplementation decreased hyperinsulinaemia (86 %), hypertriacylglycerolaemia (50 %) and restored insulin sensibility (89 %) in MSG-VD rats, without modifying adiposity, OGTT or GIIS, compared with the MSG-NS group. The cholinergic action was reduced (57 %) in islets from MSG-VD rats, without any change in M3R, PKA or PKC expression. In conclusion, chronic oral VD supplementation of MSG-obese rats was able to prevent hyperinsulinaemia and IR, improving triacylglycerolaemia without modifying adiposity. A reduced cholinergic pancreatic effect, in response to VD, could be involved in the normalisation of plasma insulin levels, an event that appears to be independent of M3R and its downstream pathways.


Assuntos
Adiposidade/efeitos dos fármacos , Suplementos Nutricionais , Secreção de Insulina/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Hipotálamo/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA