Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377647

RESUMO

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Assuntos
Acil-CoA Desidrogenase/deficiência , Cardiomiopatias , Carnitina O-Palmitoiltransferase/deficiência , Erros Inatos do Metabolismo Lipídico , Erros Inatos do Metabolismo , Proteína Mitocondrial Trifuncional/deficiência , Triagem Neonatal , Rabdomiólise , Humanos , Recém-Nascido , Estudos Retrospectivos , Masculino , Feminino , Triagem Neonatal/métodos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/complicações , Bélgica/epidemiologia , Lactente , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Ácidos Graxos/metabolismo , Pré-Escolar , Doenças Musculares/diagnóstico , Criança , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/complicações , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/diagnóstico
2.
Nutrients ; 15(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960342

RESUMO

Defects in mitochondrial fatty acid ß-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD-/-) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD-/- mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD-/- mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD-/- mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect.


Assuntos
Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Camundongos , Animais , Heptanoatos , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Glicerol , Ácidos Graxos/metabolismo , Glucose/uso terapêutico , Homeostase
3.
Mol Genet Metab Rep ; 37: 101002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671074

RESUMO

Objective: To define the biochemical and molecular characteristics and diagnostic outcomes of a large US cohort of VLCAD deficiency positive cases as detected by newborn screening (NBS) with MS:MS. This relatively common disorder of fatty acid oxidation is screened for in every state in America and often results in extensive testing of multiple samples to arrive at a diagnostic conclusion. Materials and methods: We compared NBS dried blood spot (DBS) acylcarnitine profile (ACP) C14, C14:1, C14:2, C14:1/C12:1 ratio and plasma C14, C14:1, C14:2, C14:1/C12:1, C14:1/C16 and C14:1/C2 ratios among true positive and false positive cases. Results of VLCAD enzyme analysis, molecular testing and fibroblast fatty acid oxidation probe assay were analyzed. Results: The presence of compound heterozygous or homozygous pathogenic variants, along with elevations of C14, C14:1 and C14:1/C12:1 ratio, identified 19 VLCAD deficiency cases. All were asymptomatic at most recent follow-up visits. The C14:1/C12:1 ratio in NBS-DBS ACP and plasma acylcarnitine profiles at follow-up (follow-up plasma ACP), is the most useful marker to differentiate between true and false positive cases. Among all cases with molecular analysis data available, approximately 56.7% had a single pathogenic mutation. Lymphocyte enzyme analysis (n = 61) was uninformative in 23% of cases studied. Conclusion: VLCAD deficiency NBS by MS:MS is highly effective at identifying asymptomatic affected infants. Our cohort showed that elevation of C14:1/C12:1, in both NBS DBS and plasma ACP, was informative in discriminating affected from unaffected individuals and contributes to improve the accuracy of confirmatory testing of infants with presumptive positive for VLCAD deficiency.

4.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166843, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558007

RESUMO

Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid ß-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Doenças Mitocondriais , Camundongos , Humanos , Animais , Lactente , Acil-CoA Desidrogenase de Cadeia Longa/genética , Cálcio , Doenças Mitocondriais/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Arritmias Cardíacas
5.
JIMD Rep ; 64(4): 261-264, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404675

RESUMO

Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive long chain fatty acid ß-oxidation disorder with a variable clinical spectrum, ranging from an acute neonatal presentation with cardiac and hepatic failure to childhood or adult onset of symptoms with hepatomegaly or rhabdomyolysis provoked by illness or exertion. Neonatal cardiac arrest or sudden unexpected death can be the presenting phenotype in some patients, emphasizing the importance of early clinical suspicion and intervention. We report a patient who had a cardiac arrest and died at one day of age. Following her death, the newborn screen reported biochemical evidence of VLCAD deficiency, which was confirmed with pathologic findings at autopsy and by molecular genetic testing.

6.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078043

RESUMO

Background: Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive disease that prevents the body from utilizing long-chain fatty acids for energy, most needed during stress and fasting. Symptoms can appear from infancy through childhood and adolescence or early adulthood, and include hypoglycemia, recurrent rhabdomyolysis, myopathy, hepatopathy, and cardiomyopathy. REN001 is a peroxisome-proliferator-activated receptor delta (PPARδ) agonist that modulates the expression of the genes coding for fatty acid ß-oxidation enzymes and proteins involved in oxidative phosphorylation. Here, we assessed the effect of REN001 on VLCAD-deficient patient fibroblasts. Methods: VLCAD-deficient patient and control fibroblasts were treated with REN001. Cells were harvested for gene expression analysis, protein content, VLCAD enzyme activity, cellular bioenergetics, and ATP production. Results: VLCAD-deficient cell lines responded differently to REN001 based on genotype. All cells had statistically significant increases in ACADVL gene expression. Small increases in VLCAD protein and enzyme activity were observed and were cell-line- and dose-dependent. Even with these small increases, cellular bioenergetics improved in all cell lines in the presence of REN001, as demonstrated by the oxygen consumption rate and ATP production. VLCAD-deficient cell lines containing missense mutations responded better to REN001 treatment than one containing a duplication mutation in ACADVL. Discussion: Treating VLCAD-deficient fibroblasts with the REN001 PPARδ agonist results in an increase in VLCAD protein and enzyme activity, and a decrease in cellular stress. These results establish REN001 as a potential therapy for VLCADD as enhanced expression may provide a therapeutic increase in total VLCAD activity, but suggest the need for mutation-specific treatment augmented by other treatment measures.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , PPAR delta , Acil-CoA Desidrogenase de Cadeia Longa/genética , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Criança , Síndrome Congênita de Insuficiência da Medula Óssea , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , PPAR delta/metabolismo
7.
Mol Genet Metab ; 136(1): 74-79, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400565

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency has been a target of expanded newborn screening (ENBS) using tandem mass spectrometry in Japan. Since the implementation of ENBS, a number of novel ACADVL variants responsible for VLCAD deficiency have been identified. In this study, genotypic differences in Japanese patients with VLCAD deficiency were investigated before and after ENBS. The ACADVL variants in 61 subjects identified through ENBS (ENBS group) and in 40 patients who subsequently developed clinical symptoms without undergoing ENBS (pre-ENBS group) were compared. Subjects in the ENBS group underwent genetic testing and/or VLCAD enzyme activity measurements. Patients in the pre-ENBS group were stratified into three clinical phenotypes and underwent genetic testing. This study revealed that the variants p.K264E, p.K382Q and c.996dupT were found in both groups, but their frequencies were lower in the ENBS group (5.2%, 3.1% and 4.2%, respectively) than in the pre-ENBS group (16.5%, 12.7% and 10.1%, respectively). In addition, p.C607S, p.T409M, p.M478I, p.G289R, p.C237R, p.T260M, and p.R229* were exclusively identified in the ENBS group. Among these variants, p.C607S exhibited the highest frequency (18.8%). The patients who were heterozygous for p.C607S demonstrated 7-42% of control enzyme activity. p.C607S is suspected to be unique to Japanese individuals. According to a comparison of enzyme activity, patients with the p.C607S variant may exhibit higher enzyme activity than those with the p.A416T, p.A180T, p.R450H, and p.K264E variants, which are responsible for the myopathic form of the disease. The VLCAD deficiency genotypes have changed since the initiation of ENBS in Japan.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea/epidemiologia , Humanos , Recém-Nascido , Japão/epidemiologia , Erros Inatos do Metabolismo Lipídico/epidemiologia , Doenças Mitocondriais/epidemiologia , Doenças Musculares/epidemiologia , Triagem Neonatal/métodos
8.
J Inherit Metab Dis ; 45(3): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218577

RESUMO

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive disease resulting from mutations in the ACADVL gene and is among the disorders tested for in newborn screening (NBS). Confirmatory sequencing following suspected VLCADD NBS results often identifies variants of uncertain significance (VUS) in the ACADVL gene, leading to uncertainty of diagnosis and providing effective treatment regimen. Currently, ACADVL has >300 VUSs in the ClinVar database that requiring characterization to determine potential pathogenicity. In this study, CRISPR/Cas9 genome editing was used to knock out ACADVL in HEK293T cells, and targeted deletion was confirmed by droplet digital polymerase chain reaction (PCR). No VLCAD protein was detected and an 84% decrease in enzyme activity using the electron transfer flavoprotein fluorescence reduction assay and C21-CoA as substrate was observed compared to control. Plasmids containing control or variant ACADVL coding sequence were transfected into the ACADVL null HEK293T. While transfection of control ACADVL restored VLCAD protein and enzyme activity, cells expressing the VLCAD Val283Ala mutant had 18% VLCAD enzyme activity and reduced protein compared to control. VLCAD Ile420Leu, Gly179Arg, and Gln406Pro produced protein comparable to control but 25%, 4%, and 5% VLCAD enzyme activity, respectively. Leu540Pro and Asp570_Ala572dup had reduced VLCAD protein and 10% and 3% VLCAD enzyme activity, respectively. VLCADD fibroblasts containing the same variations had decreased VLCAD protein and activity comparable to the transfection experiments. Generating ACADVL null HEK293T cell line allowed functional studies to determine pathogenicity of ACADVL exonic variants. This approach can be applied to multiple genes for other disorders identified through NBS.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Células HEK293 , Humanos , Imidazóis , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Triagem Neonatal , Sulfonamidas , Tiofenos
9.
J Inherit Metab Dis ; 45(3): 541-556, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076099

RESUMO

Inherited errors of mitochondrial fatty acid ß-oxidation (FAO) are life threatening, even with optimum care. FAO is the major source of energy for heart and is critical for skeletal muscles especially during physiologic stress. Clinical trials revealed that triheptanoin (commercially known as Dojolvi; C7G), improved heart function and decreased hypoglycemia in long chain FAO disorders, but other symptoms including rhabdomyolysis persisted, suggesting suboptimal tissue distribution/utilization of heptanoic acid (C7) conjugates and/or rapid liver breakdown. In this study, medium branched chain fatty acids were tested as potential anaplerotic treatments in fibroblasts from patients deficient in very long chain acyl-CoA dehydrogenase (VLCAD), long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), trifunctional protein (TFP), and carnitine palmitoyltransferase II (CPT II). Cells were cultured to near confluency and treated with C7, 2,6-dimethylheptanoic acid (dMC7), 6-amino-2,4-dimethylheptanoic acid (AdMC7), or 4,8-dimethylnonanoic acid (dMC9) for 72 h and targeted metabolomics performed. The profile of TCA cycle intermediates was improved in cells treated with these branched chain fatty acids compared with C7. Intracellular propionate was higher in AdMC7 treated cells compared with C7 in VLCAD, LCHAD, and TFP deficient cell lines. With AdMC7 treatment, succinate was higher in CPT II and VLCAD deficient cells, compared with C7. Malate and glutamate were consistently higher in AdMC7 treated VLCAD, LCHAD, TFP, and CPT II deficient cells compared with the C7 treatment. The results provide the impetus to further evaluate and consider branched chain fatty acids as viable anaplerotic therapy for fatty acid oxidation disorders and other diseases.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Erros Inatos do Metabolismo Lipídico , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Oxirredução
10.
Metabolites ; 11(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34436479

RESUMO

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is associated with energy deficiency and mitochondrial dysfunction and may lead to rhabdomyolysis and cardiomyopathy. Under physiological conditions, there is a fine balance between the utilization of different carbon nutrients to maintain the Krebs cycle. The maintenance of steady pools of Krebs cycle intermediates is critical formitochondrial energy homeostasis especially in high-energy demanding organs such as muscle and heart. Even-chain dicarboxylic acids are established as alternative energy carbon sources that replenish the Krebs cycle by bypassing a defective ß-oxidation pathway. Despite this, even-chain dicarboxylic acids are eliminated in the urine of VLCAD-affected individuals. In this study, we explore dodecanedioic acid (C12; DODA) supplementation and investigate its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles in VLCAD-deficient fibroblasts. Our findings indicate that DODA supplementation replenishes the Krebs cycle by increasing the succinate pool, attenuates glycolytic flux, and reduces levels of toxic very long-chain acylcarnitines.

12.
Mol Genet Metab Rep ; 27: 100760, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33996489

RESUMO

Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD, OMIM 201475) is a congenital fatty acid oxidation disorder. Individuals with VLCADD should avoid catabolic states, including strenuous exercise and long-term fasting; however, such conditions are required when undergoing surgery. The perioperative management of VLCADD in infants has rarely been reported and details regarding the transition of serum biomarkers reflecting catabolic status have not been disclosed. Herein, we present the perioperative clinical and biological data of cryptorchidism in a 1.5-year-old boy with VLCADD. The patient was diagnosed through newborn screening and his clinical course was very stable. Genetic testing of ACADVL revealed compound heterozygous variants c.506 T > C (p.Met169Thr) and c.606-609delC (p.L216*). The enzyme activity of the patient with VLCAD was only 20% compared to that of healthy control. Left orchiopexy for the pediatric cryptorchidism was planned and performed at 1 and a half year of age. Induction anesthesia involved thiopental, fentanyl and rocuronium. The glucose infusion rate was maintained above 6.6 mg/kg/min starting the day before surgery until the operation was completed. Anesthesia was maintained with sevoflurane at approximately 2%. The serum concentration of tetradecenoylcarnitine were stable during the operation, ranging between 0.08 and 0.19 µM (cutoff <0.2 µM), and never deviated from the reference range. Concentration of other serum biomarkers including free fatty acid, 3-OH-butyrate, and creatine kinase, remained similarly unchanged. In this report, we describe the uneventful perioperative management of unilateral orchiopexy for left cryptorchidism in a 1.5-year-old boy with VLCADD using sufficient glucose infusion and volatile anesthesia.

13.
Front Genet ; 12: 648493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986768

RESUMO

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a rare autosomal recessive disorder of fatty acid metabolism with a variable presentation. The aim of this study was to describe five patients with VLCADD diagnosed through the pilot study and expanded newborn screening (NBS) program that started in 2018 in Slovenia. Four patients were diagnosed through the expanded NBS program with tandem mass spectrometry; one patient was previously diagnosed in a pilot study preceding the NBS implementation. Confirmatory testing consisted of acylcarnitines analysis in dried blood spots, organic acids profiling in urine, genetic analysis of ACADVL gene, and enzyme activity determination in lymphocytes or fibroblasts. Four newborns with specific elevation of acylcarnitines diagnostic for VLCADD and disease-specific acylcarnitines ratios (C14:1, C14, C14:2, C14:1/C2, C14:1/C16) were confirmed with genetic testing: all were compound heterozygotes, two of them had one previously unreported ACDVL gene variant each (NM_000018.3) c.1538C > G; (NP_000009) p.(Ala513Gly) and c.661A > G; p.(Ser221Gly), respectively. In addition, one patient diagnosed in the pilot study also had a specific elevation of acylcarnitines. Subsequent ACDVL genetic analysis confirmed compound heterozygosity. In agreement with the diagnosis, enzyme activity was reduced in five patients tested. In seven other newborns with positive screening results, only single allele variants were found in the ACDVL gene, so the diagnosis was not confirmed. Among these, two variants were novel, c.416T > C and c.1046C > A, respectively (p.Leu139Pro and p.Ala349Glu). In the first 2 years of the expanded NBS program in Slovenia altogether 30,000 newborns were screened. We diagnosed four cases of VLCADD. The estimated VLCADD incidence was 1:7,500 which was much higher than that of the medium-chain acyl-CoA dehydrogenase deficiency (MCADD) cases in the same period. Our study also provided one of the first descriptions of ACADVL variants in Central-Southeastern Europe and reported on 4 novel variants.

14.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166100, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549744

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.


Assuntos
Bezafibrato/farmacologia , Síndrome Congênita de Insuficiência da Medula Óssea/tratamento farmacológico , Metabolismo Energético , Fibroblastos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Doenças Musculares/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Estresse Oxidativo , Receptores Ativados por Proliferador de Peroxissomo/genética
15.
Mol Genet Metab ; 131(1-2): 23-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33093005

RESUMO

The nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD) is the fourth in a series of web-based guidelines focusing on the diet treatment for inherited metabolic disorders and follows previous publication of guidelines for maple syrup urine disease (2014), phenylketonuria (2016) and propionic acidemia (2019). The purpose of this guideline is to establish harmonization in the treatment and monitoring of individuals with VLCAD of all ages in order to improve clinical outcomes. Six research questions were identified to support guideline development on: nutrition recommendations for the healthy individual, illness management, supplementation, monitoring, physical activity and management during pregnancy. This report describes the methodology used in its development including review, critical appraisal and abstraction of peer-reviewed studies and unpublished practice literature; expert input through two Delphi surveys and a nominal group process; and external review from metabolic physicians and dietitians. It includes the summary statements of the nutrition management recommendations for each research question, followed by a standardized rating based on the strength of the evidence. Online, open access of the full published guideline allows utilization by health care providers, researchers and collaborators who advise, advocate and care for individuals with VLCAD and their families and can be accessed from the Genetic Metabolic Dietitians International (https://GMDI.org) and Southeast Regional Genetics Network (https://southeastgenetics.org/ngp) websites.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Erros Inatos do Metabolismo Lipídico/dietoterapia , Doenças Mitocondriais/dietoterapia , Doenças Musculares/dietoterapia , Política Nutricional , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Feminino , Guias como Assunto , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Terapia Nutricional , Gravidez
16.
Mol Genet Metab Rep ; 24: 100634, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32775213

RESUMO

Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, a condition in which the body is unable to break down long-chain fatty acids properly, is the most common fatty acid oxidation disorder in Japan. Tandem mass spectrometry has been used in newborn screening (NBS), allowing the detection of patients with VLCAD deficiency even before symptoms manifest. However, tandem mass spectrometry has a high false positive rate. We investigated the clinical characteristics of patients with false positive results for tetradecenoyl acylcarnitine (C14:1). This case-control study used data collected between the 1st of January 2014 and the 31st of March 2019. The case group was defined as patients having levels of both C14:1 and C14:1/C2 ratio higher than cut-off levels in the first newborn mass screening, who were eventually diagnosed as false positives by attending doctors at Kobe University Hospital, Palmore Hospital, or Kakogawa Central City Hospital in Japan. The control group comprised 100 patients randomly selected from the three facilities. The false positive group included 17 cases, and the control group contained 300 patients. The demographics of each group did not show any significant differences in sex, body weight at birth, Cesarean section rate, complete breastfeeding rate, or the number of feedings per day. However, the change in body weight at the sampling day of NBS in the false positive and control groups was -10.2%, and - 4.6%, respectively, showing a statistically significant difference (p < 0.01). In addition, body weight gain at the one-month medical checkup was 38.9 g/day in the false positive group and 44.1 g/day in the control group (p < 0.05). An elevation of C14:1 carnitine has been reported in situations involving the catalysis of fatty acid. Therefore, patients with severe body weight loss might be associated with poor sucking or poor milk supply, which might cause a false positive elevation of C14:1 and C14:1/C2. In suspected VLCAD deficiency, attending doctors should pay attention to body weight changes recorded during newborn mass screening.

17.
Eur J Neurol ; 27(11): 2257-2266, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558070

RESUMO

BACKGROUND AND PURPOSE: Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a hereditary disorder of mitochondrial long-chain fatty acid oxidation that has variable presentations, including exercise intolerance, cardiomyopathy and liver disease. The aim of this study was to describe the clinical and genetic manifestations of six patients with adult-onset VLCADD. METHODS: In this study, the clinical, pathological and genetic findings of six adult patients (four from Iran and two from Serbia) with VLCADD and their response to treatment are described. RESULTS: The median (range) age of patients at first visit was 31 (27-38) years, and the median (range) age of onset was 26.5 (19-33) years. Parental consanguinity was present for four patients. Four patients had a history of rhabdomyolysis, and the recorded CK level ranged between 67 and 90 000 IU/l. Three patients had a history of exertional myalgia, and one patient had a non-fluctuating weakness. Through next-generation sequencing analysis, we identified six cases with variants in the ACADVL gene and a confirmed diagnosis of VLCADD. Of the total six variants identified, five were missense, and one was a novel frameshift mutation identified in two unrelated individuals. Two variants were novel, and three were previously reported. We treated the patients with a combination of L-carnitine, Coenzyme Q10 and riboflavin. Three patients responded favorably to the treatment. CONCLUSION: Adult-onset VLCADD is a rare entity with various presentations. Patients may respond favorably to a cocktail of L-carnitine, Coenzyme Q10, and riboflavin.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Erros Inatos do Metabolismo Lipídico , Acil-CoA Desidrogenase de Cadeia Longa/genética , Adulto , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Humanos , Masculino , Doenças Mitocondriais , Doenças Musculares , Adulto Jovem
18.
Clin Chim Acta ; 503: 218-222, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31794763

RESUMO

Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency), a rare autosomal recessive disorder, is characterized by hypoketotic hypoglycemia, cardiomyopathy, liver damage, and myopathy. VLCAD deficiency is caused by defects of ACADVL gene, which encodes VLCAD protein. The aim of this study was to determine the clinical, biochemical, prognosis and mutation spectrum of patients with VLCAD deficiency in mainland China. A total of Six families visited us, four patients (2 boys and 2 girls) were admitted in hospital due to liver dysfunction, hypoglycemia, and positive newborn screen result. The parents of the other two patients (2 girls) visited us for genetic consultation after their children's death. All the six patients had elevated level of serum tetradecenoylcarnitine (C14:1-carnitine), four of them showed decreased free carnitine (C0) level, and three had dicarboxylic aciduria. Eight types of mutations of the ACADVL gene were detected, three of them are novel, including c.563G > A (p.G188D) c.1387G > A (p.G463R) and c.1582_1586del (p.L529Sfs*31). The p.R450H mutation accounts for 9/52 alleles (5/40 in previous study of 20 unrelated patients, and 4/12 in this study) of genetically diagnosed Chinese VLCAD deficiency cases. The four alive patients (Patient 1-4) responded well to diet prevention and drug therapy with stable hepatic dysfunction condition. In conclusion, we describe three novel mutations of the ACADVL gene among six unrelated families with VLCAD deficiency. Moreover, we suggest that the p.R450H may be a potential hotspot mutation in the Chinese population.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Doenças Musculares/genética , Mutação , Acil-CoA Desidrogenase de Cadeia Longa/genética , Povo Asiático , Carnitina/análogos & derivados , Carnitina/metabolismo , China , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Feminino , Humanos , Hipoglicemia , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/terapia , Hepatopatias , Masculino , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Doenças Musculares/patologia , Doenças Musculares/terapia
19.
Toxicol In Vitro ; 62: 104665, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31629068

RESUMO

cis-5-Tetradecenoic (cis-5) and myristic (Myr) acids predominantly accumulate in patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. They commonly manifest myopathy with muscular pain and rhabdomyolysis, whose underlying mechanisms are poorly known. Thus, in the present study we investigated the effects of cis-5 and Myr on mitochondrial bioenergetics and Ca2+ homeostasis in rat skeletal muscle. cis-5 and Myr decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration, especially when mitochondria were supported by NADH-linked as compared to FADH2-linked substrates. In contrast, these fatty acids increased resting respiration (state 4). Similar effects were observed in skeletal muscle fibers therefore validating the data obtained with isolated mitochondria. Furthermore, cis-5 and Myr markedly decreased mitochondrial membrane potential and Ca2+ retention capacity that were avoided by cyclosporin A plus ADP and ruthenium red, indicating that cis-5 and Myr induce mitochondrial permeability transition (MPT). Finally, docosanoic acid did not disturb mitochondrial homeostasis, indicating selective effects for Myr and cis-5. Taken together, our findings indicate that major long-chain fatty acids accumulating in VLCAD deficiency behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and MPT inducers. It is presumed that these pathomechanisms contribute to the muscular symptoms and rhabdomyolysis observed in patients affected by VLCAD deficiency.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/metabolismo , Ácidos Mirísticos/toxicidade , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Animais , Cálcio/metabolismo , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos Wistar
20.
Mitochondrion ; 50: 1-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655165

RESUMO

Patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency commonly present liver dysfunction whose pathogenesis is poorly known. We demonstrate here that major metabolites accumulating in this disorder, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), markedly impair mitochondrial respiration, decreasing ATP production in liver mitochondrial preparations from adolescent rats. Other parameters of mitochondrial homeostasis such as membrane potential (ΔΨm) and Ca2+retention capacity were strongly compromised by these fatty acids, involving induction of mitochondrial permeability transition. The present data indicate that disruption of mitochondrial bioenergetics and Ca2+homeostasis may contribute to the liver dysfunction of VLCAD deficient patients.


Assuntos
Fígado/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Hepáticas/fisiologia , Envelhecimento , Animais , Cálcio/metabolismo , Citocromos c/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Ácido Mirístico/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA