Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
1.
Sci Total Environ ; : 176234, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39288873

RESUMO

Reducing VOCs can effectively reduce the concentration of PM2.5 and O3. Different gasoline compositions can impact the VOC species emitted by GDI and PFI vehicles. In this study, VOC species emitted from GDI and PFI vehicles combusting gasoline with different compositions (i.e., G1-market #92 gasoline, G2-high alkane gasoline, and G3-high heavy aromatic gasoline) were tested, and the influence of VOC species on O3 formation were investigated. The results indicated that the GDI vehicle consistently exhibited higher VOC emissions than the PFI vehicle in combusting three types of gasolines. The presence of short-chain alkanes and alkenes in the exhaust of combusting G2 and ethyne among the aromatics of combusting G3 resulted in higher VOC emissions from combusting G2 and G3 than from combusting G1 in the GDI vehicle. High alkane gasoline exhibited larger reductions of VOC emissions in the PFI vehicle but increased the proportions of propene, 1-butene, and ethyne emissions. High heavy aromatic gasoline increased the proportion of ethyne emissions in the GDI vehicle and increased the proportion of toluene, formaldehyde, and propane emissions in the PFI vehicle. The overall emission variation of ozone formation potential (OFP) was similar to those of VOC emissions. Alkene (C2-C6), monocyclic aromatic hydrocarbons (MAHs) and aldehydes had high contribution to O3 formation. Further research is needed to optimize fuel upgrading for GDI vehicles to ensure effective emission reduction. The results would help reduce vehicle emissions and provide support for achieving synergistic prevention and control of PM2.5 and O3 pollution.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39267325

RESUMO

Wide bandgap (WBG) perovskite solar cells (PSCs) provide their merit of high voltage output but are faced with the overdeepened valence band and the notorious phase segregation. Herein, two alkylthiophene-substituted polythiophenes (PT4T-0F and PT4T-2F) are applied as the interfacial layer for the WBG (1.72 eV) PSCs. Compared with PT4T-0F, PT4T-2F with fluoride (F) on thiophene units in a conjugated backbone exhibits more planar configuration, higher hole mobility, and deeper highest occupied molecular orbital energy. By using PT4T-2F as an additive in antisolvent, crystal growth of FA0.83Cs0.17Pb(I0.7Br0.3)3 is successfully mediated, resulting in high ratio (100) plane exposure of the WBG perovskites, and defect passivation is simultaneously realized. The optimized device presents a high open-circuit voltage of 1.23 V and a power conversion efficiency of 19.20%. The long-term stabilities under moisture and thermal conditions are both improved. This work offers an ideal interlayer material for WBG PSC engineering and further provides a simple process to integrate simultaneous crystal mediation and interface optimization.

3.
J Appl Microbiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317668

RESUMO

AIMS: Volatile organic compounds (VOCs) have an important function in plant growth-promoting rhizobacteria (PGPR) development and plant growth. This study aimed to identify VOCs of the PGPR strain, Stutzerimonas stutzeri NRCB010, and investigate their effects on NRCB010 biofilm formation, swarming motility, colonization, and tomato seedling growth. METHODS AND RESULTS: Solid-phase microextraction and gas chromatography-mass spectrometry were performed to identify the VOCs produced during NRCB010 fermentation. 28 VOCs were identified. Among them, seven (e.g. γ-valerolactone, 3-octanone, mandelic acid, 2-heptanone, methyl palmitate, S-methyl thioacetate, and 2,3-heptanedione), which smell well, are beneficial for plant, or as food additives, and without serious toxicities were selected to evaluate their effects on NRCB010 and tomato seedling growth. It was found that most of these VOCs positively influenced NRCB010 swarming motility, biofilm formation, and colonization, and the tomato seedling growth. Notably, γ-valerolactone and S-methyl thioacetate exhibited the most positive performances. CONCLUSION: The seven NRCB010 VOCs, essential for PGPR and crop growth, are potential bioactive ingredients within microbial fertilizer formulations. Nevertheless, the long-term sustainability and replicability of the positive effects of these compounds across different soil and crop types, particularly under field conditions, require further investigation.

4.
Environ Sci Technol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283811

RESUMO

Synergistic catalytic removal of multipollutants (e.g., volatile organic compound (VOC) oxidation and nitrogen oxide (NOx) reduction) is highly demanded due to the increasingly strict emission standards. The prevention of the key reactive intermediate species nitrite excessive oxidation over the supported noble-metal catalysts, rather than the traditional low-efficiency transition metal oxide catalysts, remains a great challenge. Herein, a sound strategy of Pd single atoms saturated with acidic transition element ligands is proposed. The coexistence of Pd and V dual single atoms strengthens the adsorption of reactants, while synergistic interaction between dual atoms and surface oxygen weakens activation of lattice oxygen, thus significantly reducing the overoxidation of nitrite. Meanwhile, the neutralization of the active Pd and inert V sites results in a rational decrease in the redox property of Pd and an obvious increase in that of V. The Pd1V1/CeO2 dual single-atom catalyst achieves 90% conversion of NOx and toluene at 238 and 230 °C and has a large temperature window (>150 °C) for NOx reduction. This research makes a breakthrough in the development of efficient supported noble-/transition-metal dual single-atom catalysts for VOC and NOx simultaneous purification.

5.
J Hazard Mater ; 479: 135710, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241364

RESUMO

As an important intermediary between upstream refineries and downstream urban gas stations, volatile organic compound (VOC) emissions from urban oil depots were often disregarded, underestimating their environmental and health implications. An extensive investigation of urban depots' fuel composition and operational dynamics was conducted nationwide. We developed a novel approach that integrates theoretical models with easily measurable operational data from the depots to evaluate the efficiency of post-treatment devices in actual situations. Even in well-managed oil depots, the actual control efficiency of vapor recovery units fluctuates between 63 % and 85 %, depending on the concentration of hydrocarbon vapors in the intake of the device. The national emission factors for gasoline, diesel, and aviation kerosene at a national level were 6.64 ± 1.16, 2.07 ± 0.42, and 6.17 ± 1.05 tons per 10,000 tons, respectively. In 2019, China's urban oil depots emitted 165 thousand tons of VOC. Enhancing control strategies by optimizing the physical and chemical parameters of refined oil, improving storage capacity and turnover efficiency, and upgrading storage tanks had the potential to reduce emissions by more than 60 %. However, a 30 % failure rate in these systems could negate the benefits of these improved strategies.

6.
Cureus ; 16(8): e67302, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39301408

RESUMO

Sickle cell disease (SCD) is a hereditary hemoglobinopathy that can lead to progressive vasculopathy, increasing the risk of cerebrovascular complications. Moyamoya syndrome (MMS), a rare disorder characterized by stenosis of the internal carotid arteries, can occur in SCD patients due to chronic endothelial damage and inflammation. The coexistence of these conditions can result in severe cerebrovascular complications, presenting unique diagnostic and therapeutic challenges. We present a 35-year-old African American male with a complex interplay of advanced SCD and MMS, manifesting as extensive cerebrovascular disease and recurrent ischemic strokes. A CT angiogram (CTA) of the head showed diffusely decreased caliber of the right M1 segment, appearing worse compared to prior studies. CTA of the head and neck demonstrated a new cut-off of the distal right M3 segment with an asymmetric paucity of arborizing vessels within the right middle cerebral artery (MCA) distribution, consistent with progressive sickle cell vasculopathy and also demonstrated abnormal dilated collateral vessels. Further imaging with MRI exhibited multiple prior ischemic strokes in various vascular territories despite previous revascularization surgery with a left superficial temporal artery to MCA bypass. The patient's progressive cerebrovascular disease was attributed to sickle cell vasculopathy exacerbated by MMS, resulting in compromised cerebral perfusion through distinct pathological mechanisms. Management involved a multidisciplinary treatment approach, including chronic transfusions, antiplatelet therapy, surgical revascularization with extracranial-intracranial bypass, seizure management, and neuropsychiatric support. Despite maximal therapy, the patient experienced recurrent cerebrovascular events and progressive neurological deficits, highlighting the challenges in controlling these intertwined disease processes. It signifies the importance of early recognition of this rare co-occurrence and implementation of prompt multidisciplinary treatment to improve outcomes.

7.
Heliyon ; 10(17): e37015, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286128

RESUMO

Background: Volatile organic compounds (VOCs) fume in the workplace can act as an inducing agent to many health disorders. Objectives: This work investigated the effects of exposure to VOCs content from paint on the automobile paint workers in South Eastern Nigeria. Methods: A total of fifty (50) respondent participated in the study. Following the completion of informed consent form and well-structured questionnaire, blood samples were drawn and used for biochemical analysis. Results: The results of the haematological analysis showed a significant (p < 0.05) increase in white blood cell (WBC) cluster of differentiation 4 (CD4), and platelet (PLT), and a significant (p < 0.05) decrease in packed cell volume (PCV), hemoglobin (HB), lymphocytes (LYM) and eosinophil (EOS) of the exposed automobile paint workers compared to the control (unexposed workers). Results also showed significant (p < 0.05) increase in liver marker indices; alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TB) and albumin (ALB) as well as significant (p < 0.05) decrease in Alkaline phosphatase (ALP), total protein (TP), direct bilirubin (DB). There was significant (p < 0.05) increase in urea, creatinine, potassium (K+), uric acid and nitric oxide concentrations and decrease in sodium (Na+) and bicarbonate (HCO3-) Again, results showed significant increase in Glutathione (GSH), and Glutathione peroxidase (GPx) and significant (p < 0.05) decrease in Superoxide dismutase (SOD) and Catalase (CAT). The Malondialdehyde MDA concentration showed varied significant (p < 0.05) difference based on ages. There was significant (p < 0.05) increase in luteinizing hormone (LH) and Follicle stimulating hormone (FSH), and significant (p < 0.05) decrease in the Testosterone (TET) concentrations of the exposed automobile paint workers compared to the unexposed workers. Conclusions: Result of this study suggests a toxic outcome due to exposure to VOCs in spray paint workers.

8.
J Infect Public Health ; 17(11): 102546, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39321605

RESUMO

BACKGROUND: The COVID-19 pandemic has affected various urban population groups in different ways. Earlier studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disproportionally impacts nursing home residents by increasing morbidity and mortality following viral exposure. However, little is known about the epidemiology of this disease in detail. Therefore, the objective of this study is to analyze the development of the COVID-19 pandemic in 14 nursing homes across Berlin-Neukölln, Germany, during pandemic waves 1 to 5 (Feb 2020 - May 2022). METHODS: Reporting data to the Neukölln Department of Public Health on COVID-19 cases in connection with nursing homes were extracted from the SORMAS database. The case fatality rates (CFRs) and odds ratios (ORs) of demographic parameters, prevalent variants of concern (VOCs) and vaccine availability were calculated. In addition, the temporal course in waves 1-5 in Neukölln and the relevant government measures were examined. RESULTS: Data collected from nursing homes providing age-dependent physical care revealed that 1.9 % of the total 108,600 cases registered in Berlin-Neukölln during the study period were related one of the 14 facilities. Compared to the general population in Neukölln, nursing homes exhibited a 20-fold increase in the CFR. Notably, nursing homes with higher bed capacities displayed a greater CFR than did smaller nursing homes. Similarly, elderly residents living in nursing homes faced a much greater mortality rate than did their counterparts living outside of medical settings (OR = 3.5). The original wild-type SARS-CoV-2 strain had the most severe direct impact, with a CFR of 16.7 %, compared to the alpha (CFR = 6.9 %), delta (CFR = 10.2 %) and omicron (CFR = 2.8 %) variants in nursing homes. Interestingly, the number of infections increased following vaccination campaigns, but this trend was accompanied by a decrease in the number of deaths from 2.6 to 1.1 per week. As a result, the CFR significantly decreased from 18.4 to 5.5, while still exceeding the mean CFR compared to that of the general population of Neukölln. CONCLUSIONS: Our findings reveal the changing patterns of outbreak frequency and severity across the five pandemic waves. They highlight the crucial role of rapid vaccination programs for residents, staff, visitors, and third-party services in safeguarding nursing homes. Additionally, improvements in containment and cluster strategies are essential in prevaccination scenarios to prevent future infection traps for elderly individuals in long-term care facilities. The presented data highlight the importance of tailored protection measures for one of the most vulnerable populations in our society.

9.
J Hazard Mater ; 480: 135856, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39298956

RESUMO

Volatile organic compounds (VOCs) have proven to be hazardous to the human respiratory system. However, the underlying biological mechanisms remain poorly understood. Therefore, targeted determination of eleven VOC metabolites (mVOCs) along with the nontargeted metabolomic analysis was performed on urine samples collected from lung cancer patients and healthy individuals. Nine mVOCs mainly derived from aldehydes, alkenes, amides, and aromatics were detected in > 90 % of the urine samples, suggesting that the participants were ubiquitously exposed to these typical VOCs. A molecular gatekeeper discovery workflow was employed to link the exposure biomarkers with correlated clusters of endogenous metabolites. As a result, multiple metabolic pathways, including amino acid metabolism, steroid hormone biosynthesis and metabolism, and fatty acid ß-oxidation were connected with VOC exposure. Furthermore, 16 of 73 molecular gatekeepers were associated with lung cancer and pointed to a few disrupted metabolic pathways related to hydroxysteroids and acylcarnitine. The shift in molecular profiles was validated in rat model post VOC administration. Thereinto, the up-regulation of enzymes involved in acylcarnitine synthesis and transport in rat lung tissues highlighted that the mitochondrial dysfunction may be a potential carcinogenic mechanism. Our findings provide new insights into the mechanisms underlying lung cancer induced by VOC exposure.

10.
Environ Res ; 263(Pt 1): 120042, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307230

RESUMO

In the context of the air quality co-benefits of carbon neutrality, conventional strategies for the end-of-pipe control aimed at reducing volatile organic compounds (VOCs) to carbon dioxide (CO2) require a more realistic revision. This study explored the synergetic removal of carbonyls with low carbon emission by amine-functionalized manganese dioxide (MnO2), obtained through a method involving freezing-thawing cycles. Molecular-level characterization revealed that an ordered array of interfacial water dimers (H5O2+, a class of water-proton clusters) on the MnO2 surface enhanced the robust bonding of metal sites with amino groups. Amine-functionalized MnO2 can be negatively charged under environmental acidity to further interfacial proton-coupled electron transfers. This cooperativity in interfacial chemical processes promoted the selective conversion of carbonyl carbons to bicarbonated amides (NH3+HCO3-), serving as a reservoir of CO2. In comparison to a commercially used 2,4-dinitrophenylhydrazine (DNPH) control, this approach achieved nearly complete removal of a priority carbonyl mixture containing formaldehyde, acetaldehyde, and acetone synergically. The formation of secondary organic compounds in the gas phase and CO2 off-gas were suppressed.

11.
Cureus ; 16(8): e68265, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39238724

RESUMO

INTRODUCTION: Sickle cell disease (SCD) is an autosomal recessive genetic disorder characterized by the presence of a mutated form of hemoglobin (Hb) known as sickle hemoglobin (HbS). Individuals with SCD are susceptible to a variety of osteoarticular complications. Osteomyelitis is a commonly seen infection affecting the tibia, diaphysis of the femur and humerus, and vertebras. AIM: The aim of this study was to define the indicators suggesting the diagnosis of osteomyelitis in patients with SCD. METHODS: This study is a descriptive, analytical, non-interventional, prospective study of pediatric patients with SCD admitted with vaso-occlusive crisis (VOC) and/or osteomyelitis, which were identified by laboratory and radiological features. Retrospective data was included for patients who met the inclusion criteria. The statistical analysis included a description of the primary and secondary outcomes in the cohort. RESULTS: A total of 28 children were included in this study. Participants' ages ranged from 11 months to 13 years. Males represented the majority (64.3%) of the participants. The blood culture of most of the participants (89.3%) showed no growth; however, 7.1% had salmonella, and only 3.6% had Gram-positive cocci. Most cases (75%) had leukocytosis. Thrombocytosis was present mainly in patients with VOC (40%). CRP was 1-4.9 mg/dL, mainly in patients with osteomyelitis (50%). The ferritin level exceeded 5000 ng/mL in patients with osteomyelitis or both osteomyelitis and VOC (50%). Ultrasound examinations revealed no hip effusion in 24 of the 28 examined patients. A plain X-ray examination showed no abnormality in 24 out of the 28 examined cases; with MRI, three cases exhibited marrow edema with bone enhancement, two (66.7%) were complicated by osteomyelitis, and the last (33.3%) had osteomyelitis and VOC. Aspiration was performed only in seven of the 28 examined, of which six (85.7%) were complicated by osteomyelitis, while the last one (14.3%) had acute chest syndrome. CONCLUSION: Based on the outcomes of this study, we recommend an individualized multidisciplinary examination (hematology, infectious disease, orthopedic surgery, and interventional radiology) for SCD patients with suspected osteomyelitis admitted with VOC, considering the entire clinical history and laboratory and MRI results.

12.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39275588

RESUMO

This study investigates the application of an eNose (electrochemical sensory array) device as a rapid and cost-effective screening tool to detect increasingly prevalent counterfeit electronic cigarettes, and those to which potentially hazardous excipients such as vitamin E acetate (VEA) have been added, without the need to generate and test the aerosol such products are intended to emit. A portable, in-field screening tool would also allow government officials to swiftly identify adulterated electronic cigarette e-liquids containing illicit flavorings such as menthol. Our approach involved developing canonical discriminant analysis (CDA) models to differentiate formulation components, including e-liquid bases and nicotine, which the eNose accurately identified. Additionally, models were created using e-liquid bases adulterated with menthol and VEA. The eNose and CDA model correctly identified menthol-containing e-liquids in all instances but were only able to identify VEA in 66.6% of cases. To demonstrate the applicability of this model to a commercial product, a Virginia Tobacco JUUL product was adulterated with menthol and VEA. A CDA model was constructed and, when tested against the prediction set, it was able to identify samples adulterated with menthol 91.6% of the time and those containing VEA in 75% of attempts. To test the ability of this approach to distinguish commercial e-liquid brands, a model using six commercial products was generated and tested against randomized samples on the same day as model creation. The CDA model had a cross-validation of 91.7%. When randomized samples were presented to the model on different days, cross-validation fell to 41.7%, suggesting that interday variability was problematic. However, a subsequently developed support vector machine (SVM) identification algorithm was deployed, increasing the cross-validation to 84.7%. A prediction set was challenged against this model, yielding an accuracy of 94.4%. Altered Elf Bar and Hyde IQ formulations were used to simulate counterfeit products, and in all cases, the brand identification model did not classify these samples as their reference product. This study demonstrates the eNose's capability to distinguish between various odors emitted from e-liquids, highlighting its potential to identify counterfeit and adulterated products in the field without the need to generate and test the aerosol emitted from an electronic cigarette.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Técnicas Eletroquímicas/métodos , Nicotina/análise , Análise Discriminante , Aromatizantes/análise , Aromatizantes/química , Mentol/análise , Mentol/química , Humanos
13.
Yakugaku Zasshi ; 2024 Sep 09.
Artigo em Japonês | MEDLINE | ID: mdl-39245569

RESUMO

Although odor is an important indicator of herbal medicine quality, an objective odor evaluation method remains undiscovered. Quantitative measurement using previous methods is complicated as Citrus Unshiu Peel (Chimpi) emits an odor when broken. To establish odor evaluation methods for herbal medicines using chimpi as an example, we developed a reproducible method for breaking samples and an objective odor evaluation method using an electronic nose (e-nose). First, an odor-emitting device (OED) was fabricated by modifying a pill cutter, which suppressed the spread of odor components into the room air while cutting the samples. The odor was emitted from chimpi with an OED and measured using an e-nose. The cut length was then measured. The sensor intensity was positively correlated with the cut length (r = 0.840-0.927) in the same sample, and the intensity per unit length (INPULTH) calculated from the sensor intensity and cut length enables the comparison of the sensor intensity among different samples. In addition, average d-limonene emission level measured by GC-MS was positively correlated with average INPULTH (r = 0.999), which suggests that this OED and e-nose method enables the comparison of the sensor intensity and d-limonene emissions. INPULTH also positively correlated with other seven monoterpenes such as p-cymene, ß-myrcene, ß-phellandrene, α-pinene, ß-pinene, γ-terpinene, and α-terpinolene (r = 0.701-0.865). Therefore, monoterpene content can be evaluated by measuring the odor in the same way as d-limonene. In conclusion, we developed a simple odor intensity evaluation method optimized for chimpi to establish an odor evaluation method for herbal medicines.

14.
J Hazard Mater ; 479: 135630, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216248

RESUMO

Indoor volatile organic compounds (VOCs) pose considerable health hazards. However, research on hazardous VOCs in Chinese residences has been conducted on a limited spectrum. This study used Monte Carlo simulations with data from Beijing, Shanghai, and Shenzhen to assess VOC health risks in Chinese homes. We identified high-risk VOCs and analyzed the impact of geographic location, age group, activity duration, and inhalation rate on VOC exposure, including lifetime risks. Formaldehyde, acrolein, naphthalene, and benzene posed the highest risks. Notably, acrolein made the leading contribution to non-cancer risks across all megacities. Naphthalene had elevated cancer and non-cancer risks in Shenzhen. This study highlights the need to investigate acrolein and naphthalene, which are currently unregulated but pose substantial health risks. The cumulative cancer risk (TCR) decreases from adults to children, while the cumulative non-cancer risk (HI) is higher for children. In all cities, the average TCR for adults exceeds the tolerable threshold of 10-4, and the average HI values surpass the safety threshold of 1. Nearly 100 % of the population faces a lifetime cancer risk above 10-4, and over 71 % face a non-cancer risk exceeding 10 (tenfold the benchmark). This study underscores the critical need for developing control strategies tailored to VOCs.


Assuntos
Poluição do Ar em Ambientes Fechados , Cidades , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Humanos , Medição de Risco , China , Poluição do Ar em Ambientes Fechados/análise , Método de Monte Carlo , Adulto , Criança , Neoplasias/induzido quimicamente , Poluentes Atmosféricos/análise , Habitação , Exposição por Inalação/análise
15.
J Dairy Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098496

RESUMO

The efficacy of low gaseous ozone concentrations (300 ppb and 400 ppb) in controlling spoilage microflora and preserving the quality of the aged Toma Piemontese PDO cheese was explored. The research integrates consumer tests, Gas Chromatography-Mass Spectrometry (GC-MS) with Solid phase Microextraction (SPME) fiber and Electronic Nose (e-nose) analysis to conduct a detailed assessment of the cheese's aromatic composition. Results indicate that low ozone concentrations significantly affected spoilage microflora, preserving the overall quality. Through GC-FID (Flame Ionization Detection) analysis, 22 of all identified compounds by GC-MS were quantified, including ethyl acetate (sweety), diacetyl and acetoin (buttery). Compared with the untreated sample, ozone treatments maintained the distinctive characteristics of Toma Piemontese PDO cheese, reducing the formation of off-flavors-related compounds (i.e., ethanol). Moreover, ozone-treated samples correlated with positive aroma scores given by consumers. However, sensory perception involves complex interactions among aroma compounds, highlighting the importance of advanced approaches. The utilization of a 12-sensor Quartz Microbalance (QMB) e-nose played a crucial role in identifying subtle differences in aroma, contributing to a more nuanced understanding of ozone treatments on the cheese's sensory profile. In conclusion, this research demonstrates the potential of ozone technology as a viable and effective method for improving the quality of aged Toma Piemontese PDO cheese.

17.
Sci Total Environ ; 949: 175176, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094657

RESUMO

The rapid progress of intelligent transportation systems (ITS) has enabled the development of a highly spatiotemporally resolved vehicular VOC emission inventory. However, up to this point, the emission factors applied in vehicular VOC emission inventories worldwide are either independent of driving conditions or estimated by emission models, resulting in significant bias. In this study, by using the speed-dependent VOC emission factor measured online from a typical fleet in Guangzhou and collecting multiple sources of ITS data, we developed, for the first time, a link-level dynamic vehicular VOC emission inventory. The results reveal that the emission factors for vehicles at speeds higher than 50 km/h are only around 30 % of those at 5-20 km/h. Consequently, the total vehicular VOC emission in Guangzhou is estimated to be 16.19 kt in 2019, around 40 % lower than the estimates by the static emission inventory using the average emission factor during a short transient driving (STD) cycle. This discrepancy is mainly due to the much lower average speed of the STD cycle (20 km/h) compared to the average traffic speed on the road network (36 km/h). The discrepancy in VOC emissions was even higher for highways, with the static emission factors being 75-93 % higher than the speed-dependent ones. Such a large discrepancy underscores the necessity of applying localised speed-dependent emission factors to improve the estimation accuracy of vehicular VOC emissions. This study provides more accurate insights for policymakers in formulating targeted strategies to reduce vehicular VOC emissions and mitigate their contributions to ozone and PM2.5 pollution in urban areas.

18.
Environ Pollut ; 359: 124757, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153537

RESUMO

In the troposphere, ozone (O3) formation can be limited by NOx, VOCs, or both, complicating efforts to reduce O3 by controlling its precursors. This study used formaldehyde (HCHO) data and nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze O3 formation sensitivity in Fujian from 2012 to 2021. Over the past decade, an 8.7% reduction in NO2 VCDs and a 9.91% increase in HCHO VCDs were observed. Due to differences in the primary driving factors, HCHO VCDs exhibit a characteristic seasonal pattern with higher in summer and lower in winter, whereas NO2 VCDs show the opposite trend. O3 formation chemistry was accurately diagnosed by combining satellite-based data and ground-based O3 data. A new threshold value (3.3-4.6) was derived to determine the transition from VOC-limited to NOx-limited O3 formation regimes. Results showed that O3 sensitivity exhibited pronounced seasonal variations. The VOC-limited regime predominates throughout the entire Fujian region in winter, whereas it occupies only 5% of the area in summer. A VOC-limited region was found widely across Fujian on an annual average, but it decreased by 24% over 10 years. Transitional areas experienced a 19% increase. In two natural emission reduction cases (reductions during the Chinese Lunar New Year holiday and reductions in weekend traffic emissions compared to weekdays), ground-level O3 effectively captured the impacts of sensitivity changes. The impact suggests that when Fujian is in the VOC control region, a significant reduction in NOx, without effective VOC control, might lead to an O3 increase. The importance of controlling VOC emissions is highlighted in Fujian. This study enhances the understanding of O3 formation regimes in southeastern China, which is crucial for developing O3 prevention and control strategies.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Ozônio , Estações do Ano , Compostos Orgânicos Voláteis , China , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Dióxido de Nitrogênio/análise , Poluição do Ar/estatística & dados numéricos , Formaldeído/análise
19.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39201667

RESUMO

Lupus Nephritis (LN) still represents one of the most severe complications of Systemic Lupus Erythematosus (SLE) and a major risk factor for morbidity and mortality. However, over the last few years, several studies have paved the way for a deeper understanding of its pathogenetic mechanisms and more targeted treatments. This review aims to provide a comprehensive update on progress on several key aspects in this setting: pathogenetic mechanisms of LN, including new insight into the role of autoantibodies, complement, vitamin D deficiency, and interaction between infiltrating immune cells and kidney resident ones; the evolving role of renal biopsy and biomarkers, which may integrate information from renal histology; newly approved drugs such as voclosporin (VOC) and belimumab (BEL), allowing a more articulate strategy for induction therapy, and other promising phase III-immunosuppressive (IS) agents in the pipeline. Several adjunctive treatments aimed at reducing cardiovascular risk and progression of chronic renal damage, such as antiproteinuric agents, represent an important complement to IS therapy. Furthermore, non-pharmacological measures concerning general lifestyle and diet should also be adopted when managing LN. Integrating these therapeutic areas requires an effort towards a holistic and multidisciplinary approach. At the same time, the availability of an increasingly wider armamentarium may translate into improvements in patient's renal outcomes over the next decades.


Assuntos
Nefrite Lúpica , Humanos , Nefrite Lúpica/patologia , Nefrite Lúpica/etiologia , Nefrite Lúpica/tratamento farmacológico , Imunossupressores/uso terapêutico , Biomarcadores , Animais , Autoanticorpos/imunologia
20.
Sci Rep ; 14(1): 18949, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147784

RESUMO

Secondhand vaping exposure is an emerging public health concern that remains understudied. In this study, saliva and exhaled emissions from ENDS users (secondhand) and non-ENDS users (baseline) were collected, firsthand emissions were generated using an automated ENDS aerosol generation system programmed to simulate puffing topography profiles collected from ENDS users. Particulate concentrations and sizes along with volatile organic compounds were characterized. We revealed puffing topography metrics as potential mediators of firsthand and secondhand particle and chemical exposures, as well as metabolic and respiratory health outcomes. Particle deposition modeling revealed that while secondhand emissions displayed smaller deposited mass, total and pulmonary particle deposition fractions were higher than firsthand deposition levels, possibly due to smaller secondhand emission particle diameters. Lastly, untargeted metabolomic profiling of salivary biomarkers of lung injury due to firsthand ENDS exposures revealed potential early indicators of respiratory distress that may also be relevant in bystanders exposed to secondhand vaping scenarios. By leveraging system toxicology, we identified 10 metabolites, including leukotriene D4, that could potentially serve as biomarkers for ENDS use, exposure estimation, and the prediction of vaping-related disease. This study highlights characterization of vaping behavior is an important exposure component in advancing our understanding of potential health effects in ENDS users and bystanders.


Assuntos
Vaping , Humanos , Vaping/efeitos adversos , Projetos Piloto , Masculino , Adulto , Feminino , Biomarcadores , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Saliva/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA