Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
J Infect Dis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963827

RESUMO

BACKGROUND: Human rhinoviruses (RV) primarily cause the common cold, but infection outcomes vary from subclinical to severe cases, including asthma exacerbations and fatal pneumonia in immunocompromised individuals. To date, therapeutic strategies have been hindered by the high diversity of serotypes. Global surveillance efforts have traditionally focused on sequencing VP1 or VP2/VP4 genetic regions, leaving gaps in our understanding of RV genomic diversity. METHODS: We sequenced 1,078 RV genomes from nasal swabs of symptomatic and asymptomatic individuals to explore viral evolution during two epidemiologically distinct periods in Washington State: when the COVID-19 pandemic affected the circulation of other seasonal respiratory viruses except for RV (February - July 2021), and when the seasonal viruses reemerged with the severe RSV and influenza outbreak (November-December 2022). We constructed maximum likelihood and BEAST-phylodynamic trees to characterize intra-genotype evolution. RESULTS: We detected 99 of 168 known genotypes and observed inter-genotypic recombination and genotype cluster swapping from 2021 to 2022. We found a significant association between the presence of symptoms and viral load, but not with RV species or genotype. Phylodynamic trees, polyprotein selection pressure, and Shannon entropy revealed co-circulation of divergent clades within genotypes with high amino acid constraints throughout polyprotein. DISCUSSION: Our study underscores the dynamic nature of RV genomic epidemiology within a localized geographic region, as more than 20% of existing genotypes within each RV species co-circulated each studied month. Our findings also emphasize the importance of investigating correlations between rhinovirus genotypes and serotypes to understand long-term immunity and cross-protection.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39002060

RESUMO

Duck viral hepatitis, primarily caused by duck hepatitis A virus type 1 (DHAV-1), poses a significant threat to the global duck industry. Bacillus subtilis is commonly utilized as a safe probiotic in the development of mucosal vaccines. In this study, a recombinant strain of B. subtilis, designated as B. subtilis RV, was constructed to display the DHAV-1 capsid protein VP1 on its spore surface using the outer coat protein B as an anchoring agent. The immunogenicity of this recombinant strain was evaluated in a mouse model through mixed feeding immunization. The results indicated that B. subtilis RV could elicit specific systemic and mucosal immune responses in mice, as evidenced by the high levels of serum IgG, intestinal secretory IgA, and potent virus-neutralizing antibodies produced. Furthermore, the recombinant strain significantly upregulated the expression levels of IL-2, IL-6, IL-10, TNF-α, and IFN-γ in the intestinal mucosa. Thus, the recombinant strain maintained the balance of the Th1/Th2 immune response and demonstrated an excellent mucosal immune adjuvant function. In summary, this study suggests that B. subtilis RV can be a novel alternative for effectively controlling DHAV-1 infection as a vaccine-based feed additive.

3.
Vet Microbiol ; 296: 110191, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032445

RESUMO

Infectious bursal disease virus (IBDV) is a highly contagious virus with a dsRNA genome, predominantly infecting chickens and causing significant economic losses due to high mortality rates. The emergence of recombinant, novel variant, and highly virulent strains that evade current vaccines has led to frequent epidemics and outbreaks in the poultry industry. The lack of targeted antivirals for IBDV underscores the pressing requirement to develop potent therapeutic options. Within this framework, our research investigated the effectiveness of picroside II, a naturally derived iridoid glycoside, against viruses in DF-1 cells. Our findings demonstrate that picroside II significantly inhibits viral replication, with its efficacy increasing proportionally to the dosage administered. Through time-addition and antiviral duration analysis, we determined that picroside II therapeutically blocks IBDV replication, with its effects persisting for over 72 hours. Further investigation revealed that picroside II specifically inhibits the cellular replication stage of IBDV's lifecycle. Additionally, our findings indicate that picroside II impairs VP1 polymerase activity by binding to the active pocket, which significantly disrupts the interaction between VP1 and VP3. Mutations at three critical binding sites on VP1 not only impair virus replication but also hinder polymerase function and disrupt VP1-VP3 interactions. Collectively, these results demonstrate that picroside II, by inhibiting viral polymerase activity, represents a promising antiviral agent against IBDV.

4.
J Infect Dev Ctries ; 18(7): 1118-1123, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39078798

RESUMO

INTRODUCTION: Coxsackievirus A10 (CVA10) is a non-enveloped, positive-sense single-stranded RNA virus classified within the Enterovirus genus in the Picornaviridae family. It is among the pathogens that can cause hand, foot and mouth disease. This study aimed to analyze the temporal and spatial distribution of CVA10 in China to understand its epidemiological characteristics of CVA10. METHODOLOGY: We collected the VP1 sequences of CVA10 from January 1, 2004, to December 31, 2019, from the GenBank database and created the global map using MapChart. We selected 56 known CVA10 genotype sequences. Then, MEGA6.06 was used to construct a phylogenetic tree with the collected gene sequences and the known reference sequences for comparative analysis to assess the distribution of CVA10 genotypes in different countries between 2004 and 2019. RESULTS: CVA10 has been widely detected or reported globally. In China, the prevalent genotype of CVA10 was mainly genotype B before 2008 and genotype C after 2009. In other countries, the prevalence of genotype D was dominant, followed by genotypes C and F, and the prevalence of CVA10 varied from continent to continent. CONCLUSIONS: Monitoring CVA10 genotypes or evolutionary branches should be strengthened, and the study of epidemic genotype characteristics should be enhanced. This will serve as a basis for further research and development of monovalent CVA10 or polyvalent vaccines designed for effective disease prevention.


Assuntos
Genótipo , Filogenia , China/epidemiologia , Humanos , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/epidemiologia , Proteínas do Capsídeo/genética , Enterovirus/genética , Enterovirus/classificação , Enterovirus/isolamento & purificação , Prevalência
5.
Infect Genet Evol ; 122: 105617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857640

RESUMO

Unlike pandemic GII.4 norovirus, GII.6 norovirus shows limited sequence variation in its major capsid protein VP1. In this study, we investigated the VP1 expression profiles, binding abilities, and cross-blocking effects of three GII.6 norovirus strains derived from three distinct variants. Norovirus VP1 was expressed using a recombinant baculovirus expression system and characterized by transmission electron microscopy, mass spectrometry, salivary histo-blood group antigen (HBGA)-virus like particles (VLPs) binding and binding blockade assays. Mass spectrometry revealed the expected molecular weight (MW) of full-length proteins and degraded or cleaved fragments of all three VP1 proteins. Peptide mapping showed loss of 2 and 3 amino acids from the N- and C-terminus, respectively. Further, the co-expression of VP1 and VP2 proteins did not lead to extra fragmentation during mass spectrometry. Salivary HBGA-VLP binding assay revealed similar binding patterns of the three GII.6 VP1 proteins. Salivary HBGA-VLP binding blockade assay induced cross-blocking effects. Our results demonstrate similar binding abilities against salivary HBGAs and specific cross-blocking effects for GII.6 norovirus strains derived from distinct variants, suggesting that fewer GII.6 strains from different evolutionary variants are needed for the development of norovirus vaccines.


Assuntos
Proteínas do Capsídeo , Norovirus , Norovirus/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Humanos , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/virologia , Ligação Proteica
6.
Avian Dis ; 68(2): 99-111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885051

RESUMO

The continued circulation of infectious bursal disease virus (IBDV) in Egypt, despite the use of various vaccines, is a serious problem that requires continuous detection of IBDV. In the current study, real-time reverse transcriptase polymerase chain reaction testing of 100 diseased chicken flocks during 2017-2021 revealed the presence of very virulent IBDV (vvIBDV) in 67% of the flocks, non-vvIBDV in 11%, and a mixture of both vvIBDV and non-vvIBDV in 4%. Twenty-nine IBDV isolates were submitted for partial sequencing of the viral protein 2 hypervariable region (VP2-HVR), and 27 isolates were confirmed to be genogroup A3 (vvIBDV) with 96.3%-98.5% similarity to the global A3 (vvIBDV) and 88.9%-97% similarity to genogroup A1 vaccine strains. The remaining two isolates were non-vvIBDV and showed 91.1% and 100% identity with classical genogroup A1 strains, respectively. Furthermore, the sequence and phylogenetic analysis of VP1 (amino acids 33-254) of two selected isolates of A3, 5/2017 and 98/2021, clustered them as B2, vvIBDV-like, strains with high similarity (99.5%) to four Egyptian, 99% to Chinese and European, and 97.7% to Chinese and Polish vvIBDV isolates. Experimental infection of commercial broiler chickens with two vvIBDV-A3B2 isolates (5/2017 and 98/2021) showed no mortality despite typical tissue lesions, clear histopathological changes, and strong ELISA antibody response. Isolate 98/2021 was more pathogenic, as confirmed by histopathology, whereas isolate 5/2017 induced a stronger serological response. In conclusion, vvIBDV (A3B2) strains with two amino acid (aa) substitutions in VP1 as V141I and V234I as well as VP2 as Y220F and G254S are still circulating in Egypt.


Análisis de las secuencias genéticas y de la patogenicidad del virus de la enfermedad infecciosa de la bolsa de pollos en Egipto durante los años 2017­2021. La circulación continua del virus de la enfermedad infecciosa de la bolsa (IBDV) en Egipto, a pesar del uso de varias vacunas, continua siendo un problema serio que requiere la detección continua de este virus. En el presente estudio, se realizó una prueba de transcripción reversa y reacción en cadena de la polimerasa en tiempo real de 100 parvadas enfermas de pollos durante los años 2017­2021 y reveló la presencia de virus muy virulentos (vvIBDV) en el 67% de las parvadas, otros tipos diferentes a los muy virulentos en el 11%, y una mezcla de virus muy virulentos y otros tiposen un 4% de las parvadas. Se enviaron veintinueve aislados del virus de la enfermedad infecciosa de la bolsa para la secuenciación parcial de la región hipervariable de la proteína viral 2 (VP2-HVR), y se confirmó que 27 aislados pertenecían al genogrupo A3 (vvIBDV) con una similitud del 96.3% al 98.5% con el genogrupo A3 global (vvIBDV) y de 88.9% a 97% de similitud con las cepas vacunales del genogrupo A1. Los dos aislamientos restantes no resultaron ser muy virulentos y mostraron un 91.1% y un 100% de identidad con las cepas clásicas del genogrupo A1, respectivamente. Además, la secuencia y el análisis filogenético de la proteina VP1 (aminoácidos 33-254) de dos aislados seleccionados de genogrupo A3, 5/2017 y 98/2021, los agruparon como cepas B2, similares a virus muy virulentos, con alta similitud (99.5%) con cuatro aislamientos de Egipto, con similitud de 99% con aislados chinos y europeos, y de 97.7% con aislados muy virulentos chinos y polacos. La infección experimental de pollos de engorde comerciales con dos aislados muy virulentos tipo A3B2 (5/2017 y 98/2021) no mostró mortalidad a pesar de las lesiones tisulares típicas, los cambios histopatológicos claros y la fuerte respuesta de anticuerpos por ELISA. El aislado 98/2021 fue más patógeno, según lo confirmado por histopatología, mientras que el aislado 5/2017 indujo una respuesta serológica más fuerte. En conclusión, las cepas muy virulentas (A3B2) con dos sustituciones de aminoácidos (aa) en la proteina VP1 como V141I y V234I, así como en VP2 tales como Y220F y G254S, todavía circulan en Egipto.


Assuntos
Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Filogenia , Doenças das Aves Domésticas , Animais , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/patogenicidade , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Egito/epidemiologia , Virulência
7.
Res Sq ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38883784

RESUMO

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain. Database: BMRB submission code: 52440.

8.
Biomol NMR Assign ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904726

RESUMO

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.

9.
J Virol ; 98(7): e0039724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869283

RESUMO

Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory and neurologic disease [acute flaccid myelitis (AFM)]. Intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with US/IL/14-18952 (IL52), a clinical isolate from the 2014 EV-D68 epidemic, results in many of the pathogenic features of human AFM, including viral infection of the spinal cord, death of motor neurons, and resultant progressive paralysis. In distinction, CA/14-4231 (CA4231), another clinical isolate from the 2014 EV-D68 outbreak, does not cause paralysis in mice, does not grow in the spinal cord, and does not cause motor neuron loss following IM injection. A panel of chimeric viruses containing sequences from IL52 and CA4231 was used to demonstrate that VP1 is the main determinant of EV-D68 neurovirulence following IM injection of neonatal SW mice. VP1 contains four amino acid differences between IL52 and CA4231. Mutations resulting in substituting these four amino acids (CA4231 residues into the IL52 polyprotein) completely abolished neurovirulence. Conversely, mutations resulting in substituting VP1 IL52 amino acid residues into the CA4231 polyprotein created a virus that induced paralysis to the same degree as IL52. Neurovirulence following infection of neonatal SW mice with parental and chimeric viruses was associated with viral growth in the spinal cord. IMPORTANCE: Emerging viruses allow us to investigate mutations leading to increased disease severity. Enterovirus D68 (EV-D68), once the cause of rare cases of respiratory illness, recently acquired the ability to cause severe respiratory and neurologic disease. Chimeric viruses were used to demonstrate that viral structural protein VP1 determines growth in the spinal cord, motor neuron loss, and paralysis following intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with EV-D68. These results have relevance for predicting the clinical outcome of future EV-D68 epidemics as well as targeting retrograde transport as a potential strategy for treating virus-induced neurologic disease.


Assuntos
Proteínas do Capsídeo , Viroses do Sistema Nervoso Central , Modelos Animais de Doenças , Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Animais , Enterovirus Humano D/patogenicidade , Enterovirus Humano D/genética , Enterovirus Humano D/fisiologia , Mielite/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/patologia , Doenças Neuromusculares/virologia , Doenças Neuromusculares/patologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Viroses do Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/patologia , Humanos , Medula Espinal/virologia , Medula Espinal/patologia , Neurônios Motores/virologia , Neurônios Motores/patologia , Animais Recém-Nascidos , Virulência , Paralisia/virologia
10.
Protein Sci ; 33(7): e5074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38888268

RESUMO

Adeno-associated virus (AAV), a widely used gene therapy vector, is a small, nonenveloped virus that contains a single-stranded DNA genome with a maximum length of 4.7 kb. Despite extensive biophysical and structural characterization, many aspects of AAV functions remain elusive. This knowledge gap is primarily due to a lack of structurally resolved dynamic information and the absence of structural coverage of functionally critical segments on the AAV capsid. Here, we developed a protocol to study AAV structural dynamics by hydrogen-deuterium exchange mass spectrometry (HDX-MS), a powerful method for monitoring protein structure stability and dynamics in solution. We performed HDX-MS measurements on AAVs without or with different DNA payloads of different sizes, and obtained detailed dynamic information on the entire AAV sequence including the two functionally important segments not previously structurally characterized. The unique N terminus of the capsid protein VP1 (VP1u) was found to adopt a highly dynamic and unstable conformation with low HDX protection across the entire region, whereas the presence of a DNA payload increased its protection. The VP1 and VP2 shared region (VP1/2) showed no measurable protection, with or without DNA. Differential HDX between empty and full capsid samples allowed us to identify potential new DNA-capsid interaction sites located primarily around the five-fold channel, which differ from the three-fold pocket binding site previously identified. Our HDX-MS method for characterizing AAV structural dynamics opens a new way for future efforts to understand AAV structure-function relationships and engineer next-generation AAV vectors with improved gene delivery properties.


Assuntos
Proteínas do Capsídeo , Capsídeo , Dependovirus , Terapia Genética , Vetores Genéticos , Dependovirus/genética , Dependovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Vetores Genéticos/genética , Terapia Genética/métodos , Capsídeo/química , Capsídeo/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Estabilidade Proteica , Humanos , Conformação Proteica , Modelos Moleculares
11.
Plant Physiol Biochem ; 213: 108854, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901228

RESUMO

The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Sementes , Fatores de Transcrição , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo
12.
Vet Res ; 55(1): 63, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760810

RESUMO

The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.


Assuntos
Proteínas de Choque Térmico HSP70 , Vírus da Hepatite do Pato , Sítios Internos de Entrada Ribossomal , Replicação Viral , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Animais , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , Patos , Doenças das Aves Domésticas/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Hepatite Viral Animal/virologia , Hepatite Viral Animal/metabolismo , Biossíntese de Proteínas
13.
Front Public Health ; 12: 1377861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751577

RESUMO

Background: Hand, foot, and mouth disease (HFMD) is a common infectious disease in children. Enterovirus A71 (EV71) and coxsackievirus A16 (CA16) have been identified as the predominant pathogens for several decades. In recent years, coxsackievirus A6 (CA6) and coxsackievirus A10 (CA10) have played increasingly important roles in a series of HFMD outbreaks. We performed a retrospective analysis of the epidemiology of HFMD and the spectrum of different viral serotypes, to elucidate the genetic and phylogenetic characteristics of the main serotypes in the Jiashan area during 2016 to 2022. Methods: Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD in Jiashan during 2016 to 2022 based on surveillance data. Molecular diagnostic methods were performed to identify the viral serotypes and etiological characteristics of HFMD. Phylogenetic analyses was based on VP1 region of CA16 and CA6. Results: The average annual incidence rate of HFMD fluctuated from 2016 to 2022. Children aged 1-5 years accounted for 81.65% of cases and boys were more frequently affected than girls. Except when HFMD was affected by the COVID-19 epidemic in 2020 and 2022, epidemics usually peak in June to July, followed by a small secondary peak from October to December and a decline in February. Urban areas had a high average incidence and rural areas had the lowest. Among 560 sample collected in Jiashan, 472 (84.29%) were positive for enterovirus. The most frequently identified serotypes were CA6 (296, 52.86%), CA16 (102, 18.21%), EV71 (16, 2.86%), CA10 (14, 2.50%) and other enteroviruses (44, 7.86%). There were 71 and 142 VP1 sequences from CA16 and CA6, respectively. Substitution of N218D, A220L and V251I was detected in CA16 and may have been related to viral infectivity. Phylogenetic analysis showed that CA16 could be assigned to two genogroups, B1a and B1b, while all the CA6 sequences belonged to the D3a genogroup. Conclusion: CA6 and CA16 were the two major serotypes of enteroviruses circulating in the Jiashan area during 2016 to 2022. Continuous and comprehensive surveillance for HFMD is needed to better understand and evaluate the prevalence and evolution of the associated pathogens.


Assuntos
Doença de Mão, Pé e Boca , Filogenia , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Humanos , China/epidemiologia , Masculino , Feminino , Pré-Escolar , Lactente , Estudos Retrospectivos , Criança , Incidência , Enterovirus/genética , Enterovirus/isolamento & purificação , Enterovirus/classificação , Sorogrupo , Surtos de Doenças/estatística & dados numéricos , Adolescente
14.
Biomedicines ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672065

RESUMO

Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of Merkel Cell Carcinoma (MCC) has been found in OSCC, suggesting its potential role as a co-factor in the development of oral cavity cancers. To improve our understanding about MCPyV in oral cavities, the detection and analysis of MCPyV DNA, transcripts and miRNA were performed on OSCCs and oral potentially malignant disorders (OPMDs). In addition, the cellular miR-375, known to be deregulated in tumors, was examined. MCPyV DNA was found in 3 out of 11 OSCC and 4 out of 12 OPMD samples, with a viral mean value of 1.49 × 102 copies/mL. Viral integration was not observed and LTAg and VP1 transcripts were detected. Viral miRNAs were not detected whereas the cellular miR-375 was found over expressed in all MCPyV positive oral specimens. Our results reported evidence of MCPyV replication in both OSCC and OPMD suggesting the oral cavity as a site of replicative MCPyV infection, therefore underscoring an active role of this virus in the occurrence of oral lesions.

15.
Virol J ; 21(1): 87, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641833

RESUMO

BACKGROUND: Bovine parvovirus (BPV) is an autonomous DNA virus with a smaller molecular size and subtle differences in its structural proteins, unlike other animal parvoviruses. More importantly, this virus has the potential to produce visible to silent economic catastrophes in the livestock business, despite receiving very little attention. Parvoviral virus-like particles (VLPs) as vaccines and as logistical platforms for vaccine deployment are well studied. However, no single experimental report on the role of VP1 in the assembly and stability of BPV-VLPs is available. Furthermore, the self-assembly, integrity and stability of the VLPs of recombinant BPV VP2 in comparison to VP1 VP2 Cap proteins using any expression method has not been studied previously. In this study, we experimentally evaluated the self-assembling ability with which BPV virus-like particles (VLPs) could be synthesized from a single structural protein (VP2) and by integrating both VP2 and VP1 amino acid sequences. METHODS: In silico and experimental cloning methods were carried out. His-tagged and without-His-tag VP2 and V1VP2-encoding amino acid sequences were cloned and inserted into pFastbacdual, and insect cell-generated recombinant protein was evaluated by SDS‒PAGE and western blot. Period of infectivity and expression level were determined by IFA. The integrity and stability of the BPV VLPs were evaluated by transmission electron microscopy. The secondary structure of the BPV VLPs from both VP2 and V1VP2 was analyzed by circular dichroism. RESULTS: Our findings show that VP2 alone was equally expressed and purified into detectable proteins, and the stability at different temperatures and pH values was not appreciably different between the two kinds of VLPs. Furthermore, BPV-VP2 VLPs were praised for their greater purity and integrity than BPV-VP1VP2 VLPs, as indicated by SDS‒PAGE. Therefore, our research demonstrates that the function of VP1 has no bearing on the stability or integrity of BPV-VLPs. CONCLUSIONS: In summary, incredible physiochemically stable BPV VP2-derived VLPs have been found to be promising candidates for the development of multivalent vaccines and immunodiagnostic kits against enteric viruses and to carry heterogeneous epitopes for various economically important livestock diseases.


Assuntos
Bocavirus , Parvovirus , Vacinas , Animais , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas do Capsídeo/genética
16.
J Virol ; 98(5): e0019724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593321

RESUMO

Noroviruses are major causative agents of acute nonbacterial gastroenteritis in humans. There are neither antiviral therapeutic agents nor vaccines for noroviruses at this time. To evaluate the potential usefulness of two previously isolated human monoclonal antibody fragments, CV-1A1 and CV-2F5, we first conducted a single-particle analysis to determine the cryo-electron microscopy structure of virus-like particles (VLPs) from the genogroup I genotype 4 (GI.4) Chiba strain uniformly coated with CV-1A1 fragments. The results revealed that the GI.4-specific CV-1A1 antibody bound to the P2 subdomain, in which amino acids are less conserved and variable. Interestingly, a part of the CV-1A1 intrudes into the histo-blood group antigen-binding site, suggesting that this antibody might exert neutralizing activity. Next, we determined the crystal structure of the protruding (P) domain of the capsid protein in the complex form with the CV-2F5 antibody fragment. Consistent with the cross-reactivity, the CV-2F5 bound to the P1 subdomain, which is rich in amino acids conserved among the GI strains, and moreover induced a disruption of Chiba VLPs. These results suggest that the broadly reactive CV-2F5 antibody can be used as both a universal detection reagent and an antiviral drug for GI noroviruses. IMPORTANCE: We conducted the structural analyses of the VP1 protein from the GI.4 Chiba norovirus to identify the binding sites of the previously isolated human monoclonal antibodies CV-1A1 and CV-2F5. The cryo-electron microscopy of the Chiba virus-like particles (VLPs) complexed with the Fv-clasp forms of GI.4-specific CV-1A1 revealed that this antibody binds to the highly variable P2 subdomain, suggesting that this antibody may have neutralizing ability against the GI.4 strains. X-ray crystallography revealed that the CV-2F5 antibody bound to the P1 subdomain, which is rich in conserved amino acids. This result is consistent with the ability of the CV-2F5 antibody to react with a wide variety of GI norovirus strains. It is also found that the CV-2F5 antibody caused a disruption of VLPs. Our findings, together with previous reports on the structures of VP1 proteins and VLPs, are expected to open a path for the structure-based development of antivirals and vaccines against norovirus disease.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Norovirus , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Modelos Moleculares , Norovirus/imunologia
17.
Virol Sin ; 39(3): 378-389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499154

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease, which is caused by the FMD virus (FMDV). Although the cell receptor for FMDV has been identified, the specific mechanism of FMDV internalization after infection remains unknown. In this study, we found that kinesin family member 5B (KIF5B) plays a vital role during FMDV internalization. Moreover, we confirmed the interaction between KIF5B and FMDV structural protein VP1 by co-immunoprecipitation (Co-IP) and co-localization in FMDV-infected cells. In particular, the stalk [amino acids (aa) 413-678] domain of KIF5B was indispensable for KIF5B-VP1 interaction. Moreover, overexpression of KIF5B dramatically enhanced FMDV replication; consistently, knockdown or knockout of KIF5B suppressed FMDV replication. Furthermore, we also demonstrated that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating. KIF5B also promotes the transmission of viral particles to early and late endosomes during the early stages of infection. In conclusion, our results demonstrate that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating and intracellular transport. This study may provide a new therapeutic target for developing FMDV antiviral drugs.


Assuntos
Vírus da Febre Aftosa , Cinesinas , Internalização do Vírus , Replicação Viral , Cinesinas/metabolismo , Cinesinas/genética , Vírus da Febre Aftosa/fisiologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Animais , Febre Aftosa/virologia , Febre Aftosa/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Linhagem Celular , Humanos , Endossomos/metabolismo , Endossomos/virologia , Células HEK293
18.
Talanta ; 272: 125820, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430864

RESUMO

Chicken anemia virus (CAV) is one of the primary causes of morbidity and mortality in young chickens. Given the importance of timely detection for maintaining livestock quality, there is a pressing need for rapid and field-deployable diagnostic tools. This study introduces a highly sensitive paper-based electrochemical immunosensor (PEI) for the detection of the 60 amino acid N-terminally truncated viral protein 1 (Δ60VP1), a derivative of the CAV capsid (VP1). A custom antibody was produced for precise immunoassay detection, with results obtainable within 30 min using Square Wave Voltammetry (SWV). The underlying mechanism involves an immunocomplex in the sample zone that hinders the electron transfer of redox species, thereby reducing the current signal in proportion to the Δ60VP1 concentration. Under optimal conditions, the detection linearity for Δ60VP1 ranged from 80 to 2500 ng/mL, with a limit of detection (LoD) of 25 ng/mL. This device was then successfully applied to detect VP1 in 29 chicken serum samples, achieving 91.6% sensitivity and 94.1% selectivity. In conclusion, the PEI device presents a promising solution for rapid, sensitive, and disposable detection of chicken pathogens, potentially revolutionizing productivity and quality assurance in chicken farming.


Assuntos
Técnicas Biossensoriais , Vírus da Anemia da Galinha , Animais , Imunoensaio/métodos , Galinhas , Proteínas Virais , Limite de Detecção , Técnicas Eletroquímicas/métodos
19.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471668

RESUMO

AIMS: Enteroviruses are significant human pathogens associated with a range of mild to severe diseases. This study aims to understand the diversity and genetic characterization of enteroviruses circulated in southwest China's border cities by using environmental surveillance. METHODS AND RESULTS: A total of 96 sewage samples were collected in three border cities and a port located in Yunnan Province, China from July 2020 to June 2022. After cell culture and VP1 sequencing, a total of 590 enterovirus isolates were identified, belonging to 21 types. All PV strains were Sabin-like with ≤6 nucleotide mutations in the VP1 coding region. Echovirus 6, echovirus 21 (a rare serotype in previous studies), and coxsackievirus B5 were the predominant serotypes, which accounted for 21.19%, 18.31%, and 13.39% of the total isolates, respectively. The prevalence of the common serotypes varied across different border cities and periods. Phylogenetic analysis revealed the presence of multiple evolutionary lineages for E21, E6, and E30, some of which formed distinct branches. CONCLUSIONS: High diversity of enteroviruses and distinct lineages of predominant serotypes circulated in southwest China's border cities.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Cidades , Filogenia , China/epidemiologia , Infecções por Enterovirus/epidemiologia , Enterovirus Humano B/genética , Antígenos Virais/genética , Monitoramento Ambiental/métodos
20.
mSphere ; 9(4): e0079923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501831

RESUMO

BK polyomavirus (BKPyV) is a double-stranded DNA virus causing nephropathy, hemorrhagic cystitis, and urothelial cancer in transplant patients. The BKPyV-encoded capsid protein Vp1 and large T-antigen (LTag) are key targets of neutralizing antibodies and cytotoxic T-cells, respectively. Our single-center data suggested that variability in Vp1 and LTag may contribute to failing BKPyV-specific immune control and impact vaccine design. We, therefore, analyzed all available entries in GenBank (1516 VP1; 742 LTAG) and explored potential structural effects using computational approaches. BKPyV-genotype (gt)1 was found in 71.18% of entries, followed by BKPyV-gt4 (19.26%), BKPyV-gt2 (8.11%), and BKPyV-gt3 (1.45%), but rates differed according to country and specimen type. Vp1-mutations matched a serotype different than the assigned one or were serotype-independent in 43%, 18% affected more than one amino acid. Notable Vp1-mutations altered antibody-binding domains, interactions with sialic acid receptors, or were predicted to change conformation. LTag-sequences were more conserved, with only 16 mutations detectable in more than one entry and without significant effects on LTag-structure or interaction domains. However, LTag changes were predicted to affect HLA-class I presentation of immunodominant 9mers to cytotoxic T-cells. These global data strengthen single center observations and specifically our earlier findings revealing mutant 9mer epitopes conferring immune escape from HLA-I cytotoxic T cells. We conclude that variability of BKPyV-Vp1 and LTag may have important implications for diagnostic assays assessing BKPyV-specific immune control and for vaccine design. IMPORTANCE: Type and rate of amino acid variations in BKPyV may provide important insights into BKPyV diversity in human populations and an important step toward defining determinants of BKPyV-specific immunity needed to protect vulnerable patients from BKPyV diseases. Our analysis of BKPyV sequences obtained from human specimens reveals an unexpectedly high genetic variability for this double-stranded DNA virus that strongly relies on host cell DNA replication machinery with its proof reading and error correction mechanisms. BKPyV variability and immune escape should be taken into account when designing further approaches to antivirals, monoclonal antibodies, and vaccines for patients at risk of BKPyV diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA