RESUMO
BACKGROUND/AIM: Currently, there are few drug options available to treat malignant melanoma. Tazarotene-inducible gene 1 (TIG1) was originally isolated from skin tissue, but its function in skin tissue has not been clarified. The aim of this study was to elucidate the effect of TIG1 and mTOR signaling pathways associated with VAC14 on melanoma. MATERIALS AND METHODS: The expression of TIG1 and VAC14 in melanoma tissue was analyzed using a melanoma tissue cDNA array. The interaction between TIG1 and VAC14 was analyzed using immunoprecipitation and immunostaining. Western blot was used to investigate the molecular targets of TIG1 and VAC14 in melanoma cells. RESULTS: TIG1 was highly expressed in normal skin tissue but was low in malignant melanoma, while VAC14 showed the opposite trend. TIG1 inhibited insulin-induced cell proliferation and insulin-activated mammalian target of rapamycin complex 1 (mTORC1)-p70 S6 kinase but did not affect the level of phospho-AKT in A2058 melanoma cells. This suggests that the main target of TIG1 regulating cell growth is phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] rather than the PI(4,5)P2 signaling pathway. Additional TIG1 showed no additive effect on the inhibition of mTOR signaling in the absence of VAC14 expression, suggesting that TIG1 inhibited the activation of mTOR mainly by inhibiting VAC14. CONCLUSION: TIG1 may play an important role in preventing malignant melanoma through retinoic acid via VAC14.
Assuntos
Melanoma , Proteínas de Membrana , Humanos , Insulinas , Melanoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Membrana/genética , Melanoma Maligno CutâneoRESUMO
The multiprotein Fab1p/PIKfyve-complex regulating the abundance of the phospholipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is highly conserved among eukaryotes. In yeast/mammals, it is composed of the phosphatidylinositol 3-phosphate 5-kinase Fab1p/PIKfyve, the PtdIns(3,5)P2 phosphatase Fig4p/Sac3 and the scaffolding subunit Vac14p/ArPIKfyve. The complex is located to vacuolar membranes in yeast and to endosomal membranes in mammals, where it controls the synthesis and turnover of PtdIns(3,5)P2. In this study, we analyzed the role and function of the Fab1p/PIKfyve-complex scaffold protein SmVAC14 in the filamentous ascomycete Sordaria macrospora (Sm). We generated the Smvac14 deletion strain ∆vac14 and performed phenotypic analysis of the mutant. Furthermore, we conducted fluorescence microscopic localization studies of fluorescently labeled SmVAC14 with vacuolar and late endosomal marker proteins. Our results revealed that SmVAC14 is important for maintaining vacuolar size and appearance as well as proper sexual development in S. macrospora. In addition, SmVAC14 plays an important role in starvation stress response. Accordingly, our results propose that the turnover of PtdIns(3,5)P2 is of great significance for developmental processes in filamentous fungi.
Assuntos
Fosfatos de Fosfatidilinositol , Saccharomyces cerevisiae , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Mamíferos , Proteínas de Membrana , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Desenvolvimento Sexual , SordarialesRESUMO
Phosphoinositide signaling lipids are crucial for eukaryotes and regulate many aspects of cell function. These signaling molecules are difficult to study because they are extremely low abundance. Here, we focus on two of the lowest abundance phosphoinositides, PI(3,5)P2 and PI(5)P, which play critical roles in cellular homeostasis, membrane trafficking and transcription. Their levels are tightly regulated by a protein complex that includes PIKfyve, Fig4 and Vac14. Importantly, mutations in this complex that decrease PI(3,5)P2 and PI(5)P are linked to human diseases, especially those of the nervous system. Paradoxically, PIKfyve inhibitors which decrease PI(3,5)P2 and PI(5)P, are currently being tested for some neurodegenerative diseases, as well as other diverse diseases including some cancers, and as a treatment for SARS-CoV2 infection. A more comprehensive picture of the pathways that are regulated by PIKfyve will be critical to understand the roles of PI(3,5)P2 and PI(5)P in normal human physiology and in disease.
Assuntos
Tratamento Farmacológico da COVID-19 , Fosfatos de Fosfatidilinositol , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis , Monoéster Fosfórico Hidrolases , RNA Viral , SARS-CoV-2RESUMO
Conversion between phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate on endosomal membranes is critical for the maturation of early endosomes to late endosomes/lysosomes and is regulated by the PIKfyve-Vac14-Fig4 complex. Despite the importance of this complex for endosomal homeostasis and vesicular trafficking, there is little known about how its activity is regulated or how it interacts with other cellular proteins. Here, we screened for the cellular interactome of Vac14 and Fig4 using proximity-dependent biotin labeling (BioID). After independently screening the interactomes of Vac14 and Fig4, we identified 89 high-confidence protein hits shared by both proteins. Network analysis of these hits revealed pathways with known involvement of the PIKfyve-Vac14-Fig4 complex, including vesicular organization and PI3K/Akt signaling, as well as novel pathways including cell cycle and mitochondrial regulation. We also identified subunits of coatomer complex I (COPI), a Golgi-associated complex with an emerging role in endosomal dynamics. Using proximity ligation assays, we validated the interaction between Vac14 and COPI subunit COPB1 and between Vac14 and Arf1, a GTPase required for COPI assembly. In summary, this study used BioID to comprehensively map the Vac14-Fig4 interactome, revealing potential roles for these proteins in diverse cellular processes and pathways, including preliminary evidence of an interaction between Vac14 and COPI. Data are available via ProteomeXchange with the identifier PXD027917.
Assuntos
Flavoproteínas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Monoéster Fosfórico Hidrolases , Endossomos/metabolismo , Flavoproteínas/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Monoéster Fosfórico Hidrolases/metabolismoRESUMO
The 1-phosphatidylinositol-3-phosphate 5-kinase PIKfyve generates PtdIns3,5P2 on late phagolysosomes, which by recruiting the scission protein Atg18, results in their fragmentation in the normal course of endosome processing. Loss of PIKfyve function causes cellular hypervacuolization in eukaryotes and organ failure in humans. We identified pikfyve as the defective gene in a Dictyostelium mutant that failed to form spores. The amoebas normally differentiated into prespore cells and initiated spore coat protein synthesis in Golgi-derived prespore vesicles. However, instead of exocytosing, the prespore vesicles fused into the single vacuole that typifies the stalk and basal disc cells that support the spores. This process was accompanied by stalk wall biosynthesis, loss of spore gene expression and overexpression of ecmB, a basal disc and stalk-specific gene, but not of the stalk-specific genes DDB_G0278745 and DDB_G0277757. Transdifferentiation of prespore into stalk-like cells was previously observed in mutants that lack early autophagy genes, like atg5, atg7, and atg9. However, while autophagy mutants specifically lacked cAMP induction of prespore gene expression, pikfyve - showed normal early autophagy and prespore induction, but increased in vitro induction of ecmB. Combined, the data suggest that the Dictyostelium endosomal system influences cell fate by acting on cell type specific gene expression.
RESUMO
VAC14 related childhood-onset striatonigral degeneration was first defined in 2016 in two unrelated children with sudden onset neurological disease and regression of developmental milestones. Up to now, 11 cases have been reported. VAC14 is a component of a trimolecular complex that tightly regulates the level of phosphatidylinositol 3,5-bisphosphate (PI (3, 5)P2) and PI (3, 5)P2 is critical for the survival of neural cells. Pathogenic VAC14 variants result in striatonigral degeneration chacterised by prominent vacuolation of neurons in basal ganglia. Here, we present a patient with a homozygous pathogenic VAC14 variant, whose symptoms started at an early age and who had both basal ganglia and brain stem involvement. Our case is one of the youngest patients in literature and involvement of the brain stem is defined for the first time in VAC14 related neurological disease.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Degeneração Estriatonigral/genética , Idade de Início , Gânglios da Base/diagnóstico por imagem , Feminino , Homozigoto , Humanos , Lactente , Mutação , Fenótipo , Degeneração Estriatonigral/diagnóstico por imagem , Degeneração Estriatonigral/patologia , Substância Negra/diagnóstico por imagemRESUMO
BACKGROUND: Pathogenic variants in the VAC14 component of PIKFYVE complex (VAC14) gene have been identified as a cause of a childhood-onset complex dystonia with striato-nigral degeneration. VAC14 is a scaffold protein relevant for the regulation of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and is known to form homodimers. METHODS: Whole exome sequencing was performed in a 32-year-old patient with adolescence-onset complex dystonia and his unaffected mother. We established primary fibroblast cultures from the patient and used stably transfected SH-SY5Y cells overexpressing wildtype or mutant VAC14 to investigate the influence of VAC14 variants on the homodimer formation. Furthermore, the current literature on VAC14-related disorders was reviewed. RESULTS: Our patient presented with progressive, complex dystonia with anarthria, dysphagia, sensorineural deafness, spasticity and nigral and pallidal iron deposition and striatal hyperintensities upon MRI. We identified two rare compound-heterozygous VAC14 variants (p.Leu648Phe and p.Arg623His), both located at the C-terminus in the predicted homodimerization domain. Enhanced VAC14 homodimer formation was observed for two missense variants (p.Leu648Phe and p.Ala562Val, a published mutation), but not for p.Arg623His, compared to wildtype VAC14. In contrast to previous reports, no enlarged vacuoles were detected in fibroblasts of our patient. CONCLUSIONS: We report a novel patient with a VAC14-related disorder and provide first evidence of an enhanced VAC14 homodimerization as a possible disease mechanism. Due to the increased iron deposition and the clinical overlap, this disorder should be discussed as a new form of neurodegeneration with brain iron accumulation (NBIA). We suggest that VAC14 should be implemented in NBIA gene panels.
Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Adulto , Humanos , Masculino , LinhagemRESUMO
BACKGROUND: VAC14 is a component of a trimolecular complex that tightly regulates the level of phosphatidylinositol 3,5-bisphosphate [PI (3,5) P2]. VAC14 pathogenic variants cause prominent vacuolation of neurons in basal ganglia of patients with childhood-onset striatonigral degeneration (SNDC). METHODS: We identified two siblings with SNDC. Whole-exome sequencing was performed for genetic molecular analysis in these probands. RESULTS: The patients were compound heterozygotes for two novel variants in the VAC14 gene, p.Ala582Thr and p.Arg681His. The pathogenicity of these variants was indicated by a bioinformatic study and protein three-dimensional modeling. Eight previously reported SNDC cases and a Yunis-Varón syndrome caused by VAC14 mutations were summarized and compared. CONCLUSION: We present novel compound heterozygous variants (c.1744G>A/c.2042G>A) in our proband, and these novel variants were predicted to be likely pathogenic. The affected siblings were clinically severe and lethal; their phenotypes were similar to the majority of previously reported SNDC cases, with the exception of two cases that showed mild clinical manifestations. VAC14 pathogenic variants may be associated with various phenotypes. Herein, we report the Chinese siblings with SNDC, they are the first Asian cases. Our results expanded the spectrum of VAC14 pathogenic variants and the ethnic backgrounds of the affected cases.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Degeneração Estriatonigral/genética , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Masculino , Proteínas de Membrana/química , Linhagem , Domínios Proteicos , Degeneração Estriatonigral/patologiaRESUMO
Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR = 0.022, opposite direction of effect). Conclusion: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP.
RESUMO
The lipid phosphatase gene FIG4 is responsible for Yunis-Varón syndrome and Charcot-Marie-Tooth disease Type 4J, a peripheral neuropathy. We now describe four families with FIG4 variants and prominent abnormalities of central nervous system (CNS) white matter (leukoencephalopathy), with onset in early childhood, ranging from severe hypomyelination to mild undermyelination, in addition to peripheral neuropathy. Affected individuals inherited biallelic FIG4 variants from heterozygous parents. Cultured fibroblasts exhibit enlarged vacuoles characteristic of FIG4 dysfunction. Two unrelated families segregate the same G > A variant in the +1 position of intron 21 in the homozygous state in one family and compound heterozygous in the other. This mutation in the splice donor site of exon 21 results in read-through from exon 20 into intron 20 and truncation of the final 115 C-terminal amino acids of FIG4, with retention of partial function. The observed CNS white matter disorder in these families is consistent with the myelination defects in the FIG4 null mouse and the known role of FIG4 in oligodendrocyte maturation. The families described here the expanded clinical spectrum of FIG4 deficiency to include leukoencephalopathy.
Assuntos
Alelos , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/genética , Flavoproteínas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Monoéster Fosfórico Hidrolases/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Doenças Desmielinizantes/metabolismo , Fibroblastos/metabolismo , Genótipo , Humanos , Padrões de Herança , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Linhagem , FenótipoRESUMO
The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.
Assuntos
Flavoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Amiloide/metabolismo , Animais , Células Cultivadas , Flavoproteínas/genética , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Melanócitos/patologia , Melanossomas/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatases de Fosfoinositídeos/genética , Transporte Proteico , Epitélio Pigmentado da Retina/patologia , Antígeno gp100 de Melanoma/metabolismoRESUMO
The protein complex composed of the kinase PIKfyve, the phosphatase FIG4 and the scaffolding protein VAC14 regulates the metabolism of phosphatidylinositol 3,5-bisphosphate, which serves as both a signaling lipid and the major precursor for phosphatidylinositol 5-phosphate. This complex is involved in the homeostasis of late endocytic compartments, but its precise role in maintaining the dynamic equilibrium of late endosomes, endolysosomes and lysosomes remains to be determined. Here, we report that inhibition of PIKfyve activity impairs terminal lysosome reformation from acidic and hydrolase-active, but enlarged endolysosomes. Our live-cell imaging and electron tomography data show that PIKfyve activity regulates extensive membrane remodeling that initiates reformation of lysosomes from endolysosomes. Altogether, our findings show that PIKfyve activity is required to maintain the dynamic equilibrium of late endocytic compartments by regulating the reformation of terminal storage lysosomes.
Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Técnicas de Cultura de Células , Endossomos/ultraestrutura , Flavoproteínas/metabolismo , Células HeLa , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Monoéster Fosfórico Hidrolases/metabolismo , Transporte ProteicoRESUMO
The mechanisms for regulating PIKfyve complex activity are currently emerging. The PIKfyve complex, consisting of the phosphoinositide kinase PIKfyve (also known as FAB1), VAC14 and FIG4, is required for the production of phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. PIKfyve function is required for homoeostasis of the endo/lysosomal system and is crucially implicated in neuronal function and integrity, as loss of function mutations in the PIKfyve complex lead to neurodegeneration in mouse models and human patients. Our recent work has shown that the intracellular domain of the amyloid precursor protein (APP), a molecule central to the aetiology of Alzheimer's disease binds to VAC14 and enhances PIKfyve function. In the present study, we utilize this recent advance to create an easy-to-use tool for increasing PIKfyve activity in cells. We fused APP intracellular domain (AICD) to the HIV TAT domain, a cell-permeable peptide allowing proteins to penetrate cells. The resultant TAT-AICD fusion protein is cell permeable and triggers an increase in PI(3,5)P2 Using the PI(3,5)P2 specific GFP-ML1Nx2 probe, we show that cell-permeable AICD alters PI(3,5)P2 dynamics. TAT-AICD also provides partial protection from pharmacological inhibition of PIKfyve. All three lines of evidence show that the AICD activates the PIKfyve complex in cells, a finding that is important for our understanding of the mechanism of neurodegeneration in Alzheimer's disease.
Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide , Peptídeos Penetradores de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Recombinantes de Fusão , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Phosphorylated phosphatidylinositol lipids are crucial for most eukaryotes and have diverse cellular functions. The low-abundance signalling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is critical for cellular homoeostasis and adaptation to stimuli. A large complex of proteins that includes the lipid kinase Fab1-PIKfyve, dynamically regulates the levels of PI(3,5)P2. Deficiencies in PI(3,5)P2 are linked to some human diseases, especially those of the nervous system. Future studies will probably determine new, undiscovered regulatory roles of PI(3,5)P2, as well as uncover mechanistic insights into how PI(3,5)P2 contributes to normal human physiology.
Assuntos
Células/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Doença , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Fatores de TempoRESUMO
Phosphoinositides are important components of eukaryotic membranes that are required for multiple forms of membrane dynamics. Phosphoinositides are involved in defining membrane identity, mediate cell signalling and control membrane trafficking events. Due to their pivotal role in membrane dynamics, phosphoinositide de-regulation contributes to various human diseases. In this review, we will focus on the newly emerging regulation of the PIKfyve complex, a phosphoinositide kinase that converts the endosomal phosphatidylinositol-3-phosphate [PI(3)P] to phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2)], a low abundance phosphoinositide of outstanding importance for neuronal integrity and function. Loss of PIKfyve function is well known to result in neurodegeneration in both mouse models and human patients. Our recent work has surprisingly identified the amyloid precursor protein (APP), the central molecule in Alzheimer's disease aetiology, as a novel interaction partner of a subunit of the PIKfyve complex, Vac14. Furthermore, it has been shown that APP modulates PIKfyve function and PI(3,5)P2 dynamics, suggesting that the APP gene family functions as regulator of PI(3,5)P2 metabolism. The recent advances discussed in this review suggest a novel, unexpected, ß-amyloid-independent mechanism for neurodegeneration in Alzheimer's disease.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Modelos Biológicos , Fosfatidilinositóis/metabolismo , Ligação ProteicaRESUMO
Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for diverse cellular functions, and, in neurons, PIPs regulate membrane trafficking events that control synapse function. Neurons are particularly sensitive to the levels of the low abundant PIP, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because mutations in PI(3,5)P2-related genes are implicated in multiple neurological disorders, including epilepsy, severe neuropathy, and neurodegeneration. Despite the importance of PI(3,5)P2 for neural function, surprisingly little is known about this signaling lipid in neurons, or any cell type. Notably, the mammalian homolog of yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2 synthesis complex, is concentrated at excitatory synapses, suggesting a potential role for PI(3,5)P2 in controlling synapse function and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol 3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here, we present methods to measure and control PI(3,5)P2 synthesis in hippocampal neurons and show that changes in neural activity dynamically regulate the levels of multiple PIPs, with PI(3,5)P2 being among the most dynamic. The levels of PI(3,5)P2 in neurons increased during two distinct forms of synaptic depression, and inhibition of PIKfyve activity prevented or reversed induction of synaptic weakening. Moreover, altering neuronal PI(3,5)P2 levels was sufficient to regulate synaptic strength bidirectionally, with enhanced synaptic function accompanying loss of PI(3,5)P2 and reduced synaptic strength following increased PI(3,5)P2 levels. Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2 dynamics in AMPAR trafficking. Together, these data identify PI(3,5)P2-dependent signaling as a regulatory pathway that is critical for activity-dependent changes in synapse strength.
Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Membranas Sinápticas/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Neurônios/citologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/genética , Transporte Proteico , Receptores de AMPA/genética , Sinapses/genética , Membranas Sinápticas/genéticaRESUMO
The endolysosomal system and autophagy are essential components of macromolecular turnover in eukaryotic cells. The low-abundance signaling lipid PI(3,5)P2 is a key regulator of this pathway. Analysis of mouse models with defects in PI(3,5)P2 biosynthesis has revealed the unique dependence of the mammalian nervous system on this signaling pathway. This insight led to the discovery of the molecular basis for several human neurological disorders, including Charcot-Marie-Tooth disease and Yunis-Varon syndrome. Spontaneous mutants, conditional knockouts, transgenic lines, and gene-trap alleles of Fig4, Vac14, and Pikfyve (Fab1) in the mouse have provided novel information regarding the role of PI(3,5)P2in vivo. This review summarizes what has been learned from mouse models and highlights the utility of manipulating complex signaling pathways in vivo.
Assuntos
Flavoproteínas/genética , Neuropatia Hereditária Motora e Sensorial/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/deficiência , Proteínas Tirosina Fosfatases não Receptoras/genética , Alelos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Feminino , Flavoproteínas/metabolismo , Técnicas de Inativação de Genes , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/deficiência , Fosfatases de Fosfoinositídeos , Proteínas Tirosina Fosfatases não Receptoras/deficiênciaRESUMO
Recent studies of the low abundant signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2 ), reveal an intriguingly diverse list of downstream pathways, the intertwined relationship between PI(3,5)P2 and PI5P, as well as links to neurodegenerative diseases. Derived from the structural lipid phosphatidylinositol, PI(3,5)P2 is dynamically generated on multiple cellular compartments where interactions with an increasing list of effectors regulate many cellular pathways. A complex of proteins that includes Fab1/PIKfyve, Vac14, and Fig4/Sac3 mediates the biosynthesis of PI(3,5)P2 , and mutations that disrupt complex function and/or formation cause profound consequences in cells. Surprisingly, mutations in this pathway are linked with neurological diseases, including Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis. Future studies of PI(3,5)P2 and PI5P are likely to expand the roles of these lipids in regulation of cellular functions, as well as provide new approaches for treatment of some neurological diseases.
Assuntos
Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais/genética , Animais , Humanos , Mutação/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismoRESUMO
The last couple of decades have seen an extraordinary transformation in our knowledge and understanding of the multifarious biological roles of inositol phospholipids. Herein, I briefly consider two topics. The first is the role that recently acquired biochemical and genomic information - especially from archaeons - has played in illuminating the possible evolutionary origins of the biological employment of inositol in lipids, and some questions that these studies raise about the 'classical' biosynthetic route to phosphatidylinositol. The second is the growing recognition of the importance in eukaryotic cells of phosphatidylinositol 3,5-bisphosphate. Phosphatidylinositol 3,5-bisphosphate only entered our phosphoinositide consciousness quite recently, but it is speedily gathering a plethora of roles in diverse cellular processes and diseases thereof. These include: control of endolysosomal vesicular trafficking and of the activity of ion channels and pumps in the endolysosomal compartment; control of constitutive and stimulated protein traffic to and from plasma membrane subdomains; control of the nutrient and stress-sensing target of rapamycin complex 1 pathway (TORC1); and regulation of key genes in some central metabolic pathways.