Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826335

RESUMO

Fusarium oxysporum is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of F. oxysporum to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato [Solanum lycopersicum]). In vivo infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal ulceration and perforation in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato. In vitro assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant of osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) and protein-encoding genes with distinct transposon profiles and functions, respectively, between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotype with phenotype and for developing targeted antifungals for agricultural and clinical uses.

2.
Proteins ; 92(9): 1097-1112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38666709

RESUMO

Fusarium oxysporum f.sp. lycopersici is a phytopathogen which causes vascular wilt disease in tomato plants. The survival tactics of both pathogens and hosts depend on intricate interactions between host plants and pathogenic microbes. Iron-binding proteins (IBPs) and copper-binding proteins (CBPs) play a crucial role in these interactions by participating in enzyme reactions, virulence, metabolism, and transport processes. We employed high-throughput computational tools at the sequence and structural levels to investigate the IBPs and CBPs of F. oxysporum. A total of 124 IBPs and 37 CBPs were identified in the proteome of Fusarium. The ranking of amino acids based on their affinity for binding with iron is Glu > His> Asp > Asn > Cys, and for copper is His > Asp > Cys respectively. The functional annotation, determination of subcellular localization, and Gene Ontology analysis of these putative IBPs and CBPs have unveiled their potential involvement in a diverse array of cellular and biological processes. Three iron-binding glycosyl hydrolase family proteins, along with four CBPs with carbohydrate-binding domains, have been identified as potential effector candidates. These proteins are distinct from the host Solanum lycopersicum proteome. Moreover, they are known to be located extracellularly and function as enzymes that degrade the host cell wall during pathogen-host interactions. The insights gained from this report on the role of metal ions in plant-pathogen interactions can help develop a better understanding of their fundamental biology and control vascular wilt disease in tomato plants.


Assuntos
Cobre , Proteínas Fúngicas , Fusarium , Ferro , Proteoma , Solanum lycopersicum , Fusarium/metabolismo , Fusarium/química , Proteoma/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Ferro/metabolismo , Cobre/metabolismo , Cobre/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Doenças das Plantas/microbiologia , Ligação Proteica
3.
Plant Dis ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411608

RESUMO

In the summer of 2021, a 20-year-old 'Colossal' (Castanea sativa × C. crenata hybrid) tree in a commercial chestnut orchard in northwest Michigan suddenly declined. Until 2023, an additional 26 adjacent trees declined, suggesting the occurrence of root-graft transmission of the pathogen. The initial wilting of leaves progressed to complete tree death in about 10 days. Symptoms included wilting, and bronzing, followed by tanning starting at leaf apex and margins, with significant defoliation. Sometimes black-to-brown streaks of discoloration appear in the sapwood, with no signs of mycelial mat production on dead trees. Branches from symptomatic trees in two different areas of the orchard were submitted to Plant and Pest Diagnostics at Michigan State University. Bretziella fagacearum (Bretz) Z.W. de Beer, Marinc., T.A. Duong & M.J. Wingf. was detected in both samples using nested PCR (Wu et al. 2011) and qPCR (Bourgault et al. 2022). The products of the nested PCR were sequenced (GenBank accession nos. OR522695-OR522696) and BLASTn search results showed 100% identity to an ex-type strain of B. fagacearum (MH865866). Surface-sterilized discolored sapwood chips were plated on acidified potato dextrose agar (aPDA). Bretziella fagacearum was consistently recovered; colony and endoconidia morphology aligned with the description of the pathogen (De Beer et al. 2017). A pure culture (BF277) was obtained for inoculation experiments. To confirm pathogenicity, 10 'Colossal' chestnut seedlings (average stem diameter of 9 mm) were inoculated in the greenhouse with a 14-day old culture of BF277. Using a conical drill bit, two 0.4 mm diameter holes were drilled, one was 5 cm above the soil line at a 45° angle and the other was on the opposite side of the stem at least 10 cm above the soil line. A 50-µl conidial suspension (1 × 107 conidia per ml) was applied and the holes were sealed with Parafilm. Five 'Colossal' seedlings were inoculated with sterile water. Leaf epinasty with bent petioles was observed 14 days later. Leaf wilting and necrosis similar to natural infection in the orchard were observed at 24 and 34 days after inoculation, respectively. Water-inoculated control plants showed no symptoms. Bretziella fagacearum was reisolated from symptomatic plants by surface sterilizing leaf petioles with 75% ethanol (30 s), followed by 10% (v/v) bleach (1 min), and two rinses with sterile deionized water (>1 min). Petiole pieces (~1 cm) were plated on aPDA. The pathogen was reisolated from six symptomatic plants and detected using qPCR in the remaining four seedlings. Bretziella fagacearum was not detected in control plants. The identity of the recovered fungus was confirmed following the amplification of the internal transcribed spacer (ITS) from extracted genomic DNA, as described in Chahal et al. 2022. The resulting PCR product was sequenced and assembled into a consensus sequence using Geneious Prime. The consensus sequence (accession no. OR515809) revealed 100% identity to the ex-type of B. fagacearum (KU042044). This is the first record of B. fagacearum infecting chestnut trees in Michigan. Previously, B. fagacearum has been reported infecting Chinese chestnut (C. mollissima) in Missouri (Bretz and Long, 1950). Oak wilt is widely distributed in Michigan and is the predominant disease afflicting red oaks in the Midwestern U.S. Consequently, constant vigilance and monitoring are essential in chestnut orchards to promptly detect and effectively manage potential infections.

4.
Arch Microbiol ; 205(8): 298, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516670

RESUMO

Fusarium oxysporum f. sp. lycopersici is a soil-borne phytopathogenic species which causes vascular wilt disease in the Solanum lycopersicum (tomato). Due to the continuous competition for zinc usage by Fusarium and its host during infection makes zinc-binding proteins a hotspot for focused investigation. Zinc-binding effector proteins are pivotal during the infection process, working in conjunction with other essential proteins crucial for its biological activities. This work aims at identifying and analysing zinc-binding proteins and zinc-binding proteins effector candidates of Fusarium. We have identified three hundred forty-six putative zinc-binding proteins; among these proteins, we got two hundred and thirty zinc-binding proteins effector candidates. The functional annotation, subcellular localization, and Gene Ontology analysis of these putative zinc-binding proteins revealed their probable role in wide range of cellular and biological processes such as metabolism, gene expression, gene expression regulation, protein biosynthesis, protein folding, cell signalling, DNA repair, and RNA processing. Sixteen proteins were found to be putatively secretory in nature. Eleven of these were putative zinc-binding protein effector candidates may be involved in pathogen-host interaction during infection. The information obtained here may enhance our understanding to design, screen, and apply the zinc-metal ion-based antifungal agents to protect the S. lycopersicum and control the vascular wilt caused by F. oxysporum.


Assuntos
Fusarium , Proteoma , Fusarium/genética , Transporte Biológico
5.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37348479

RESUMO

The use of microbial consortia has become a promising alternative for the management of various diseases. In this study, 18 artificial consortia were designed, consisting of five bacteria, five fungi, and a mixture of five fungi and five bacteria; from a collection of microorganisms isolated from the rhizosphere of cape gooseberry plants grown in two soils potentially suppressive against Fusarium oxysporum. When evaluated under greenhouse conditions for their biocontrol activity on cape gooseberry plants, one consortium was selected for their high efficacy (over 90%) in the control of vascular wilt caused by F. oxysporum f. sp. physali. This was constituted by 10 microorganisms, the bacteria Paenibacillus peoriae, Bacillus subtilis, Lysinibacillus sp., B. simplex, and Pseudomonas chlororaphis; and the fungi Beauveria bassiana, Scopulariopsis brevicaulis, Trichoderma gamsii, T. ghanense, and T. lignicola. On the other hand, four of the consortia evaluated in the presence of the pathogen mitigated the deleterious effect produced by the pathogen on plant growth, expressing higher dry weights, both in the aerial and root parts. This work represents the first report on using these mixtures of microorganisms to control vascular wilt produced by F. oxysporum. However, further studies are needed to determine their activity in cape gooseberry fields.


Assuntos
Fusarium , Physalis , Ribes , Consórcios Microbianos , Physalis/microbiologia , Bacillus subtilis , Fungos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Front Plant Sci ; 14: 1125551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123855

RESUMO

Verticillium wilt is a major threat to many crops, among them alfalfa (Medicago sativa). The model plant Medicago truncatula, a close relative of alfalfa was used to study the genetic control of resistance towards a new Verticillium alfalfae isolate. The accidental introduction of pathogen strains through global trade is a threat to crop production and such new strains might also be better adapted to global warming. Isolates of V. alfalfae were obtained from alfalfa fields in Iran and characterized. The Iranian isolate AF1 was used in a genome-wide association study (GWAS) involving 242 accessions from the Mediterranean region. Root inoculations were performed with conidia at 25°C and symptoms were scored regularly. Maximum Symptom Score and Area under Disease Progess Curve were computed as phenotypic traits to be used in GWAS and for comparison to a previous study with French isolate V31.2 at 20°C. This comparison showed high correlation with a shift to higher susceptibility, and similar geographical distribution of resistant and susceptible accessions to AF1 at 25°C, with resistant accessions mainly in the western part. GWAS revealed 30 significant SNPs linked to resistance towards isolate AF1. None of them were common to the previous study with isolate V31.2 at 20°C. To confirm these loci, the expression of nine underlying genes was studied. All genes were induced in roots following inoculation, in susceptible and resistant plants. However, in resistant plants induction was higher and lasted longer. Taken together, the use of a new pathogen strain and a shift in temperature revealed a completely different genetic control compared to a previous study that demonstrated the existence of two major QTLs. These results can be useful for Medicago breeding programs to obtain varieties better adapted to future conditions.

7.
mBio ; 14(1): e0318822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744950

RESUMO

Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem. Reduction of nitrate, nitrite, and nitric oxide all contribute to the virulence of a model phylotype I strain. However, little is known about the physiological role of the last denitrification step, the reduction of nitrous oxide to dinitrogen by NosZ. We found that phylotypes I and III need NosZ for full virulence. However, strains in phylotypes II and IV are highly virulent despite lacking NosZ. The ability to respire by reducing nitrate to nitrous oxide does not greatly enhance the growth of phylotype II and IV strains. These partial denitrifying strains reach high cell densities during plant infection and cause typical wilt disease. However, unlike phylotype I and III strains, partial denitrifiers cannot grow well under anaerobic conditions or form thick biofilms in culture or in tomato xylem vessels. Furthermore, aerotaxis assays show that strains from different phylotypes have different oxygen and nitrate preferences. Together, these results indicate that the RSSC contains two subgroups that occupy the same habitat but have evolved divergent energy metabolism strategies to exploit distinct metabolic niches in the xylem. IMPORTANCE Plant-pathogenic Ralstonia spp. are a heterogeneous globally distributed group of bacteria that colonize plant xylem vessels. Ralstonia cells multiply rapidly in plants and obstruct water transport, causing fatal wilting and serious economic losses of many key food security crops. The virulence of these pathogens depends on their ability to grow to high cell densities in the low-oxygen xylem environment. Plant-pathogenic Ralstonia can use denitrifying respiration to generate ATP. The last denitrification step, nitrous oxide reduction by NosZ, contributes to energy production and virulence for only one of the three phytopathogenic Ralstonia species. These complete denitrifiers form thicker biofilms in culture and in tomato xylem, suggesting they are better adapted to hypoxic niches. Strains with partial denitrification physiology form less biofilm and are more often planktonic. They are nonetheless highly virulent. Thus, these closely related bacteria have adapted their core metabolic functions to exploit distinct microniches in the same habitat.


Assuntos
Ralstonia solanacearum , Ralstonia , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Xilema/microbiologia , Água/metabolismo , Doenças das Plantas/microbiologia
8.
Pathogens ; 12(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839549

RESUMO

The fungus Fusarium oxysporum f. sp. cubense tropical race 4 (syn. Fusarium odoratissimum) (Foc TR4) causes vascular wilt in Musaceae plants and is considered the most lethal for these crops. In Latin America and the Caribbean (LAC), it was reported for the first time in Colombia (2019), later in Peru (2021), and recently declared in Venezuela (2023). This work aimed to analyze the evolution of Foc TR4 in Musaceae in LAC between 2018 and 2022. This perspective contains a selection of topics related to Foc TR4 in LAC that address and describe (i) the threat of Foc TR4 in LAC, (ii) a bibliometric analysis of the scientific production of Foc TR4 in LAC, (iii) the current situation of Foc TR4 in Colombia, Peru, and Venezuela, (iv) medium-term prospects in LAC member countries, and (v) export trade and local food security. In this study, the presence of Foc TR4 in Venezuela and the possible consequences of the production of Musaceae in the long term were reported for the first time. In conclusion, TR4 is a major threat to banana production in Latin America and the world, and it is important to take measures to control the spread of the fungus and minimize its impact on the banana industry. It is important to keep working on the control of Foc TR4, which requires the participation of the local and international industry, researchers, and consumers, among others, to prevent the disappearance of bananas.

9.
Mol Plant Microbe Interact ; 36(6): 334-344, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36749297

RESUMO

Ralstonia solancearum causes bacterial wilt disease on diverse plant hosts. R. solanacearum cells enter a host from soil or infested water through the roots, then multiply and spread in the water-transporting xylem vessels. Despite the low nutrient content of xylem sap, R. solanacearum grows very well inside the host, using denitrification to respire in this hypoxic environment. R. solanacearum growth in planta also depends on the successful deployment of protein effectors into host cells via a type III secretion system (T3SS). The T3SS is absolutely required for R. solanacearum virulence, but it is metabolically costly and can trigger host defenses. Thus, the pathogen's success depends on optimized regulation of the T3SS. We found that a byproduct of denitrification, the toxic free-radical nitric oxide (NO), positively regulates the R. solanacearum T3SS both in vitro and in planta. Using chemical treatments and R. solanacearum mutants with altered NO levels, we show that the expression of a key T3SS regulator, hrpB, is induced by NO in culture. Analyzing the transcriptome of R. solanacearum responding to varying levels of NO both in culture and in planta revealed that the T3SS and effectors were broadly upregulated with increasing levels of NO. This regulation was specific to the T3SS and was not shared by other stressors. Our results suggest that R. solanacearum may experience an NO-rich environment in the plant host and that this NO contributes to the activation of the T3SS during infection. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Doenças das Plantas/microbiologia
10.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36626790

RESUMO

AIM: To evaluate the effect of lactic acid bacteria (LAB) on the control of Fol59 and Rs on singly infected and co-infected tomato plants and to address molecular pathways that may be involved in this interaction. METHODS AND RESULTS: To assess the development of the disease, individual infection and coinfection were stimulated in plants under controlled conditions, at two concentrations of Rs and Fol59 applied at two different moments. Additionally, the antagonistic activity of LAB against Rs and Fol59 in vitro and its biocontrol efficacy in planta were evaluated. Preliminary results indicate that inoculation with 1 × 106 microconidia ml-1 of Fol59 and 1 × 108 cfu ml-1 of Rs may be a reliable synchronous coinfection method. Of the 68 LAB strains evaluated in vitro, AC13, AC40, and AC49 had an antagonistic effect on both pathogens, with AC40 showing the highest efficacy rate after submerging the seeds in suspension and sowing them in substrate. Finally, gene expression experiments confirmed the AC40 effect on the expression of PR-1a, ERF1, and LoxA genes. CONCLUSION: The delayed appearance of symptoms and the reduced severity of the disease may be associated with the expression of PR-1a, ERF1, and LoxA genes related to salicylic acid, ethylene, and jasmonic acid pathways respectively.


Assuntos
Coinfecção , Fusarium , Lactobacillales , Ralstonia solanacearum , Solanum lycopersicum , Lactobacillales/genética , Ralstonia solanacearum/genética , Plantas , Fusarium/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
Pathogens ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558871

RESUMO

Cotton (Gossypium hirsutum) is a billion-dollar crop in regional New South Wales (NSW) and Queensland, Australia. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an economically important disease. Initial disease losses of up to 90% when the disease was first detected resulted in fields being taken out of cotton production. The disease is now well-managed due to the adoption of highly resistant varieties. However, annual disease surveys recently revealed that the disease dynamic has changed in the past few seasons. With relatively mild and wet weather conditions during the 2021/22 growing season, FW was detected in eight surveyed valleys in NSW and Queensland, with the disease incidence as high as 44.5% and 98.5% in individual fields in early and late seasons, respectively. Fov is genetically distinct and evolved from local Fusarium oxysporum strains. Additionally, the pathogen was reported to evolve rapidly under continuous cotton cropping pressure. However, our knowledge of the genetic composition of the prevailing population is limited. Sequences of the translation elongation factor alpha 1 (TEF1) revealed that 94% of Fusarium isolates recovered from FW-infected cotton were clustered together with known Australian Fov and relatively distant related to overseas Fov races. All these isolates, except for nine, were further confirmed positive with a specific marker based on the Secreted in Xylem 6 (SIX6) effector gene. Vegetative compatibility group (VCG) analyses of 166 arbitrarily selected isolates revealed a predominance of VCG01111. There was only one detection of VCG01112 in the Border Rivers valley where it was first described. In this study, the exotic Californian Fov race 4 strain was not detected using a specific marker based on the unique Tfo1 insertion in the phosphate (PHO) gene. This study indicated that the prevalence and abundance of Fov across NSW and Queensland in the past five seasons was probably independent of its genetic diversity.

12.
J Exp Bot ; 73(18): 6052-6067, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35709954

RESUMO

Fusarium oxysporum is a soil-borne fungal pathogen of several major food crops. Research on understanding the molecular details of fungal infection and the plant's defense mechanisms against this pathogen has long focused mainly on the tomato-infecting F. oxysporum strains and their specific host plant. However, in recent years, the Arabidopsis thaliana-Fusarium oxysporum strain 5176 (Fo5176) pathosystem has additionally been established to study this plant-pathogen interaction with all the molecular biology, genetic, and genomic tools available for the A. thaliana model system. Work on this system has since produced several new insights, especially with regards to the role of phytohormones involved in the plant's defense response, and the receptor proteins and peptide ligands involved in pathogen detection. Furthermore, work with the pathogenic strain Fo5176 and the related endophytic strain Fo47 has demonstrated the suitability of this system for comparative studies of the plant's specific responses to general microbe- or pathogen-associated molecular patterns. In this review, we highlight the advantages of this specific pathosystem, summarize the advances made in studying the molecular details of this plant-fungus interaction, and point out open questions that remain to be answered.


Assuntos
Arabidopsis , Fusarium , Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Ligantes , Doenças das Plantas/microbiologia , Fusarium/fisiologia , Solo
13.
J Fungi (Basel) ; 9(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36675823

RESUMO

Vascular wilts are important diseases caused by plant pathogenic fungi that result in the rapid death of their plant hosts. This is due to a systemic defense mechanism whereby the plant induces the compartmentalization of the infected vascular system in order to reduce the propagation of the fungus. The ascomycete class Sordariomycetes contains several species that cause vascular wilts in diverse plant hosts, and they can be classified into four taxonomic orders. The genetic mechanisms of pathogenesis have already been investigated in Fusarium and Verticillium species, but they have not yet been compared with other well-known wilt-causing species, especially fungi causing oak wilt or Dutch elm disease (DED). Here we analyzed 20 whole genome assemblies of wilt-causing fungi together with 56 other species using phylogenetic approaches to trace expansions and contractions of orthologous gene families and gene classes related to pathogenicity. We found that the wilt-causing pathogens evolved seven times, experiencing the largest fold changes in different classes of genes almost every time. However, some similarities exist across groups of wilt pathogens, particularly in Microascales and Ophiostomatales, and these include the common gains and losses of genes that make up secondary metabolite clusters (SMC). DED pathogens do not experience large-scale gene expansions, with most of the gene classes, except for some SMC families, reducing in number. We also found that gene family expansions in the most recent common ancestors of wilt pathogen groups are enriched for carbohydrate metabolic processes. Our study shows that wilt-causing species evolve primarily through distinct changes in their repertoires of pathogenicity-related genes and that there is the potential importance of carbohydrate metabolism genes for regulating osmosis in those pathogens that penetrate the plant vascular system.

14.
New Phytol ; 234(1): 227-241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34877655

RESUMO

Root-infecting vascular fungi cause wilt diseases and provoke devastating losses in hundreds of crops. It is currently unknown how these pathogens evolved and whether they can also infect nonvascular plants, which diverged from vascular plants over 450 million years ago. We established a pathosystem between the nonvascular plant Marchantia polymorpha (Mp) and the root-infecting vascular wilt fungus Fusarium oxysporum (Fo). On angiosperms, Fo exhibits exquisite adaptation to the plant xylem niche as well as host-specific pathogenicity, both of which are conferred by effectors encoded on lineage-specific chromosomes. Fo isolates displaying contrasting lifestyles on angiosperms - pathogenic vs endophytic - are able to infect Mp and cause tissue maceration and host cell killing. Using isogenic fungal mutants we define a set of conserved fungal pathogenicity factors, including mitogen activated protein kinases, transcriptional regulators and cell wall remodelling enzymes, that are required for infection of both vascular and nonvascular plants. Markedly, two host-specific effectors and a morphogenetic regulator, which contribute to vascular colonisation and virulence on tomato plants are dispensable on Mp. Collectively, these findings suggest that vascular wilt fungi employ conserved infection strategies on nonvascular and vascular plant lineages but also have specific mechanisms to access the vascular niche of angiosperms.


Assuntos
Fusarium , Marchantia , Fungos , Marchantia/genética , Doenças das Plantas/microbiologia
15.
Front Plant Sci ; 12: 702842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421951

RESUMO

Cape gooseberry production has been limited by vascular wilt caused by Fusarium oxysporum f. sp. physali (Foph). Fusaric acid (FA) is a mycotoxin produced by many Fusarium species such as F. oxysporum formae speciales. The effects of the interaction between this mycotoxin and plants (such as cape gooseberry) under biotic stress (water deficit, WD) have been little explored. Three experiments were carried out. The objectives of this study were to evaluate (i) different Foph inoculum densities (1 × 104 and 1 × 106 conidia ml-1; experiment (1); (ii) the effect of times of exposure (0, 6, 9, and 12 h) and FA concentrations (0, 12.5, 25, 50, and 100 mg L-1; experiment (2), and (iii) the interaction between Foph (1 × 104 conidia mL-1) or FA (25 mg L-1 × 9 h), and WD conditions (experiment 3) on the physiological (plant growth, leaf stomatal conductance (g s ), and photochemical efficiency of PSII (Fv/Fm ratio) and biochemical [malondialdehyde (MDA) and proline] responses of cape gooseberry seedling ecotype Colombia. The first experiment showed that Foph inoculum density of 1 × 106 conidia ml-1 caused the highest incidence of the disease (100%). In the second experiment, g s (~40.6 mmol m-2 s-1) and Fv/Fm ratio (~0.59) decreased, whereas MDA (~9.8 µmol g-1 FW) increased in plants with exposure times of 9 and 12 h and an FA concentration of 100 mg L-1 compared with plants without FA exposure or concentrations (169.8 mmol m-2 s-1, 0.8, and 7.2 µmol g-1 FW for g s , Fv/Fm ratio and MDA, respectively). In the last experiment, the interaction between Foph or FA and WD promoted a higher area under the disease progress curve (AUDPC) (Foph × WD = 44.5 and FA × WD = 37) and lower g s (Foph × WD = 6.2 mmol m-2 s-1 and FA × WD = 9.5 mmol m-2 s-1) compared with plants without any interaction. This research could be considered as a new approach for the rapid scanning of responses to the effects of FA, Foph, and WD stress not only on cape gooseberry plants but also on other species from the Solanaceae family.

16.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208916

RESUMO

Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.


Assuntos
Agricultura , Antifúngicos , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia
17.
Arch Microbiol ; 203(8): 4829-4838, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34213597

RESUMO

In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1-2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and in the necrotic base of poplar trunk were analyzed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.76%), Actinobacteria (14.58%), Proteobacteria (36.87) with Betaproteobacteria (6.52%), (6.10%), Comamonadaceae (2.79%), and Verrucomicrobia (5.31%).The most common taxa in wood were: Bacteroidetes (22.72%) including Chryseobacterium (5.07%), Flavobacteriales (10.87%), Sphingobacteriales (9.40%) with Pedobacter cryoconitis (7.31%), Proteobacteria (73.79%) with Enterobacteriales (33.25%) including Serratia (15.30%) and Sodalis (6.52%), Pseudomonadales (9.83%) including Pseudomonas (9.02%), Rhizobiales (6.83%), Sphingomonadales (5.65%), and Xanthomonadales (11.19%). Possible pathogens were Pseudomonas, Rhizobium and Xanthomonas. The potential initial, endophytic character of bacteria is discussed. Soil and possibly planting material might be the reservoir of pathogen inoculum.


Assuntos
Pedobacter , Doenças das Plantas/microbiologia , Populus , Pedobacter/patogenicidade , Populus/microbiologia , Microbiologia do Solo , Verrucomicrobia
18.
Plants (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925219

RESUMO

In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1-2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees' mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees' susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.

19.
Plant Dis ; 105(4): 1072-1079, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32897153

RESUMO

We developed a loop-mediated isothermal amplification (LAMP) assay for detecting Fusarium oxysporum f. sp. fragariae, the causal agent of wilt in strawberry plants. This assay was based on genomic regions between the portions of transposable elements Han and Skippy of the fungus. The LAMP assay allowed the efficient detection of F. oxysporum f. sp. fragariae DNA by visual inspection, without requiring gel electrophoresis. The detection limit was 100 pg of genomic DNA, which is comparable to that of PCR. The LAMP primers successfully discriminated F. oxysporum f. sp. fragariae strains from nonpathogenic F. oxysporum strains and other fungi. The LAMP assay at 63°C, which was found to be the optimal treatment temperature, for 1.5 h successfully detected F. oxysporum f. sp. fragariae California strains GL1270 and GL1385. When the assay was performed using a Genelyzer FIII portable fluorometer, these California strains were successfully detected in 1 h. The assay facilitated the detection of conidia in soil samples after they were precultured on a selective medium for F. oxysporum (FoG2) as well as latent infection in strawberry plants after preculturing. The LAMP assay for visual inspection of DNA required only a heating block and an incubator, reducing the cost of this assay. Thus, it could be suitable for the detection of F. oxysporum f. sp. fragariae strains in centers that store prefoundation and foundation stocks of strawberry, including plant nurseries.


Assuntos
Fusarium , Fusarium/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas
20.
Ciênc. rural (Online) ; 51(3): e20200579, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1153859

RESUMO

ABSTRACT: This study aimed to morphologically characterize the isolates of Ceratocystis fimbriata from yerba mate and to evaluate the effect of culture medium and temperature on mycelial growth and sporulation of C. fimbriata. For the morphological characterization of the 11 monosporic isolates of the fungus, slides were prepared to determine the dimensions of the sexual and asexual structures of the fungus. Four experiments were conducted to evaluate the mycelial growth and to evaluate the sporulation of C. fimbriata in different culture mediums and temperatures. The isolates of C. fimbriata from yerba mate showed perithecia with brown to black necks, divergent ostiolar hyphae, hatshaped hyaline ascospores, single-celled, cylindrical endoconidia, and globular to ovoid aleurioconidia. PDA and V8-agar media showed the highest mycelial growth. The average optimum temperature for mycelial growth and sporulation of isolates of C. fimbriata of yerba mate were 22.5 and 22.4 ºC, respectively.


RESUMO: Este estudo teve como objetivo caracterizar morfologicamente os isolados de Ceratocystis fimbriata e avaliar o efeito do meio de cultura e da temperatura no crescimento micelial e na esporulação de C. fimbriata. Para a caracterização morfológica dos 11 isolados monospóricos do fungo foram preparadas lâminas para determinar as dimensões das estruturas sexuadas e assexuadas do fungo. Quatro experimentos foram conduzidos para avaliar o crescimento micelial e esporulação of C. fimbriata em diferentes meios de culturae temperaturas. Os isolados de C. fimbriata de erva-mate apresentaram peritécios com pescoço de marrom a preto, hifa ostiolar divergente, ascósporos hialinos em formato de chapéu, endoconídios unicelulares, cilíndricos, e aleuroconídios com formato globoso a ovoide. Os meios de cultura PDA e V8-ágar apresentaram os maiores crescimentos miceliais. A temperatura ótima média para crescimento micelial e esporulação dos isolados de C. fimbriata de erva-mate foram de 22,5 e 22,4 ºC, respectivamente.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA