RESUMO
Introduction: Verticillium dahliae causes a serious decline in cotton yield and quality, posing a serious threat to the cotton industry. However, the mechanism of resistance to V. dahliae in cotton is still unclear, which limits the breeding of resistant cultivars. Methods: To analyze the defense mechanisms of cotton in response to V. dahliae infection, we compared the defense responses of two upland cotton cultivars from Xinjiang (JK1775, resistant; Z8,susceptible) using transcriptome sequencing at different infection stages. Results: The results revealed a significant differential expression of genes in the two cotton cultivars post V. dahliae infection, with the number of DEGs in JK1775 being higher than that in Z8 at different infection stages of V. dahliae. Interestingly, the DEGs of both JK1775 and Z8 were enriched in the MAPK signaling pathway in the early and late stages of infection. Importantly, the upregulated DEGs in both cultivars were significantly enriched in all stages of the phenylpropanoid metabolic pathway. Some of these DEGs were involved in the regulation of lignin and coumarin biosynthesis, which may be one of the key factors contributing to the resistance of upland cotton cultivars to V. dahliae in Xinjiang. Lignin staining experiments further showed that the lignin content increased in both resistant and susceptible varieties after inoculation with V. dahliae. Discussion: This study not only provides insights into the molecular mechanisms of resistance to Verticillium wilt in Xinjiang upland cotton but also offers important candidate gene resources for molecular breeding of resistance to Verticillium wilt in cotton.
RESUMO
Osmotin is classified as the pathogenesis-related protein 5 group. However, its molecular mechanism involved in plant disease resistance remains largely unknown. Here, a Verticillium wilt (VW) resistance-related osmotin gene is identified in Gossypium barbadense (Gb), GbOSM1. GbOSM1 is preferentially expressed in the roots of disease-resistant G. barbadense acc. Hai7124 and highly induced by Verticillium dahliae (Vd). Silencing GbOSM1 reduces the VW resistance of Hai7124, while overexpression of GbOSM1 in disease-susceptible G. hirsutum improves tolerance. GbOSM1 predominantly localizes in tonoplasts, while it relocates to the apoplast upon exposure to osmotic stress or Vd infection. GbOSM1 confers VW resistance by hydrolyzing cell wall polysaccharides of Vd and activating plant immune pathways. Natural variation contributes to a differential CCAAT/CCGAT elements in the OSM1 promoter in cotton accessions. All G. hirsutum (Gh) exhibit the CCAAT haplotype, while there are two haplotypes of CCAAT/CCGAT in G. barbadense, with higher expression and stronger VW resistance in CCGAT haplotype. A NFYA5 transcription factor binds to the CCAAT element of GhOSM1 promoter and inhibits its transcription. Silencing GhNFYA5 results in higher GhOSM1 expression and enhances VW resistance. These results broaden the insights into the functional mechanisms of osmotin and provide an effective strategy to breed VW-resistant cotton.
RESUMO
KEY MESSAGE: GhMAC3e expression was induced by various stresses and hormones. GhMAC3e may regulate plant growth by influencing auxin distribution, and play important roles in Verticillium wilt resistance via mediating SA signaling. The MOS4-Associated Complex (MAC) is a highly conserved protein complex involved in pre-mRNA splicing and spliceosome assembly, which plays a vital role in plant immunity. It comprises key components such as MOS4, CDC5, and PRL1. MAC3A/B, as U-box E3 ubiquitin ligases, are crucial for various plant processes including development, stress responses, and disease resistance. However, their roles in cotton remain largely unknown. In this study, we first cloned the GhMAC3e gene from cotton and explored its biological functions by using virus-induced gene silencing (VIGS) in cotton and transgenic overexpression in Arabidopsis. The results showed that GhMAC3e is ubiquitously expressed in cotton tissues and could be induced by salt stress, Verticillium dahliae (VD) infection, PEG, ABA, ETH, GA3, MeJA, and SA. Silencing GhMAC3e retarded primary stem growth and reduced biomass of cotton coupled with the reduced auxin content in the petioles and veins. Silencing GhMAC3e up-regulated expression of cell growth-related genes GhXTH16 and Gh3.6, while down-regulated GhSAUR12 expression. Ectopic expression of GhMAC3e in Arabidopsis significantly enhanced its resistance to Verticillium wilt (VW) in terms of decreased pathogen biomass and lowered plant mortality. Overexpression of GhMAC3e dramatically upregulated AtPR1 by around 15 fold and more than 262 fold under basal and VD inoculation condition, respectively. This change was not associated with the expression of GhNPR1. In conclusion, GhMAC3e may not only regulate plant growth by influencing auxin distribution and growth-related gene expression, but also play important roles in VW resistance via mediating SA signaling independent of NPR1 transcription level.
Assuntos
Arabidopsis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Gossypium , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Gossypium/genética , Gossypium/microbiologia , Gossypium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Inativação Gênica , Estresse Fisiológico/genética , VerticilliumRESUMO
Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and substantially reduce cotton (Gossypium hirsutum) yield and quality. Scopoletin, a natural coumarin, exhibits antifungal activity against V. dahliae; however, the mechanisms of action remain unclear. In this study, we reveal the regulatory activities of feruloyl-CoA 6'-hydroxylase 1 (GhF6'H1) in enhancing V. dahliae resistance by modulating scopoletin accumulation. Silencing GhF6'H1, encoding the pivotal enzyme in scopoletin biosynthesis, through virus-induced silencing resulted in increased susceptibility to V. dahliae and decreased scopoletin accumulation. In transgenic cotton plants expressing GhF6'H1 under the CaMV 35S promoter, GhF6'H1 modulated scopoletin accumulation, affecting cotton resistance to V. dahliae, with increased resistance associated with increased scopoletin accumulation. GhF6'H1 has been identified as a direct target of the transcription factor GhWRKY33-like, indicating that GhWRKY33-like can bind to and activate the GhF6'H1 promoter. Moreover, GhWRKY33-like overexpression in cotton enhanced resistance to V. dahliae through scopoletin accumulation, phenylpropanoid pathway activation, and upregulation of defense response genes. Ectopic expression of GhF6'H1 resulted in effective catalysis of scopoletin synthesis in enzyme assays using substrates like feruloyl coenzyme A, while molecular docking analysis revealed specific amino acid residues playing crucial roles in establishing salt-bridge interactions with the substrate. These findings suggest that GhF6`H1, regulated by GhWRKY33-like, plays a crucial role in enhancing cotton resistance to V. dahliae by modulating scopoletin accumulation.
RESUMO
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a ß-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the ß-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
RESUMO
The olive tree is crucial to the Mediterranean agricultural economy but faces significant threats from climate change and soil-borne pathogens like Verticillium dahliae. This study assesses the dual role of an onion extract formulation, rich in organosulfur compounds, as both biostimulant and antifungal agent. Research was conducted across three settings: a controlled climatic chamber with non-stressed olive trees; an experimental farm with olive trees under abiotic stress; and two commercial olive orchards affected by V. dahliae. Results showed that in the climatic chamber, onion extract significantly reduced MDA levels in olive leaves, with a more pronounced reduction observed when the extract was applied by irrigation compared to foliar spray. The treatment also increased root length by up to 37.1% compared to controls. In field trials, irrigation with onion extract increased the number of new shoots by 148% and the length of shoots by 53.5%. In commercial orchards, treated trees exhibited reduced MDA levels, lower V. dahliae density, and a 26.7% increase in fruit fat content. These findings suggest that the onion extract effectively reduces oxidative stress and pathogen colonization, while enhancing plant development and fruit fat content. This supports the use of the onion extract formulation as a promising, sustainable alternative to chemical treatments for improving olive crop resilience.
RESUMO
Sunflower (Helianthus annuus) is a globally significant field crop, and disease resistance is crucial for ensuring yield stability and crop quality. Verticillium dahliae is a notorious soilborne pathogen that causes Verticillium Wilt (VW) and threatens sunflower production worldwide. In this study, we conducted a comprehensive assessment of sunflower resistance to V. dahliae across 231 sunflower cultivar lines, from the Sunflower Association Mapping (SAM) population. We employed EMMAX and ridge regression best linear unbiased prediction (rrBLUP) and identified 148 quantitative trait loci (QTLs) and 23 putative genes associated with V. dahliae resistance, including receptor like kinases, cell wall modification, transcriptional regulation, plant stress signalling and defense regulation genes. Our enrichment and quantitative real-time PCR validation results highlight the importance of membrane vesicle trafficking in the sunflower immune system for efficient signaling and defense upon activation by V. dahliae. This study also reveals the polygenic architecture of V. dahliae resistance in sunflowers and provides insights for breeding sunflower cultivars resistant to VW. This research contributes to ongoing efforts to enhance crop resilience and reduce yield losses due to VW, ultimately benefiting sunflower growers and the agricultural sector.
RESUMO
Potato Verticillium wilt (PVW) caused by Verticillium dahliae is a vascular disease, that seriously affects potato (Solanum tuberosum L.) yield and quality worldwide. V. dahliae occupies the vascular bundle and therefore it cannot efficiently be treated with fungicides. Further, the application of these pesticides causes serious environmental problems. Therefore, it is of great importance to find environmentally friendly biological control methods. In this study, bacterial strains were isolated from agricultural lands on which potato had been cultured for 5 years. Five strains with a broad-spectrum antagonistic activity were selected. Among these five strains, Bacillus velezensis XS142 showed the highest antagonistic activity. To study the mechanism of XS142, by which this strain might confer tolerance to V. dahliae in potato, the genome of strain XS142 was sequenced. This showed that its genome has a high level of sequence identity with the model strain B. velezensis FZB42 as the OrthoANI (Average Nucleotide Identity by Orthology) value is 98%. The fungal suppressing mechanisms of this model strain are well studied. Based on the genome comparison it can be predicted that XS142 has the potential to suppress the growth of V. dahliae by production of bacillomycin D, fengycin, and chitinase. Further, the transcriptomes of potatoes treated with XS142 were analyzed and this showed that XS142 does not induce ISR, but the expression of genes encoding peptides with antifungal activity. Here we showed that XS142 is an endophyte. Further, it is isolated from a field where potato had been cultured for several years. These properties give it a high potential to be used, in the future, as a biocontrol agent of PVW in agriculture.
RESUMO
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
RESUMO
Verticillium dahliae causes Verticillium wilt in more than 200 plant species worldwide. As a soilborne fungus, it forms melanized microsclerotia and colonizes the xylem of host plants. Our previous study revealed a subfamily of C2H2-homeobox transcription factors in V. dahliae, but their biological roles remain unknown. In this study, we systematically characterized the functions of seven C2H2-homeobox transcription factors in V. dahliae. Deletion of VdChtf3 and VdChtf6 significantly decreased the production of melanized microsclerotia, and knockout of VdChtf1 and VdChtf4 enhanced virulence. Loss of VdChtf2 and VdChtf6 increased conidium production, whereas loss of VdChtf5 and VdChtf7 did not affect growth, conidiation, microsclerotial formation, or virulence. Further research showed that VdChtf3 activated the expression of genes encoding pectic enzymes to participate in microsclerotial formation. In addition, VdChtf4 reduced the expression of VdSOD1 to disturb the scavenging of superoxide radicals but induced the expression of genes related to cell wall synthesis to maintain cell wall integrity. These findings highlight the diverse roles of different members of the C2H2-homeobox gene family in V. dahliae. IMPORTANCE: Verticillium dahliae is a soilborne fungus that causes plant wilt and can infect a variety of economic crops and woody trees. The molecular basis of microsclerotial formation and infection by this fungus remains to be further studied. In this study, we analyzed the functions of seven C2H2-homobox transcription factors. Notably, VdChtf3 and VdChtf4 exhibited the most severe defects, affecting phenotypes associated with critical developmental stages in the V. dahliae disease cycle. Our results indicate that VdChtf3 is a potential specific regulator of microsclerotial formation, modulating the expression of pectinase-encoding genes. This finding could contribute to a better understanding of microsclerotial development in V. dahliae. Moreover, VdChtf4 was associated with cell wall integrity, reactive oxygen species (ROS) stress resistance, and increased virulence. These discoveries shed light on the biological significance of C2H2-homeobox transcription factors in V. dahliae's adaptation to the environment and infection of host plants.
Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Verticillium/genética , Verticillium/patogenicidadeRESUMO
Introduction: Verticillium dahliae causes a devastating Verticillium wilt disease on hundreds of plant species worldwide, including cotton. Understanding the interaction mechanism between V. dahliae and its hosts is the prerequisite for developing effective strategies for disease prevention. Methods: Here, based on the previous observation of an xylosidase-encoding gene (VdxyL3) in V. dahliae being obviously up-regulated after sensing root exudates from a cotton variety susceptible to this pathogen, we investigated the function of VdxyL3 in the growth and pathogenesis of V. dahliae by generating its deletion-mutant strains (ΔVdxyL3). Results: Deleting VdxyL3 led to increased colony expansion rate, conidial production, mycelial growth, carbon and nitrogen utilization capacities, and enhanced stress tolerance and pathogenicity of V. dahliae. VdxyL3 is a secretory protein; however, VdxyL3 failed to induce cell death in N. benthamiana based on transient expression experiment. Transcriptomic analysis identified 1300 genes differentially expressed (DEGs) between wild-type (Vd952) and ΔVdxyL3 during infection, including 348 DEGs encoding secretory proteins, among which contained 122 classical secreted proteins and 226 non-classical secreted proteins. It was notable that of the 122 classical secretory proteins, 50 were carbohydrate-active enzymes (CAZymes) and 58 were small cysteine rich proteins (SCRPs), which were required for the pathogenicity of V. dahliae. Conclusion: The RNA-seq data thus potentially connected the genes encoding these proteins to the pathogenesis of V. dahliae. This study provides an experimental basis for further studies on the interaction between V. dahliae and cotton and the pathogenic mechanism of the fungus.
RESUMO
The study explores anaerobic soil disinfection as an alternative to soil fumigants for controlling Verticillium wilt in strawberry crops. For this purpose, two agrowastes close to the strawberry-growing areas of Huelva province were tested as potential amendments for the control of Verticillium wilt: rice bran and residual strawberry extrudate. Furthermore, two application rates were evaluated: 13.50 and 20.00 t/ha for the rice bran and 16.89 and 25.02 t/ha for residual strawberry extrudate. Amended and anaerobically disinfested soils were compared with a non-amended soil under anaerobic conditions, a soil treated with the chemical fungicide metam sodium and an untreated soil. One week before the start of disinfection treatment, these soils were artificially inoculated with 250 microsclerotia/g dry soil of Verticillium dahliae. After disinfestation treatments, pathogens were quantified, and strawberry plants were cropped in a growth chamber to further evaluate Verticillium wilt severity, which was measured with a symptom scale in the same potting soils. Measurements of the anaerobic condition, pH and microbial population densities were performed, and the results showed significant differences between the different amendments. In addition, the treatment with rice bran at 20 t/ha recorded the lowest population density of V. dahliae. Likewise, it was possible to achieve a reduction in foliar disease severity in all amended treatments in similar percentage to those obtained by chemical treatment. These results suggest potential application of this technique for the control of Verticillium wilt in the strawberry-growing area of Huelva, reducing the use of chemical fumigants.
RESUMO
Verticillium dahliae is a destructive, soil-borne pathogen that causes significant losses on numerous important dicots. Recently, beneficial microbes inhabiting the rhizosphere have been exploited and used to control plant diseases. In the present study, Burkholderia gladioli KRS027 demonstrated excellent inhibitory effects against Verticillium wilt in cotton seedlings. Plant growth and development was promoted by affecting the biosynthesis and signaling pathways of brassinosteroids (BRs), gibberellins (GAs), and auxins, consequently promoting stem elongation, shoot apical meristem, and root apical tissue division in cotton. Furthermore, based on the host transcriptional response to V. dahliae infection, it was found that KRS027 modulates the plants to maintain cell homeostasis and respond to other pathogen stress. Moreover, KRS027 induced disruption of V. dahliae cellular structures, as evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Based on the comparative transcriptomic analysis between KRS027 treated and control group of V. dahliae, KRS027 induced substantial alterations in the transcriptome, particularly affecting genes encoding secreted proteins, small cysteine-rich proteins (SCRPs), and protein kinases. In addition, KRS027 suppressed the growth of different clonal lineages of V. dahliae strains through metabolites, and volatile organic compounds (VOCs) released by KRS027 inhibited melanin biosynthesis and microsclerotia development. These findings provide valuable insights into an alternative biocontrol strategy for Verticillium wilt, demonstrating that the antagonistic bacterium KRS027 holds promise as a biocontrol agent for promoting plant growth and managing disease occurrence.
Assuntos
Ascomicetos , Burkholderia gladioli , Doenças das Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Burkholderia gladioli/crescimento & desenvolvimento , Burkholderia gladioli/genética , Burkholderia gladioli/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Gossypium/microbiologia , Gossypium/crescimento & desenvolvimento , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Agentes de Controle Biológico , Ácidos Indolacéticos/metabolismo , Giberelinas/metabolismo , VerticilliumRESUMO
Verticillium dahliae is among the most devastating fungal pathogens, causing significant economic harm to agriculture and forestry. To address this problem, researchers have focused on eliciting systemic resistance in host plants through utilizing volatile organic compounds (VOCs) produced by biological control agents. Herein, we meticulously measured the quantity of V. dahliae pathogens in plants via RTqPCR, as well as the levels of defensive enzymes and pathogenesis-related (PR) proteins within plants. Finally, the efficacy of VOCs in controlling Verticillium wilt in cotton was evaluated. Following treatment with Pseudomonas aurantiaca ST-TJ4, the expression of specific VdEF1-α genes in cotton decreased significantly. The incidence and disease indices also decreased following VOC treatment. In cotton, the salicylic acid (SA) signal was strongly activated 24â¯h posttreatment; then, hydrogen peroxide (H2O2) levels increased at 48â¯h, and peroxidase (POD) and catalase (CAT) activities increased to varying degrees at different time points. The malondialdehyde (MDA) content and electrolyte leakage in cotton treated with VOCs were lower than those in the control group, and the expression levels of chitinase (CHI) and PR genes (PR10 and PR17), increased at various time points under the ST-TJ4 treatment. The activity of phenylalanine ammonia lyase (PAL) enzymes in cotton treated with VOCs was approximately 1.26 times greater than that in control plants at 24â¯hï¼while the contents of phenols and flavonoids increased significantly in the later stage. Additionally, 2-undecanone and 1-nonanol can induce a response in plants that enhances disease resistance. Collectively, these findings strongly suggest that VOCs from ST-TJ4 act as elicitors of plant defence and are valuable natural products for controlling Verticillium wilt.
Assuntos
Ascomicetos , Resistência à Doença , Gossypium , Doenças das Plantas , Proteínas de Plantas , Pseudomonas , Ácido Salicílico , Compostos Orgânicos Voláteis , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/genética , Resistência à Doença/genética , Gossypium/microbiologia , Gossypium/genética , Gossypium/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Catalase/genética , Peroxidase/metabolismo , Peroxidase/genética , Quitinases/metabolismo , Quitinases/genética , Malondialdeído/metabolismo , Agentes de Controle Biológico , VerticilliumRESUMO
Verticillium dahliae, a soil-borne fungal pathogen, compromises host innate immunity by secreting a plethora of effectors, thereby facilitating host colonization and causing substantial yield and quality losses. The mechanisms underlying the modulation of cotton immunity by V. dahliae effectors are predominantly unexplored. In this study, we identified that the V. dahliae effector Vd6317 inhibits plant cell death triggered by Vd424Y and enhances PVX viral infection in Nicotiana benthamiana. Attenuation of Vd6317 significantly decreased the virulence of V. dahliae, whereas ectopic expression of Vd6317 in Arabidopsis and cotton enhanced susceptibility to V. dahliae infection, underscoring Vd6317's critical role in pathogenicity. We observed that Vd6317 targeted the Arabidopsis immune regulator AtNAC53, thereby impeding its transcriptional activity on the defense-associated gene AtUGT74E2. Arabidopsis nac53 and ugt74e2 mutants exhibited heightened sensitivity to V. dahliae compared to wild-type plants. A mutation at the conserved residue 193L of Vd6317 abrogated its interaction with AtNAC53 and reduced the virulence of V. dahliae, which was partially attributable to a reduction in Vd6317 protein stability. Our findings unveil a hitherto unrecognized regulatory mechanism by which the V. dahliae effector Vd6317 directly inhibits the plant transcription factor AtNAC53 activity to suppress the expression of AtUGT74E2 and plant defense.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Gossypium , Doenças das Plantas , Imunidade Vegetal , Arabidopsis/microbiologia , Arabidopsis/imunologia , Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Gossypium/microbiologia , Gossypium/genética , Gossypium/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Virulência , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Interações Hospedeiro-Patógeno , VerticilliumRESUMO
BACKGROUND: Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS: The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS: This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.
Assuntos
Bacillus , Gossypium , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bacillus/fisiologia , Gossypium/microbiologia , Gossypium/crescimento & desenvolvimento , Ascomicetos/fisiologia , Verticillium/fisiologia , Filogenia , Agentes de Controle BiológicoRESUMO
BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.
Assuntos
Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Ascomicetos/genética , Ascomicetos/fisiologia , Feromônios/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , VerticilliumRESUMO
Syntaxin of plant (SYP) plays a crucial role in SNARE-mediated membrane trafficking during endocytic and secretory pathways, contributing to the regulation and execution of plant immunity against pathogens. Verticillium wilt is among the most destructive fungal diseases affecting cotton worldwide. However, information regarding SYP family genes in cotton is scarce. Through genome-wide identification and transcriptome profiling, we identified GhSYP121, a Qa SNARE gene in Gossypium hirsutum. GhSYP121 is notably induced by Verticillium dahliae, the causal agent of Verticillium wilt in cotton, and acts as a negative regulator of defense against V. dahliae. This is evidenced by the reduced resistance of GhSYP121-deficient cotton and the increased susceptibility of GhSYP121-overexpressing lines. Furthermore, the activation of the salicylic acid (SA) pathway by V. dahliae is inversely correlated with the expression level of GhSYP121. GhSYP121 interacts with its cognate SNARE component, GhSNAP33, which is required for the penetration resistance against V. dahliae in cotton. Collectively, GhSYP121, as a member of the cotton SNARE complex, is involved in regulating the SA pathway during plant defense against V. dahliae. This finding enhances our understanding of the potential role of GhSYP121 in these distinct pathways that contribute to plant defense against V. dahliae infection.
RESUMO
To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42°C), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ΔNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMΔNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.
Assuntos
Fermentação , Gossypium , Doenças das Plantas , Pseudomonas aeruginosa , Verticillium , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Gossypium/microbiologia , Antibiose , Metaloproteases/metabolismo , Fatores de Virulência/genéticaRESUMO
Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.