RESUMO
Vibrio natriegens is a gram-negative bacterium, which has received increasing attention due to its very fast growth with a doubling time of under 10 min under optimal conditions. To enable a wide range of projects spanning from basic research to biotechnological applications, we developed NT-CRISPR as a new method for genome engineering. This book chapter provides a step-by-step protocol for the use of this previously published tool. NT-CRISPR combines natural transformation with counterselection through CRISPR-Cas9. Thereby, genomic regions can be deleted, foreign sequences can be integrated, and point mutations can be introduced. Furthermore, up to three simultaneous modifications are possible.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Bacteriano , Vibrio , Vibrio/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genéticaRESUMO
BACKGROUND: Vibrio natriegens, a halophilic marine γ-proteobacterium, holds immense biotechnological potential due to its remarkably short generation time of under ten minutes. However, the highest growth rates have been primarily observed on complex media, which often suffer from batch-to-batch variability affecting process stability and performance. Consistent bioprocesses necessitate the use of chemically defined media, which are usually optimized for fermenters with pH and dissolved oxygen tension (DOT) regulation, both of which are not applied during early-stage cultivations in shake flasks or microtiter plates. Existing studies on V. natriegens' growth on mineral media report partially conflicting results, and a comprehensive study examining the combined effects of pH buffering, sodium concentration, and medium osmolality is lacking. RESULTS: This study evaluates the influence of sodium concentration, pH buffering, and medium osmolality on the growth of V. natriegens under unregulated small-scale conditions. The maximum growth rate, time of glucose depletion, as well as the onset of stationary phase were observed through online-monitoring the oxygen transfer rate. The results revealed optimal growth conditions at an initial pH of 8.0 with a minimum of 300 mM MOPS buffer for media containing 20 g/L glucose or 180 mM MOPS for media with 10 g/L glucose. Optimal sodium chloride supplementation was found to be between 7.5 and 15 g/L, lower than previously reported ranges. This is advantageous for reducing industrial corrosion issues. Additionally, an osmolality range of 1 to 1.6 Osmol/kg was determined to be optimal for growth. Under these optimized conditions, V. natriegens achieved a growth rate of 1.97 ± 0.13 1/h over a period of 1 h at 37 °C, the highest reported rate for this organism on a mineral medium. CONCLUSION: This study provides guidelines for cultivating V. natriegens in early-stage laboratory settings without pH and DOT regulation. The findings suggest a lower optimal sodium chloride range than previously reported and establish an osmolality window for optimal growth, thereby advancing the understanding of V. natriegens' physiology. In addition, this study offers a foundation for future research into the effects of different ions and carbon sources on V. natriegens.
Assuntos
Técnicas de Cultura Celular por Lotes , Meios de Cultura , Vibrio , Concentração de Íons de Hidrogênio , Concentração Osmolar , Vibrio/crescimento & desenvolvimento , Vibrio/efeitos dos fármacos , Meios de Cultura/química , Técnicas de Cultura Celular por Lotes/métodos , Sódio/metabolismo , Sódio/farmacologia , Oxigênio/metabolismo , Reatores BiológicosRESUMO
Poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] is a highly promising valuable biodegradable material with good biocompatibility and degradability. Vibrio natriegens, owing to its fast-growth, wide substrate spectrum characteristics, was selected to produce P(3HB-co-LA). Herein, the crucial role of acetyltransferase PN96-18060 for PHB synthesis in V. natriegens was identified. Heterologous pathway of P(3HB-co-LA) was introduced into V. natriegens successfully, in addition, overexpression of the dldh gene led to 1.84 fold enhancement of the lactate content in P(3HB-co-LA). Finally, the production of P(3HB-co-LA) was characterized under different carbon sources. The lactate fraction in P(3HB-co-LA) was increased to 28.3 mol% by the modification, about 1.84 times of that of the control. This is the first successful case of producing the P(3HB-co-LA) in V. natriegens. Collectively, this study showed that V. natriegens is an attractive host organism for producing P(3HB-co-LA) and has great potential to produce other co-polymers.
RESUMO
DNA amplification and reverse transcription enzymes have proven to be invaluable in fast and reliable diagnostics and research applications because of their processivity, specificity, and robustness. Our study focused on the production of mutant Taq DNA polymerase and mutant M-MLV reverse transcriptase in the expression hosts Vibrio natriegens and Escherichia coli under various expression conditions. We also examined nonspecific extracellular production in V. natriegens. Intracellularly, M-MLV was produced in V. natriegens at the level of 11% of the total cell proteins (TCPs) compared with 16% of TCPs in E. coli. We obtained a soluble protein that accounted for 11% of the enzyme produced in V. natriegens and 22% of the enzyme produced in E. coli. Taq pol was produced intracellularly in V. natriegens at the level of 30% of TCPs compared with 26% of TCPs in E. coli. However, Taq pol was almost non-soluble in E. coli, whereas in V. natriegens, we obtained a soluble protein that accounted for 23% of the produced enzyme. We detected substantial extracellular production of Taq pol. Thus, V. natriegens is a suitable alternative host with the potential for production of recombinant proteins.
RESUMO
The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.
Assuntos
Proteínas Recombinantes , Vibrio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vibrio/genética , Vibrio/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , HumanosRESUMO
In recent years, the fast-growing bacterium Vibrio natriegens has gained increasing attention as it has the potential to become a next-generation chassis for synthetic biology. A wide range of genetic parts and genome engineering methods have already been developed. However, there is still a need for a well-characterized tool to effectively and gradually reduce the expression levels of native genes. To bridge this gap, we created graded-CRISPRi, a system utilizing gRNA variants that lead to varying levels of repression strength. By incorporating multiple gRNA sequences into our design, we successfully extended this concept to simultaneously repress four distinct reporter genes. Furthermore, we demonstrated the capability of using graded-CRISPRi to target native genes, thereby examining the effect of various knockdown levels on growth.
Assuntos
RNA Guia de Sistemas CRISPR-Cas , Vibrio , Vibrio/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/genética , Técnicas de Silenciamento de Genes/métodos , Biologia Sintética/métodos , Biblioteca Gênica , Genes Reporter/genéticaRESUMO
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Assuntos
Engenharia Metabólica , Transcriptoma , Vibrio , Vibrio/genética , Vibrio/metabolismo , Estresse Fisiológico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Microbial nitrogen fixation presents a viable alternative to chemical fertilizers, yet the limited colonization and specificity of naturally occurring nitrogen-fixing microorganisms present significant challenges to their widespread application. In this study, we identified a nitrogen fixation gene cluster (VNnif) in Vibrio natriegens (VN) and tested its nitrogenase activity through the acetylene reduction assay. We investigated the potential utilization of nitrogenase by incorporating the nitrogenase gene cluster from VN into plant growth-promoting rhizosphere bacteria Pseudomonas protegens CHA0 and enhancing its activity to 48.16 nmol C2H2/mg/h through promoter replacement and cluster rearrangement. The engineered strain CHA0-PVNnif was found to positively impact the growth of Arabidopsis thaliana col-0 and Triticum aestivum L. (wheat). This study expanded the role of plant growth-promoting rhizobacteria (PGPR) and provided a research foundation for enhancing nitrogenase activity.
Assuntos
Proteínas de Bactérias , Fixação de Nitrogênio , Nitrogenase , Vibrio , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Família Multigênica , Nitrogenase/metabolismo , Nitrogenase/genética , Rizosfera , Triticum/microbiologia , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Vibrio/genética , Vibrio/crescimento & desenvolvimento , Vibrio/enzimologiaRESUMO
The fastest replicating bacterium Vibrio natriegens is a rising workhorse for molecular and biotechnological research with established tools for efficient genetic manipulation. Here, we expand on the capabilities of multiplex genome editing by natural transformation (MuGENT) by identifying a neutral insertion site and showing how two selectable markers can be swapped at this site for sequential rounds of natural transformation. Second, we demonstrated that MuGENT can be used for complementation by gene insertion at an ectopic chromosomal locus. Additionally, we developed a robust method to cure the competence plasmid required to induce natural transformation. Finally, we demonstrated the ability of MuGENT to create massive deletions; the 280 kb deletion created in this study is one of the largest artificial deletions constructed in a single round of targeted mutagenesis of a bacterium. These methods each advance the genetic potential of V. natriegens and collectively expand upon its utility as an emerging model organism for synthetic biology. IMPORTANCE: Vibrio natriegens is an emerging model organism for molecular and biotechnological applications. Its fast growth, metabolic versatility, and ease of genetic manipulation provide an ideal platform for synthetic biology. Here, we develop and apply novel methods that expand the genetic capabilities of the V. natriegens model system. Prior studies developed a method to manipulate multiple regions of the chromosome in a single step. Here, we provide new resources that diversify the utility of this method. We also provide a technique to remove the required genetic tools from the cell once the manipulation is performed, thus establishing "clean" derivative cells. Finally, we show the full extent of this technique's capability by generating one of the largest chromosomal deletions reported in the literature. Collectively, these new tools will be beneficial broadly to the Vibrio community and specifically to the advancement of V. natriegens as a model system.
Assuntos
Edição de Genes , Engenharia Genética , Plasmídeos , Vibrio , Vibrio/genética , Plasmídeos/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Biologia Sintética/métodos , Genoma Bacteriano/genéticaRESUMO
The fast-growing microbe Vibrio natriegens is capable of natural transformation where it draws DNA in from media via an active process under physiological conditions. Using an engineered strain with a genomic copy of the master competence regulator tfoX from Vibrio cholerae in combination with a new minimal competence media (MCM) that uses acetate as an energy source, we demonstrate naturally competent cells which are created, transformed, and recovered entirely in the same media, without exchange or addition of fresh media. Cells are naturally competent to plasmids, recombination with linear DNA, and cotransformation of both to select for scarless and markerless genomic edits. The entire process is simple and inexpensive, requiring no capital equipment for an entirely room temperature process (zero capital protocol, 104 cfu/µg), or just an incubator (high-efficiency protocol, 105-6 cfu/µg). These cells retain their naturally competent state when frozen and are transformable immediately upon thawing like a typical chemical or electrochemical competent cell. Since the optimized transformation protocol requires only 50 min of hands-on time, and V. natriegens grows quickly even on plates, a transformation started at 9 AM yields abundant culturable single colonies by 5 PM. Further, because all stages of transformation occur in the same media, and the process can be arbitrarily scaled in volume, this natural competence strain and media could be ideal for automated directed evolution applications. As a result, naturally competent V. natriegens could compete with Escherichia coli as an excellent chassis for low-cost and highly scalable synthetic biology.
RESUMO
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Assuntos
Compostos Férricos , Vibrio , Compostos Férricos/metabolismo , Transporte de Elétrons , Cromo/toxicidade , Cromo/metabolismoRESUMO
This study aimed to reveal the importance of horizontal gene transfer (HGT) for the agarose-degrading ability and the related degradation pathway of a deep-sea bacterium Vibrio natriegens WPAGA4, which was rarely reported in former works. A total of four agarases belonged to the GH50 family, including Aga3418, Aga3419, Aga3420, and Aga3472, were annotated and expressed in Escherichia coli cells. The agarose degradation products of Aga3418, Aga3420, and Aga3472 were neoagarobiose, while those of Aga3419 were neoagarobiose and neoagarotetraose. The RT-qPCR analysis showed that the expression level ratio of Aga3418, Aga3419, Aga3420, and Aga3472 was stable at about 1:1:1.5:2.5 during the degradation, which indicated the optimal expression level ratio of the agarases for agarose degradation by V. natriegens WPAGA4. Based on the genomic information, three of four agarases and other agarose-degrading related genes were in a genome island with a G + C content that was obviously lower than that of the whole genome of V. natriegens WPAGA4, indicating that these agarose-degrading genes were required through HGT. Our results demonstrated that the expression level ratio instead of the expression level itself of agarase genes was crucial for agarose degradation by V. natriegens WPAGA4, and HGT occurred in the deep-sea environment, thereby promoting the deep-sea carbon cycle and providing a reference for studying the evolution and transfer pathways of agar-related genes.
Assuntos
Proteínas de Bactérias , Vibrio , Sefarose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Glicosídeo Hidrolases/metabolismo , Vibrio/genéticaRESUMO
Chromosome rearrangement by LoxP-mediated evolution has emerged as a powerful approach to studying how chromosome architecture impacts phenotypes. However, it relies on the in vitro synthesis of artificial chromosomes. The recently reported CRISPR-associated transposases (CASTs) held great promise for the efficient insertion of abundant LoxP sites directly onto the genome of wild-type strains. In this study, with the fastest-growing bacterium Vibrio natrigens (V. natriegens) as an object, a multiplex genome integration tool derived from CASTs was employed to achieve the insertion of cargo genes at eight specific genomic loci within 2 days. Next, we introduced 30 LoxP sites onto chromosome 2 (Chr2) of V. natriegens. Rigorously induced Cre recombinase was used to demonstrate Chromosome Rearrangement and Modification by LoxP-mediated Evolution (CRaMbLE). Growth characterization and genome sequencing showed that the ~358 kb fragment on Chr2 was accountable for the rapid growth of V. natriegens. The enabling tools we developed can help identify genomic regions that influence the rapid growth of V. natriegens without a prior understanding of genome mechanisms. This groundbreaking demonstration may also be extended to other organisms such as Escherichia coli, Pseudomonas putida, Bacillus subtilis, and so on.
Assuntos
Transposases , Vibrio , Transposases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Vibrio/genética , Cromossomos , Recombinação Genética/genéticaRESUMO
High performance is the core objective that biotechnologists pursue, of which low efficiency, low titer, and side products are the chief obstacles. Here, a thermal strategy is proposed for simultaneously addressing the obstacles of whole-cell catalysis that is widely applied in the food industry. The strategy, by combining fast-growing Vibrio natriegens, thermophilic enzymes, and high-temperature whole-cell catalysis, was successfully applied for the high-performance production of N-acetyl-d-neuraminic acid (Neu5Ac) that plays essential roles in the fields of food (infant formulas), healthcare, and medicine. By using this strategy, we realized the highest Neu5Ac titer and productivity of 126.1 g/L and up to 71.6 g/(L h), respectively, 7.2-fold higher than the productivity of Escherichia coli. The major byproduct acetic acid was also eliminated via quenching complex metabolic side reactions enabled by temperature elevation. This study offers a broadly applicable strategy for producing chemicals relevant to the food industry, providing insights for its future development.
Assuntos
Escherichia coli , Vibrio , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , CatáliseRESUMO
Rare earth elements (REE) are essential ingredients in many modern technologies, yet their purification remains either environmentally harmful or economically unviable. Adsorption, or biosorption, of REE onto bacterial cell membranes offers a sustainable alternative to traditional solvent extraction methods. But in order for biosorption-based REE purification to compete economically, the capacity and specificity of biosorption sites must be enhanced. Although there have been some recent advances in characterizing the genetics of REE-biosorption, the variety and complexity of bacterial membrane surface sites make targeted genetic engineering difficult. Here, we propose using multiple rounds of in vivo random mutagenesis induced by the MP6 plasmid combined with plate-throughput REE-biosorption screening to improve a microbe's capacity and selectivity for biosorbing REE. We engineered a strain of Vibrio natriegens capable of biosorbing 210% more dysprosium compared to the wild-type and produced selectivity improvements of up to 50% between the lightest (lanthanum) and heaviest (lutetium) REE. We believe that mutations we observed in ABC transporters as well as a nonessential protein in the BAM outer membrane ß-barrel protein insertion complex likely contribute to someâbut almost certainly not allâof the biosorption changes we observed. Given the ease of finding significant biosorption mutants, these results highlight just how many genes likely contribute to biosorption as well as the power of random mutagenesis in identifying genes of interest and optimizing a biological system for a task.
Assuntos
Metais Terras Raras , Vibrio , Vibrio/genética , Solventes , MutagêneseRESUMO
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Assuntos
Glicerol , Poli-Hidroxibutiratos , Vibrio , Glicerol/metabolismo , Fermentação , Hidroxibutiratos/metabolismoRESUMO
Melanin is one of the most abundant natural biomolecules on Earth. These macromolecular biopolymers display several unique physical and chemical properties and have garnered interest as biomaterials for various commercial and industrial applications. To this end, extensive research has gone into refining methods for the synthesis and extraction of melanin from natural and recombinant sources. In this study, we developed and refined a procedure using a recombinant microbial system for the biosynthesis of melanin using the tyrosinase enzyme Tyr1 and tyrosine as a substrate. Using the emergent microbial chassis organisms Vibrio natriegens, we achieved maximal yields of 7.57 g/L, and one of the highest reported volumetric productivities of 473 mg L-1 h-1 with 100% conversion rates in an optimized, minimally defined medium. Additionally, we identified and investigated the use of a native copper responsive promoter in V. natriegens for stringent regulation of heterologous protein expression as a cost effective alternative to traditional IPTG-based induction. This research represents a promising advancement towards a green, rapid, and economical alternative for the biomanufacture of melanin.
RESUMO
BACKGROUND: Pyruvate is a widely used value-added chemical which also serves as a hub of various metabolic pathways. The fastest-growing bacterium Vibrio natriegens is a promising chassis for synthetic biology applications with high substrate uptake rates. The aim of this study was to investigate if the high substrate uptake rates of V. natriegens enable pyruvate production at high productivities. RESULTS: Two prophage gene clusters and several essential genes for the biosynthesis of byproducts were first deleted. In order to promote pyruvate accumulation, the key gene aceE encoding pyruvate dehydrogenase complex E1 component was down-regulated to reduce the carbon flux into the tricarboxylic acid cycle. Afterwards, the expression of ppc gene encoding phosphoenolpyruvate carboxylase was fine-tuned to balance the cell growth and pyruvate synthesis. The resulting strain PYR32 was able to produce 54.22 g/L pyruvate from glucose within 16 h, with a yield of 1.17 mol/mol and an average productivity of 3.39 g/L/h. In addition, this strain was also able to efficiently convert sucrose or gluconate into pyruvate at high titers. CONCLUSION: A novel strain of V. natriegens was engineered which was capable to provide higher productivity in pyruvate synthesis. This study lays the foundation for the biosynthesis of pyruvate and its derivatives in fast-growing V. natriegens.
Assuntos
Ácido Pirúvico , Vibrio , Engenharia Metabólica , Vibrio/genética , Transporte BiológicoRESUMO
Vibrio natriegens is a halophilic bacterium with the fastest generation time of non-pathogenic bacteria reported so far. It therefore has high potential as a production strain for biotechnological production processes or other applications in biotechnology. Culture media for V. natriegens typically contain high sodium chloride concentrations. The corresponding high chloride concentrations can lead to corrosion processes on metal surfaces in bioreactors. Here we report the development of a low-chloride chemically defined medium for V. natriegens. Sodium chloride was completely replaced by the sodium salts disodium hydrogen phosphate, disodium sulfate, and sodium citrate, while keeping the total concentration of sodium ions constant. The use of citrate prevents the occurrence of precipitates, especially of ammonium magnesium phosphate. With this defined medium, high-cell-density fed-batch cultivations in laboratory-scale bioreactors using exponential feeding yielded biomass concentrations of more than 60 g L-1. KEY POINTS: A defined medium for V. natriegens that only contains traces of chloride was developed Corrosion processes on metal surfaces in industrial bioreactors can thus be prevented High yields of biomass can be achieved in fed-batch cultivation with this medium.
Assuntos
Cloretos , Vibrio , Cloretos/farmacologia , Cloreto de Sódio/farmacologia , Reatores Biológicos , SódioRESUMO
Vibrio natriegens is a fast-growing, non-pathogenic marine bacterium with promising features for biotechnological applications such as high-level recombinant protein production or fast DNA propagation. A remarkable short generation time (< 10 min), robust proteosynthetic activity and versatile metabolism with abilities to utilise wide range of substrates contribute to its establishment as a future industrial platform for fermentation processes operating with high productivity.D,D-carboxypeptidases are membrane-associated enzymes involved in peptidoglycan biosynthesis and cell wall formation. This study investigates the impact of overexpressed D,D-carboxypeptidases on membrane integrity and the increased leakage of intracellular proteins into the growth medium in V. natriegens. Our findings confirm that co-expression of these enzymes can enhance membrane permeability, thereby facilitating the transport of target proteins into the extracellular environment, without the need for secretion signals, tags, or additional permeabilization methods. Using only a single step IMAC chromatography, we were able to purify AfKatG, MDBP or Taq polymerase in total yields of 117.9 ± 56.0 mg/L, 36.5 ± 12.9 mg/L and 26.5 ± 6.0 mg/L directly from growth medium, respectively. These results demonstrate the feasibility of our V. natriegens based system as a broadly applicable extracellular tag-less recombinant protein producer.