Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275654

RESUMO

Simultaneous Localization and Mapping (SLAM) enables mobile robots to autonomously perform localization and mapping tasks in unknown environments. Despite significant progress achieved by visual SLAM systems in ideal conditions, relying solely on a single robot and point features for mapping in large-scale indoor environments with weak-texture structures can affect mapping efficiency and accuracy. Therefore, this paper proposes a multi-robot collaborative mapping method based on point-line fusion to address this issue. This method is designed for indoor environments with weak-texture structures for localization and mapping. The feature-extraction algorithm, which combines point and line features, supplements the existing environment point feature-extraction method by introducing a line feature-extraction step. This integration ensures the accuracy of visual odometry estimation in scenes with pronounced weak-texture structure features. For relatively large indoor scenes, a scene-recognition-based map-fusion method is proposed in this paper to enhance mapping efficiency. This method relies on visual bag of words to determine overlapping areas in the scene, while also proposing a keyframe-extraction method based on photogrammetry to improve the algorithm's robustness. By combining the Perspective-3-Point (P3P) algorithm and Bundle Adjustment (BA) algorithm, the relative pose-transformation relationships of multi-robots in overlapping scenes are resolved, and map fusion is performed based on these relative pose relationships. We evaluated our algorithm on public datasets and a mobile robot platform. The experimental results demonstrate that the proposed algorithm exhibits higher robustness and mapping accuracy. It shows significant effectiveness in handling mapping in scenarios with weak texture and structure, as well as in small-scale map fusion.

2.
Front Neurorobot ; 18: 1431897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108349

RESUMO

We propose a visual Simultaneous Localization and Mapping (SLAM) algorithm that integrates target detection and clustering techniques in dynamic scenarios to address the vulnerability of traditional SLAM algorithms to moving targets. The proposed algorithm integrates the target detection module into the front end of the SLAM and identifies dynamic objects within the visual range by improving the YOLOv5. Feature points associated with the dynamic objects are disregarded, and only those that correspond to static targets are utilized for frame-to-frame matching. This approach effectively addresses the camera pose estimation in dynamic environments, enhances system positioning accuracy, and optimizes the visual SLAM performance. Experiments on the TUM public dataset and comparison with the traditional ORB-SLAM3 algorithm and DS-SLAM algorithm validate that the proposed visual SLAM algorithm demonstrates an average improvement of 85.70 and 30.92% in positioning accuracy in highly dynamic scenarios. In comparison to the DynaSLAM system using MASK-RCNN, our system exhibits superior real-time performance while maintaining a comparable ATE index. These results highlight that our pro-posed SLAM algorithm effectively reduces pose estimation errors, enhances positioning accuracy, and showcases enhanced robustness compared to conventional visual SLAM algorithms.

3.
Sensors (Basel) ; 24(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065920

RESUMO

Simultaneous Localization and Mapping (SLAM) is one of the key technologies with which to address the autonomous navigation of mobile robots, utilizing environmental features to determine a robot's position and create a map of its surroundings. Currently, visual SLAM algorithms typically yield precise and dependable outcomes in static environments, and many algorithms opt to filter out the feature points in dynamic regions. However, when there is an increase in the number of dynamic objects within the camera's view, this approach might result in decreased accuracy or tracking failures. Therefore, this study proposes a solution called YPL-SLAM based on ORB-SLAM2. The solution adds a target recognition and region segmentation module to determine the dynamic region, potential dynamic region, and static region; determines the state of the potential dynamic region using the RANSAC method with polar geometric constraints; and removes the dynamic feature points. It then extracts the line features of the non-dynamic region and finally performs the point-line fusion optimization process using a weighted fusion strategy, considering the image dynamic score and the number of successful feature point-line matches, thus ensuring the system's robustness and accuracy. A large number of experiments have been conducted using the publicly available TUM dataset to compare YPL-SLAM with globally leading SLAM algorithms. The results demonstrate that the new algorithm surpasses ORB-SLAM2 in terms of accuracy (with a maximum improvement of 96.1%) while also exhibiting a significantly enhanced operating speed compared to Dyna-SLAM.

4.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066073

RESUMO

Most visual simultaneous localization and mapping (SLAM) systems are based on the assumption of a static environment in autonomous vehicles. However, when dynamic objects, particularly vehicles, occupy a large portion of the image, the localization accuracy of the system decreases significantly. To mitigate this challenge, this paper unveils DOT-SLAM, a novel stereo visual SLAM system that integrates dynamic object tracking through graph optimization. By integrating dynamic object pose estimation into the SLAM system, the system can effectively utilize both foreground and background points for ego vehicle localization and obtain a static feature points map. To rectify the inaccuracies in depth estimation from stereo disparity directly on the foreground points of dynamic objects due to their self-similarity characteristics, a coarse-to-fine depth estimation method based on camera-road plane geometry is presented. This method uses rough depth to guide fine stereo matching, thereby obtaining the 3 dimensions (3D)spatial positions of feature points on dynamic objects. Subsequently, by establishing constraints on the dynamic object's pose using the road plane and non-holonomic constraints (NHCs) of the vehicle, reducing the initial pose uncertainty of dynamic objects leads to more accurate dynamic object initialization. Finally, by considering foreground points, background points, the local road plane, the ego vehicle pose, and dynamic object poses as optimization nodes, through the establishment and joint optimization of a nonlinear model based on graph optimization, accurate six degrees of freedom (DoFs) pose estimations are obtained for both the ego vehicle and dynamic objects. Experimental validation on the KITTI-360 dataset demonstrates that DOT-SLAM effectively utilizes features from the background and dynamic objects in the environment, resulting in more accurate vehicle trajectory estimation and a static environment map. Results obtained from a real-world dataset test reinforce the effectiveness.

5.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066090

RESUMO

SLAM is a critical technology for enabling autonomous navigation and positioning in unmanned vehicles. Traditional visual simultaneous localization and mapping algorithms are built upon the assumption of a static scene, overlooking the impact of dynamic targets within real-world environments. Interference from dynamic targets can significantly degrade the system's localization accuracy or even lead to tracking failure. To address these issues, we propose a dynamic visual SLAM system named BY-SLAM, which is based on BEBLID and semantic information extraction. Initially, the BEBLID descriptor is introduced to describe Oriented FAST feature points, enhancing both feature point matching accuracy and speed. Subsequently, FasterNet replaces the backbone network of YOLOv8s to expedite semantic information extraction. By using the results of DBSCAN clustering object detection, a more refined semantic mask is obtained. Finally, by leveraging the semantic mask and epipolar constraints, dynamic feature points are discerned and eliminated, allowing for the utilization of only static feature points for pose estimation and the construction of a dense 3D map that excludes dynamic targets. Experimental evaluations are conducted on both the TUM RGB-D dataset and real-world scenarios and demonstrate the effectiveness of the proposed algorithm at filtering out dynamic targets within the scenes. On average, the localization accuracy for the TUM RGB-D dataset improves by 95.53% compared to ORB-SLAM3. Comparative analyses against classical dynamic SLAM systems further corroborate the improvement in localization accuracy, map readability, and robustness achieved by BY-SLAM.

6.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38894383

RESUMO

Because of the absence of visual perception, visually impaired individuals encounter various difficulties in their daily lives. This paper proposes a visual aid system designed specifically for visually impaired individuals, aiming to assist and guide them in grasping target objects within a tabletop environment. The system employs a visual perception module that incorporates a semantic visual SLAM algorithm, achieved through the fusion of ORB-SLAM2 and YOLO V5s, enabling the construction of a semantic map of the environment. In the human-machine cooperation module, a depth camera is integrated into a wearable device worn on the hand, while a vibration array feedback device conveys directional information of the target to visually impaired individuals for tactile interaction. To enhance the system's versatility, a Dobot Magician manipulator is also employed to aid visually impaired individuals in grasping tasks. The performance of the semantic visual SLAM algorithm in terms of localization and semantic mapping was thoroughly tested. Additionally, several experiments were conducted to simulate visually impaired individuals' interactions in grasping target objects, effectively verifying the feasibility and effectiveness of the proposed system. Overall, this system demonstrates its capability to assist and guide visually impaired individuals in perceiving and acquiring target objects.


Assuntos
Algoritmos , Pessoas com Deficiência Visual , Dispositivos Eletrônicos Vestíveis , Humanos , Pessoas com Deficiência Visual/reabilitação , Força da Mão/fisiologia , Tecnologia Assistiva , Percepção Visual/fisiologia , Semântica , Masculino
7.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793834

RESUMO

Localization and perception play an important role as the basis of autonomous Unmanned Aerial Vehicle (UAV) applications, providing the internal state of movements and the external understanding of environments. Simultaneous Localization And Mapping (SLAM), one of the critical techniques for localization and perception, is facing technical upgrading, due to the development of embedded hardware, multi-sensor technology, and artificial intelligence. This survey aims at the development of visual SLAM and the basis of UAV applications. The solutions to critical problems for visual SLAM are shown by reviewing state-of-the-art and newly presented algorithms, providing the research progression and direction in three essential aspects: real-time performance, texture-less environments, and dynamic environments. Visual-inertial fusion and learning-based enhancement are discussed for UAV localization and perception to illustrate their role in UAV applications. Subsequently, the trend of UAV localization and perception is shown. The algorithm components, camera configuration, and data processing methods are also introduced to give comprehensive preliminaries. In this paper, we provide coverage of visual SLAM and its related technologies over the past decade, with a specific focus on their applications in autonomous UAV applications. We summarize the current research, reveal potential problems, and outline future trends from academic and engineering perspectives.

8.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475246

RESUMO

In the autonomous navigation of mobile robots, precise positioning is crucial. In forest environments with weak satellite signals or in sites disturbed by complex environments, satellite positioning accuracy has difficulty in meeting the requirements of autonomous navigation positioning accuracy for robots. This article proposes a vision SLAM/UWB tightly coupled localization method and designs a UWB non-line-of-sight error identification method using the displacement increment of the visual odometer. It utilizes the displacement increment of visual output and UWB ranging information as measurement values and applies the extended Kalman filtering algorithm for data fusion. This study utilized the constructed experimental platform to collect images and ultra-wideband ranging data in outdoor environments and experimentally validated the combined positioning method. The experimental results show that the algorithm outperforms individual UWB or loosely coupled combination positioning methods in terms of positioning accuracy. It effectively eliminates non-line-of-sight errors in UWB, improving the accuracy and stability of the combined positioning system.

9.
Sensors (Basel) ; 24(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38339551

RESUMO

In challenging environments, feature-based visual SLAM encounters frequent failures in frame tracking, introducing unknown poses to robotic applications. This paper introduces an immediate approach for recovering untracked camera poses. Through the retrieval of key information from elapsed untracked frames, lost poses are efficiently restored with a short time consumption. Taking account of reconstructed poses and map points during local optimizing, a denser local map is constructed around ambiguous frames to enhance the further SLAM procedure. The proposed method is implemented in a SLAM system, and monocular experiments are conducted on datasets. The experimental results demonstrate that our method can reconstruct the untracked frames in nearly real time, effectively complementing missing segments of the trajectory. Concurrently, the accuracy and robustness for subsequent tracking are improved through the integration of recovered poses and map points.

10.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400301

RESUMO

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in the field of robotics, enabling autonomous robots to navigate and create maps of unknown environments. Nevertheless, the SLAM methods that use cameras face problems in maintaining accurate localization over extended periods across various challenging conditions and scenarios. Following advances in neuroscience, we propose NeoSLAM, a novel long-term visual SLAM, which uses computational models of the brain to deal with this problem. Inspired by the human neocortex, NeoSLAM is based on a hierarchical temporal memory model that has the potential to identify temporal sequences of spatial patterns using sparse distributed representations. Being known to have a high representational capacity and high tolerance to noise, sparse distributed representations have several properties, enabling the development of a novel neuroscience-based loop-closure detector that allows for real-time performance, especially in resource-constrained robotic systems. The proposed method has been thoroughly evaluated in terms of environmental complexity by using a wheeled robot deployed in the field and demonstrated that the accuracy of loop-closure detection was improved compared with the traditional RatSLAM system.


Assuntos
Algoritmos , Robótica , Humanos , Robótica/métodos , Encéfalo , Simulação por Computador
11.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257631

RESUMO

Intelligent vehicles are constrained by road, resulting in a disparity between the assumed six degrees of freedom (DoF) motion within the Visual Simultaneous Localization and Mapping (SLAM) system and the approximate planar motion of vehicles in local areas, inevitably causing additional pose estimation errors. To address this problem, a stereo Visual SLAM system with road constraints based on graph optimization is proposed, called RC-SLAM. Addressing the challenge of representing roads parametrically, a novel method is proposed to approximate local roads as discrete planes and extract parameters of local road planes (LRPs) using homography. Unlike conventional methods, constraints between the vehicle and LRPs are established, effectively mitigating errors arising from assumed six DoF motion in the system. Furthermore, to avoid the impact of depth uncertainty in road features, epipolar constraints are employed to estimate rotation by minimizing the distance between road feature points and epipolar lines, robust rotation estimation is achieved despite depth uncertainties. Notably, a distinctive nonlinear optimization model based on graph optimization is presented, jointly optimizing the poses of vehicle trajectories, LPRs, and map points. The experiments on two datasets demonstrate that the proposed system achieved more accurate estimations of vehicle trajectories by introducing constraints between the vehicle and LRPs. The experiments on a real-world dataset further validate the effectiveness of the proposed system.

12.
Sensors (Basel) ; 23(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067842

RESUMO

Visual simultaneous localization and mapping is a widely used technology for mobile robots to carry out precise positioning in the environment of GNSS technology failure. However, as the robot moves around indoors, its position accuracy will gradually decrease over time due to common and unavoidable environmental factors. In this paper, we propose an improved method called RTABMAP-VIWO, which is based on RTABMAP. The basic idea is to use an Extended Kalman Filter (EKF) framework for fusion attitude estimates from the wheel odometry and IMU, and provide new prediction values. This helps to reduce the local cumulative error of RTABMAP and make it more accurate. We compare and evaluate three kinds of SLAM methods using both public datasets and real indoor scenes. In the dataset experiments, our proposed method reduces the Root-Mean-Square Error (RMSE) coefficient by 48.1% compared to the RTABMAP, and the coefficient is also reduced by at least 29.4% in the real environment experiments. The results demonstrate that the improved method is feasible. By incorporating the IMU into the RTABMAP method, the trajectory and posture errors of the mobile robot are significantly improved.

13.
Sensors (Basel) ; 23(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896538

RESUMO

Simultaneous localization and mapping (SLAM) plays a crucial role in the field of intelligent mobile robots. However, the traditional Visual SLAM (VSLAM) framework is based on strong assumptions about static environments, which are not applicable to dynamic real-world environments. The correctness of re-localization and recall of loop closure detection are both lower when the mobile robot loses frames in a dynamic environment. Thus, in this paper, the re-localization and loop closure detection method with a semantic topology graph based on ORB-SLAM2 is proposed. First, we use YOLOv5 for object detection and label the recognized dynamic and static objects. Secondly, the topology graph is constructed using the position information of static objects in space. Then, we propose a weight expression for the topology graph to calculate the similarity of topology in different keyframes. Finally, the re-localization and loop closure detection are determined based on the value of topology similarity. Experiments on public datasets show that the semantic topology graph is effective in improving the correct rate of re-localization and the accuracy of loop closure detection in a dynamic environment.

14.
Sensors (Basel) ; 23(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765978

RESUMO

With the rapid development of autonomous driving and robotics applications in recent years, visual Simultaneous Localization and Mapping (SLAM) has become a hot research topic. The majority of visual SLAM systems relies on the assumption of scene rigidity, which may not always hold true in real applications. In dynamic environments, SLAM systems, without accounting for dynamic objects, will easily fail to estimate the camera pose. Some existing methods attempt to address this issue by simply excluding the dynamic features lying in moving objects. But this may lead to a shortage of features for tracking. To tackle this problem, we propose OTE-SLAM, an object tracking enhanced visual SLAM system, which not only tracks the camera motion, but also tracks the movement of dynamic objects. Furthermore, we perform joint optimization of both the camera pose and object 3D position, enabling a mutual benefit between visual SLAM and object tracking. The results of experiences demonstrate that the proposed approach improves the accuracy of the SLAM system in challenging dynamic environments. The improvements include a maximum reduction in both absolute trajectory error and relative trajectory error by 22% and 33%, respectively.

15.
ISA Trans ; 142: 731-746, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596149

RESUMO

Back-end optimization plays a key role in eliminating the accumulated error in Visual Simultaneous Localization And Mapping (VSLAM). Existing back-end optimization methods are usually premised on the Gaussian noise assumption which does not always hold true due to the non-convex nature of the image and the fact that non-Gaussian noises are often encountered in real scenes. In view of this, we propose a back-end optimization method based on Multi-Convex combined Maximum Correntropy Criterion (MCMCC). A MCMCC-based cost function is first tailored for nonlinear back-end optimization in the context of VSLAM and the optimization problem is solved through Levenberg-Marquardt algorithm iteratively. Then, the proposed method is applied to ORB-SLAM3 to test its performance on public indoor and outdoor datasets. The real time performance is also validated using a RaceBot platform in real indoor and outdoor environments. In addition, the reprojection error is statistically analyzed to demonstrate the non-Gaussian characteristics in the back-end optimization process. Finally, the suggestion parameters are also provided through experiments for further study.

16.
Sensors (Basel) ; 23(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177445

RESUMO

At present, SLAM is widely used in all kinds of dynamic scenes. It is difficult to distinguish dynamic targets in scenes using traditional visual SLAM. In the matching process, dynamic points are incorrectly added to the pose calculation with the camera, resulting in low precision and poor robustness in the pose estimation. This paper proposes a new dynamic scene visual SLAM algorithm based on adaptive threshold homogenized feature extraction and YOLOv5 object detection, named AHY-SLAM. This new method adds three new modules based on ORB-SLAM2: a keyframe selection module, a threshold calculation module, and an object detection module. The optical flow method is used to screen keyframes for each frame input in AHY-SLAM. An adaptive threshold is used to extract feature points for keyframes, and dynamic points are eliminated with YOLOv5. Compared with ORB-SLAM2, AHY-SLAM has significantly improved pose estimation accuracy over multiple dynamic scene sequences in the TUM open dataset, and the absolute pose estimation accuracy can be increased by up to 97%. Compared with other dynamic scene SLAM algorithms, the speed of AHY-SLAM is also significantly improved under a guarantee of acceptable accuracy.

17.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050589

RESUMO

Dynamic environments are challenging for visual Simultaneous Localization and Mapping, as dynamic elements can disrupt the camera pose estimation and thus reduce the reconstructed map accuracy. To solve this problem, this study proposes an approach for eliminating dynamic elements and reconstructing static background in indoor dynamic environments. To check out dynamic elements, the geometric residual is exploited, and the static background is obtained after removing the dynamic elements and repairing images. The camera pose is estimated based on the static background. Keyframes are then selected using randomized ferns, and loop closure detection and relocalization are performed according to the keyframes set. Finally, the 3D scene is reconstructed. The proposed method is tested on the TUM and BONN datasets, and the map reconstruction accuracy is experimentally demonstrated.

18.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36772399

RESUMO

Recent developments in robotics have heightened the need for visual SLAM. Dynamic objects are a major problem in visual SLAM which reduces the accuracy of localization due to the wrong epipolar geometry. This study set out to find a new method to address the low accuracy of visual SLAM in outdoor dynamic environments. We propose an adaptive feature point selection system for outdoor dynamic environments. Initially, we utilize YOLOv5s with the attention mechanism to obtain a priori dynamic objects in the scene. Then, feature points are selected using an adaptive feature point selector based on the number of a priori dynamic objects and the percentage of a priori dynamic objects occupied in the frame. Finally, dynamic regions are determined using a geometric method based on Lucas-Kanade optical flow and the RANSAC algorithm. We evaluate the accuracy of our system using the KITTI dataset, comparing it to various dynamic feature point selection strategies and DynaSLAM. Experiments show that our proposed system demonstrates a reduction in both absolute trajectory error and relative trajectory error, with a maximum reduction of 39% and 30%, respectively, compared to other systems.

19.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679714

RESUMO

Many visual SLAM systems are generally solved using natural landmarks or optical flow. However, due to textureless areas, illumination change or motion blur, they often acquire poor camera poses or even fail to track. Additionally, they cannot obtain camera poses with a metric scale in the monocular case. In some cases (such as when calibrating the extrinsic parameters of camera-IMU), we prefer to sacrifice the flexibility of such methods to improve accuracy and robustness by using artificial landmarks. This paper proposes enhancements to the traditional SPM-SLAM, which is a system that aims to build a map of markers and simultaneously localize the camera pose. By placing the markers in the surrounding environment, the system can run stably and obtain accurate camera poses. To improve robustness and accuracy in the case of rotational movements, we improve the initialization, keyframes insertion and relocalization. Additionally, we propose a novel method to estimate marker poses from a set of images to solve the problem of planar-marker pose ambiguity. Compared with the state-of-art, the experiments show that our system achieves better accuracy in most public sequences and is more robust than SPM-SLAM under rotational movements. Finally, the open-source code is publicly available and can be found at GitHub.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Software , Movimento , Estimulação Luminosa
20.
Behav Res Methods ; 55(6): 2787-2799, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953662

RESUMO

Tracking head movement in outdoor activities is more challenging than in controlled indoor lab environments. Large-magnitude head scanning is common under natural conditions. Compensatory gaze (head and eye) scanning while walking may be critical for people with visual field loss. We compared the accuracy of two outdoor head tracking methods: differential inertial measurement units (IMU) and simultaneous localization and mapping (SLAM). At a fixed location experiment, a gaze aiming test showed that SLAM outperforms IMU in terms of error (IMU: 9.6°, SLAM: 4.47°). In an urban street walking experiment conducted with five patients with hemifield loss, the IMU drift, quantified by root-mean-square deviation, was as high as 68.1°, while the drift of SLAM was only 5.3°. However, the SLAM method suffered from data loss due to tracking failure (~10% overall, and ~ 18% when crossing streets). Our results show that the SLAM and IMU methods have complementary properties. Because of no data gaps, the differential IMU method may be desirable as compared to SLAM in settings where the signal drift can be removed in post-processing and small gaze estimation errors can be tolerated.


Assuntos
Movimentos da Cabeça , Caminhada , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA