Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 672
Filtrar
1.
Cell Rep ; 43(8): 114521, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39024104

RESUMO

While visual responses to familiar and novel stimuli have been extensively studied, it is unknown how neuronal representations of familiar stimuli are affected when they are interleaved with novel images. We examined a large-scale dataset from mice performing a visual go/no-go change detection task. After training with eight images, six novel images were interleaved with two familiar ones. Unexpectedly, we found that the behavioral performance in response to familiar images was impaired when they were mixed with novel images. When familiar images were interleaved with novel ones, the dimensionality of their representation increased, indicating a perturbation of their neuronal responses. Furthermore, responses to familiar images in the primary visual cortex were less predictive of responses in higher-order areas, indicating less efficient communication. Spontaneous correlations between neurons were predictive of responses to novel images, but less so to familiar ones. Our study demonstrates the modification of representations of familiar images by novelty.


Assuntos
Sinais (Psicologia) , Animais , Camundongos , Comportamento Animal , Masculino , Estimulação Luminosa , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologia , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual Primário/fisiologia
2.
Curr Biol ; 34(16): 3632-3643.e4, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38991613

RESUMO

Vision in humans and other primates enlists parallel processing streams in the dorsal and ventral visual cortex, known to support spatial and object processing, respectively. These streams are bridged, however, by a prominent white matter tract, the vertical occipital fasciculus (VOF), identified in both classical neuroanatomy and recent diffusion-weighted magnetic resonance imaging (dMRI) studies. Understanding the evolution of the VOF may shed light on its origin, function, and role in visually guided behaviors. To this end, we acquired high-resolution dMRI data from the brains of select mammalian species, including anthropoid and strepsirrhine primates, a tree shrew, rodents, and carnivores. In each species, we attempted to delineate the VOF after first locating the optic radiations in the occipital white matter. In all primate species examined, the optic radiation was flanked laterally by a prominent and coherent white matter fasciculus recognizable as the VOF. By contrast, the equivalent analysis applied to four non-primate species from the same superorder as primates (tree shrew, ground squirrel, paca, and rat) failed to reveal white matter tracts in the equivalent location. Clear evidence for a VOF was also absent in two larger carnivore species (ferret and fox). Although we cannot rule out the existence of minor or differently organized homologous fiber pathways in the non-primate species, the results suggest that the VOF has greatly expanded, or possibly emerged, in the primate lineage. This adaptation likely facilitated the evolution of unique visually guided behaviors in primates, with direct impacts on manual object manipulation, social interactions, and arboreal locomotion.


Assuntos
Primatas , Córtex Visual , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Primatas/anatomia & histologia , Primatas/fisiologia , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Lobo Occipital/anatomia & histologia , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Carnívoros/anatomia & histologia , Carnívoros/fisiologia , Especificidade da Espécie , Evolução Biológica , Roedores/anatomia & histologia , Roedores/fisiologia
3.
Cell Rep ; 43(8): 114557, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39058592

RESUMO

Predictive remapping of receptive fields (RFs) is thought to be one of the critical mechanisms for enforcing perceptual stability during eye movements. While RF remapping has been observed in several cortical areas, its role in early visual cortex and its consequences on the tuning properties of neurons have been poorly understood. Here, we track remapping RFs in hundreds of neurons from visual area V2 while subjects perform a cued saccade task. We find that remapping is widespread in area V2 across neurons from all recorded cortical layers and cell types. Furthermore, our results suggest that remapping RFs not only maintain but also transiently enhance their feature selectivity due to untuned suppression. Taken together, these findings shed light on the dynamics and prevalence of remapping in the early visual cortex, forcing us to revise current models of perceptual stability during saccadic eye movements.


Assuntos
Macaca mulatta , Movimentos Sacádicos , Córtex Visual , Animais , Córtex Visual/fisiologia , Movimentos Sacádicos/fisiologia , Neurônios/fisiologia , Masculino , Estimulação Luminosa , Campos Visuais/fisiologia , Percepção Visual/fisiologia
4.
Biomimetics (Basel) ; 9(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39056863

RESUMO

The concept of Image Phase Congruency (IPC) is deeply rooted in the way the human visual system interprets and processes spatial frequency information. It plays an important role in visual perception, influencing our capacity to identify objects, recognize textures, and decipher spatial relationships in our environments. IPC is robust to changes in lighting, contrast, and other variables that might modify the amplitude of light waves yet leave their relative phase unchanged. This characteristic is vital for perceptual tasks as it ensures the consistent detection of features regardless of fluctuations in illumination or other environmental factors. It can also impact cognitive and emotional responses; cohesive phase information across elements fosters a perception of unity or harmony, while inconsistencies can engender a sense of discord or tension. In this survey, we begin by examining the evidence from biological vision studies suggesting that IPC is employed by the human perceptual system. We proceed to outline the typical mathematical representation and different computational approaches to IPC. We then summarize the extensive applications of IPC in computer vision, including denoise, image quality assessment, feature detection and description, image segmentation, image registration, image fusion, and object detection, among other uses, and illustrate its advantages with a number of examples. Finally, we discuss the current challenges associated with the practical applications of IPC and potential avenues for enhancement.

5.
Small Methods ; : e2400779, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940078

RESUMO

Bionic visual systems require multimodal integration of eye-like photodetectors and brain-like image memory. However, the integration of photodetectors (PDs) and artificial optoelectronic synapses devices (OESDs) by one device remains a giant challenge due to their photoresponse discrepancy. Herein, a dual-functional integration of PDs and OESDs based on VO2/WO3 heterojunctions is presented. The device can be able to realize a dual-mode conversion between PDs and OESDs through tuning the bias voltage. Under zero bias voltage, the device exhibiting excellent photodetecting behaviors based on the photovoltaic effect, showing a high self-powered photoresponsivity of 18.5 mA W-1 and high detectivity of 7.5 × 1010 Jones with fast photoresponse. When the external bias voltages are applied, it can be acted as an OESD and exhibit versatile electrical and photonic synaptic characteristics based on the trapping and detrapping effects, including synaptic plasticity and learning-experience behaviors. More importantly, benefiting from the excellent photosensing ability and transporting properties, the device shows ultralow-power consumption of 39.0 pJ and a 4 × 4 OESDs array is developed to realize the visual perception and memory. This work not only supplies a novel route to realize complex functional integration just in one device, but also offers effective strategies for developing neuromorphic visual system.

6.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915533

RESUMO

The brain exhibits remarkable neuronal diversity which is critical for its functional integrity. From the sheer number of cell types emerging from extensive transcriptional, morphological, and connectome datasets, the question arises of how the brain is capable of generating so many unique identities. 'Terminal selectors' are transcription factors hypothesized to determine the final identity characteristics in post-mitotic cells. Which transcription factors function as terminal selectors and the level of control they exert over different terminal characteristics are not well defined. Here, we establish a novel role for the transcription factor broad as a terminal selector in Drosophila melanogaster. We capitalize on existing large sequencing and connectomics datasets and employ a comprehensive characterization of terminal characteristics including Perturb-seq and whole-cell electrophysiology. We find a single isoform broad-z4 serves as the switch between the identity of two visual projection neurons LPLC1 and LPLC2. Broad-z4 is natively expressed in LPLC1, and is capable of transforming the transcriptome, morphology, and functional connectivity of LPLC2 cells into LPLC1 cells when perturbed. Our comprehensive work establishes a single isoform as the smallest unit underlying an identity switch, which may serve as a conserved strategy replicated across developmental programs.

7.
Br J Anaesth ; 133(2): 344-350, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862383

RESUMO

BACKGROUND: Preclinical studies suggest that early exposure to anaesthesia alters the visual system in mice and non-human primates. We investigated whether exposure to general anaesthesia leads to visual attention processing changes in children, which could potentially impact essential life skills, including learning. METHODS: This was a post hoc analysis of data from the APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort study. A total of 24 healthy 9-10-yr-old children who were or were not exposed to general anaesthesia (for surgery) by a mean age of 3.8 (2.6) yr performed a visual attention task to evaluate ability to process either local details or general global visual information. Whether children were distracted by visual interference during global and local information processing was also assessed. RESULTS: Participants included in the analyses (n=12 participants exposed to general anaesthesia and n=12 controls) successfully completed (>90% of correct answers) the trial tasks. Children from both groups were equally distracted by visual interference. However, children who had been exposed to general anaesthesia were more attracted to global visual information than were control children (P=0.03). CONCLUSIONS: These findings suggest lasting effects of early-life exposure to general anaesthesia on visuospatial abilities. Further investigations of the mechanisms by which general anaesthesia could have delayed effects on how children perceive their visual environment are needed.


Assuntos
Anestesia Geral , Atenção , Percepção Visual , Humanos , Criança , Feminino , Masculino , Atenção/efeitos dos fármacos , Estudos de Coortes , Percepção Visual/efeitos dos fármacos , Pré-Escolar
8.
Brain Struct Funct ; 229(6): 1397-1415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753019

RESUMO

The cat primary visual cortex (V1) is a cortical area for which we have one of the most detailed estimates of the connection 'weights' (expressed as number of synapses) between different neural populations in different layers (Binzegger et al in J Neurosci 24:8441-8453, 2004). Nevertheless, the majority of excitatory input sources to layer 6, the deepest layer in a local translaminar excitatory feedforward loop, was not accounted for by the known neuron types used to generate the quantitative Binzegger diagram. We aimed to fill this gap by using a retrograde tracer that would label neural cell bodies in and outside V1 that directly connect to layer 6 of V1. We found that more than 80% of labeled neurons projecting to layer 6 were within V1 itself. Our data indicate that a substantial fraction of the missing input is provided by a previously unidentified population of layer 3/4 border neurons, laterally distributed and connecting more strongly to layer 6 than the typical superficial layer pyramidal neurons considered by Binzegger et al. (Binzegger et al in J Neurosci 24:8441-8453, 2004). This layer 3/4 to layer 6 connection may be a parallel route to the layer 3 - layer 5 - layer 6 feedforward pathway, be associated with the fast-conducting, movement-related Y pathway and provide convergent input from distant (5-10 degrees) regions of the visual field.


Assuntos
Neurônios , Córtex Visual Primário , Vias Visuais , Animais , Gatos , Córtex Visual Primário/fisiologia , Vias Visuais/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Masculino
9.
Evolution ; 78(7): 1338-1346, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38736286

RESUMO

When populations experience different sensory conditions, natural selection may favor sensory system divergence, affecting peripheral structures and/or downstream neural pathways. We characterized the outer eye morphology of sympatric Heliconius butterflies from different forest types and their first-generation reciprocal hybrids to test for adaptive visual system divergence and hybrid disruption. In Panama, Heliconius cydno occurs in closed forests, whereas Heliconius melpomene resides at the forest edge. Among wild individuals, H. cydno has larger eyes than H. melpomene, and there are heritable, habitat-associated differences in the visual brain structures that exceed neutral divergence expectations. Notably, hybrids have intermediate neural phenotypes, suggesting disruption. To test for similar effects in the visual periphery, we reared both species and their hybrids in common garden conditions. We confirm that H. cydno has larger eyes and provide new evidence that this is driven by selection. Hybrid eye morphology is more H. melpomene-like despite body size being intermediate, contrasting with neural trait intermediacy. Overall, our results suggest that eye morphology differences between H. cydno and H. melpomene are adaptive and that hybrids may suffer fitness costs due to a mismatch between the peripheral visual structures and previously described neural traits that could affect visual performance.


Assuntos
Borboletas , Seleção Genética , Simpatria , Animais , Borboletas/anatomia & histologia , Borboletas/genética , Borboletas/fisiologia , Olho/anatomia & histologia , Panamá , Feminino , Masculino , Hibridização Genética
10.
Front Mol Neurosci ; 17: 1412407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813437

RESUMO

The complex nature of the retina demands well-organized signaling to uphold signal accuracy and avoid interference, a critical aspect in handling a variety of visual stimuli. A-kinase anchoring proteins (AKAPs), known for binding protein kinase A (PKA), contribute to the specificity and efficiency of retinal signaling. They play multifaceted roles in various retinal cell types, influencing photoreceptor sensitivity, neurotransmitter release in bipolar cells, and the integration of visual information in ganglion cells. AKAPs like AKAP79/150 and AKAP95 exhibit distinct subcellular localizations, impacting synaptic transmission and receptor sensitivity in photoreceptors and bipolar cells. Furthermore, AKAPs are involved in neuroprotective mechanisms and axonal degeneration, particularly in retinal ganglion cells. In particular, AKAP6 coordinates stress-specific signaling and promotes neuroprotection following optic nerve injury. As our review underscores the therapeutic potential of targeting AKAP signaling complexes for retinal neuroprotection and enhancement, it acknowledges challenges in developing selective drugs that target complex protein-protein interactions. Overall, this exploration of AKAPs provides valuable insights into the intricacies of retinal signaling, offering a foundation for understanding and potentially addressing retinal disorders.

11.
Behav Brain Funct ; 20(1): 13, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789988

RESUMO

BACKGROUND: Macular degeneration of the eye is a common cause of blindness and affects 8% of the worldwide human population. In adult cats with bilateral lesions of the central retina, we explored the possibility that motion perception training can limit the associated degradation of the visual system. We evaluated how visual training affects behavioral performance and white matter structure. Recently, we proposed (Kozak et al. in Transl Vis Sci Technol 10:9, 2021) a new motion-acuity test for low vision patients, enabling full visual field functional assessment through simultaneous perception of shape and motion. Here, we integrated this test as the last step of a 10-week motion-perception training. RESULTS: Cats were divided into three groups: retinal-lesioned only and two trained groups, retinal-lesioned trained and control trained. The behavioral data revealed that trained cats with retinal lesions were superior in motion tasks, even when the difficulty relied only on acuity. 7 T-MRI scanning was done before and after lesioning at 5 different timepoints, followed by Fixel-Based and Fractional Anisotropy Analysis. In cats with retinal lesions, training resulted in a more localized and reduced percentage decrease in Fixel-Based Analysis metrics in the dLGN, caudate nucleus and hippocampus compared to untrained cats. In motion-sensitive area V5/PMLS, the significant decreases in fiber density were equally strong in retinal-lesioned untrained and trained cats, up to 40% in both groups. The only cortical area with Fractional Anisotropy values not affected by central retinal loss was area V5/PMLS. In other visual ROIs, the Fractional Anisotropy values increased over time in the untrained retinal lesioned group, whereas they decreased in the retinal lesioned trained group and remained at a similar level as in trained controls. CONCLUSIONS: Overall, our MRI results showed a stabilizing effect of motion training applied soon after central retinal loss induction on white matter structure. We propose that introducing early motion-acuity training for low vision patients, aimed at the intact and active retinal peripheries, may facilitate brain plasticity processes toward better vision.


Assuntos
Imageamento por Ressonância Magnética , Percepção de Movimento , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Gatos , Imageamento por Ressonância Magnética/métodos , Percepção de Movimento/fisiologia , Retina/diagnóstico por imagem , Retina/fisiopatologia , Masculino , Feminino
12.
Network ; : 1-31, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708841

RESUMO

In contemporary times, content-based image retrieval (CBIR) techniques have gained widespread acceptance as a means for end-users to discern and extract specific image content from vast repositories. However, it is noteworthy that a substantial majority of CBIR studies continue to rely on linear methodologies such as gradient-based and derivative-based edge detection techniques. This research explores the integration of bioinspired Spiking Neural Network (SNN) based edge detection within CBIR. We introduce an innovative, computationally efficient SNN-based approach designed explicitly for CBIR applications, outperforming existing SNN models by reducing computational overhead by 2.5 times. The proposed SNN-based edge detection approach is seamlessly incorporated into three distinct CBIR techniques, each employing conventional edge detection methodologies including Sobel, Canny, and image derivatives. Rigorous experimentation and evaluations are carried out utilizing the Corel-10k dataset and crop weed dataset, a widely recognized and frequently adopted benchmark dataset in the realm of image analysis. Importantly, our findings underscore the enhanced performance of CBIR methodologies integrating the proposed SNN-based edge detection approach, with an average increase in mean precision values exceeding 3%. This study conclusively demonstrated the utility of our proposed methodology in optimizing feature extraction, thereby establishing its pivotal role in advancing edge centric CBIR approaches.

13.
Yale J Biol Med ; 97(1): 41-48, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559457

RESUMO

The intricate steps of human ocular embryology are impacted by cellular and genetic signaling pathways and a myriad of external elements that can affect pregnancy, such as environmental, metabolic, hormonal factors, medications, and intrauterine infections. This review focuses on presenting some of these factors to recognize the multifactorial nature of ocular development and highlight their clinical significance. This review is based on English-language articles sourced from PubMed, Web of Science, and Google Scholar; keywords searched included "ocular development in pregnancy," "ocular embryology," "maternal nutrition," "ophthalmic change," and "visual system development." While some animal models show the disruption of ocular embryology from these external factors, there are limited post-birth assessments in human studies. Much remains unknown about the precise mechanisms of how these external factors can disrupt normal ocular development in utero, and more significant research is needed to understand the pathophysiology of these disruptive effects further. Findings in this review emphasize the importance of additional research in understanding the dynamic association between factors impacting gestation and neonatal ocular development, particularly in the setting of limited resources.


Assuntos
Olho , Exposição Materna , Animais , Feminino , Humanos , Recém-Nascido , Gravidez , Olho/embriologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38600805

RESUMO

In the era of the Internet of Things and the rapid progress of artificial intelligence, there is a growing demand for advanced dynamic vision systems. Vision systems are no longer confined to static object detection and recognition, as the detection and recognition of moving objects are becoming increasingly important. To meet the requirements for more precise and efficient dynamic vision, the development of adaptive multimodal motion detection devices becomes imperative. Inspired by the varied response rates in biological vision, we introduce the concept of critical flicker fusion frequency (cFFF) and develop an organic optoelectronic synaptic transistor with adjustable cFFF. In situ Kelvin probe force microscopy analysis reveals that light signal recognition in this device originates from charge transfer in the poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T)/pentacene heterojunction, which can be effectively modulated by gate voltage. Building upon this, we implement different cFFF within a single device to facilitate the detection and recognition of objects moving at different speeds. This approach allows for resource allocation during dynamic detection, resulting in a reduction in power consumption. Our research holds great potential for enhancing the capabilities of dynamic visual systems.

15.
Front Neurol ; 15: 1363167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660098

RESUMO

Introduction: Traumatic brain injury (TBI) is an important public health concern and that may lead to severe neural sequels, such as color vision deficits. Methods: We evaluated the color vision of 10 TBI patients with normal cognitive function using a color discrimination test in a fixed saturation level. We also analyzed computerized tomography scans to identify the local of the brain damages. Results: Four TBI patients that had lesions in brain areas of the ventral visual streams, five TBI patients had lesions inferred in brain areas of the dorsal visual stream, and one TBI patient had lesion in the occipital area. All the patients had cognitive and color vision screened and they had characterized the chromatic discrimination at high and low saturation. All participants had no significant cognitive impairment in the moment of the color vision test. Additionally, they had perfect performance for discrimination of chromatic stimulus at high saturation and similar to controls (n = 37 age-matched participants). Three of four TBI patients with lesions in the ventral brain and one patient with lesion in the occipital area had impairment of the chromatic discrimination at low saturation. All TBI patients with lesions in the dorsal brain had performance similar or slightly worse than the controls. Conclusion: Chromatic discrimination at low saturation was associated to visual damage in the ventral region of the brain and is a potential tool for functional evaluation of brain damage in TBI patients.

16.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569924

RESUMO

The superior colliculus (SC) is a prominent and conserved visual center in all vertebrates. In mice, the most superficial lamina of the SC is enriched with neurons that are selective for the moving direction of visual stimuli. Here, we study how these direction selective neurons respond to complex motion patterns known as plaids, using two-photon calcium imaging in awake male and female mice. The plaid pattern consists of two superimposed sinusoidal gratings moving in different directions, giving an apparent pattern direction that lies between the directions of the two component gratings. Most direction selective neurons in the mouse SC respond robustly to the plaids and show a high selectivity for the moving direction of the plaid pattern but not of its components. Pattern motion selectivity is seen in both excitatory and inhibitory SC neurons and is especially prevalent in response to plaids with large cross angles between the two component gratings. However, retinal inputs to the SC are ambiguous in their selectivity to pattern versus component motion. Modeling suggests that pattern motion selectivity in the SC can arise from a nonlinear transformation of converging retinal inputs. In contrast, the prevalence of pattern motion selective neurons is not seen in the primary visual cortex (V1). These results demonstrate an interesting difference between the SC and V1 in motion processing and reveal the SC as an important site for encoding pattern motion.


Assuntos
Camundongos Endogâmicos C57BL , Percepção de Movimento , Estimulação Luminosa , Retina , Colículos Superiores , Vias Visuais , Animais , Colículos Superiores/fisiologia , Percepção de Movimento/fisiologia , Camundongos , Masculino , Feminino , Retina/fisiologia , Estimulação Luminosa/métodos , Vias Visuais/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia
18.
Brain ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538211

RESUMO

Genetic diseases affecting the retina can result in partial or complete loss of visual function. Leber's Congenital Amaurosis (LCA) is a rare blinding disease, usually inherited in an autosomally recessive manner, with no cure. Retinal gene therapy has been shown to improve vision in LCA patients caused by mutations in the RPE65 gene (LCA2). However, little is known about how activity in central visual pathways is affected by the disease or by subsequent gene therapy. Functional MRI was used to assess retinal signal transmission in cortical and subcortical visual structures before and one year after retinal intervention. The fMRI paradigm consisted of 15-second blocks of flickering (8-Hz) black and white checkerboards interleaved with 15 seconds of blank (black) screen. Visual activation in the brain was assessed using the general linear model, with multiple comparisons corrected using the false discovery rate method. Response to visual stimulation through untreated eyes of LCA2 patients showed heightened fMRI responses in the superior colliculus (SC) and diminished activities in the lateral geniculate nucleus (LGN) compared to controls, indicating a shift in the patients' visual processing towards the retinotectal pathway (RT). Following gene therapy, stimuli presented to the treated eye elicited significantly stronger fMRI responses in the LGN and primary visual cortex, indicating some reengagement of the geniculostriate pathway (GS) pathway. Across patients, the post-treatment LGN fMRI responses correlated significantly with performance on a clinical test measuring light sensitivity. Our results demonstrate that the low vision observed in LCA2 patients involves a shift in visual processing toward the retinotectal pathway, and that gene therapy partially reinstates visual transmission through the GS pathway. This selective boosting of retinal output through the GS pathway and its correlation to improved visual performance, following several years of degenerative retinal disease, is striking. However, while retinal gene therapy and other ocular interventions have given hope to RPE65 patients, it may take years before development of therapies tailored to treat the diseases in other low vision patients are available. Our demonstration of a shift toward the RT pathway in these patients may spur the development of new tools and rehabilitation strategies to help maximize the use of residual visual abilities and augment experience-dependent plasticity.

19.
Elife ; 132024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436656

RESUMO

A map showing how neurons that process motion are wired together in the visual system of fruit flies provides new insights into how animals navigate and remain stable when flying.


Assuntos
Drosophila , Neurônios , Animais , Movimento (Física)
20.
Elife ; 132024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489224

RESUMO

How neural representations preserve information about multiple stimuli is mysterious. Because tuning of individual neurons is coarse (e.g., visual receptive field diameters can exceed perceptual resolution), the populations of neurons potentially responsive to each individual stimulus can overlap, raising the question of how information about each item might be segregated and preserved in the population. We recently reported evidence for a potential solution to this problem: when two stimuli were present, some neurons in the macaque visual cortical areas V1 and V4 exhibited fluctuating firing patterns, as if they responded to only one individual stimulus at a time (Jun et al., 2022). However, whether such an information encoding strategy is ubiquitous in the visual pathway and thus could constitute a general phenomenon remains unknown. Here, we provide new evidence that such fluctuating activity is also evoked by multiple stimuli in visual areas responsible for processing visual motion (middle temporal visual area, MT), and faces (middle fundus and anterolateral face patches in inferotemporal cortex - areas MF and AL), thus extending the scope of circumstances in which fluctuating activity is observed. Furthermore, consistent with our previous results in the early visual area V1, MT exhibits fluctuations between the representations of two stimuli when these form distinguishable objects but not when they fuse into one perceived object, suggesting that fluctuating activity patterns may underlie visual object formation. Taken together, these findings point toward an updated model of how the brain preserves sensory information about multiple stimuli for subsequent processing and behavioral action.


Assuntos
Córtex Visual , Vias Visuais , Vias Visuais/fisiologia , Córtex Visual/fisiologia , Campos Visuais , Neurônios/fisiologia , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA