Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Eur J Radiol Open ; 10: 100479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819113

RESUMO

Purpose: Conventional computed tomography (CT) images are severely affected by metal artifacts in patients with intracranial coils. Monoenergetic images have been suggested to reduce metal artifacts.The aim of this study was to assess metal artifacts in virtual monoenergetic images (VMIs) reconstructed from spectral brain CT. Methods: Thirty-two consecutive patients with intracranial coils examined by spectral non contrast brain CT (NCCT) at our center between November 2017 and April 2019 were included. Attenuation and standard deviations were measured in regions of interest (ROIs) at predefined areas in artifact-free and artifact-affected areas. Measurements were performed in conventional polyenergetic images (CIs) and the corresponding data for VMIs were retrieved through spectral diagrams for the each ROI. Subjective analysis was performed by visual grading of CIs and specific VMIs by two neuroradiologists, independently. Results: In artefact-affected image areas distal from the metal objects, the attenuation values decreased with higher energy level VMIs. The same effect was not seen for artefact-affected image areas close to the metal.Subjective rating of the artefact severity was significantly better in VMIs at 50 keV for one of the two reviewers compared to the CIs. Overall image quality and tissue differentiation scores were significantly higher for both reviewers in VMIs at 60 and 70 keV compared to CIs. Conclusion: Our quantitative and qualitative image analysis shown that there is a small significant reduction of intracranial coils artifacts severity by all monoenergetic reconstructions from 50 to 200 keV with preserved or increased overall subjective image quality compared to conventional images.

2.
Cereb Circ Cogn Behav ; 4: 100162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36851996

RESUMO

Background: We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). Materials and methods: 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 '  = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. Results: Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). Conclusions: This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.

3.
Cereb Circ Cogn Behav ; 4: 100158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703699

RESUMO

Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.

4.
Clin Transl Radiat Oncol ; 36: 99-105, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965663

RESUMO

Background and purpose: Radiotherapy (RT) is an adjuvant treatment option for glioma patients. Side effects include tissue atrophy, which might be a contributing factor to neurocognitive decline after treatment. The goal of this study was to determine potential atrophy of the hippocampus, amygdala, thalamus, putamen, pallidum and caudate nucleus in glioma patients having undergone magnetic resonance imaging (MRI) before and after RT. Materials and methods: Subcortical volumes were measured using T1-weighted MRI from patients before RT (N = 91) and from longitudinal follow-ups acquired in three-monthly intervals (N = 349). The volumes were normalized to the baseline values, while excluding structures touching the clinical target volume (CTV) or abnormal tissue seen on FLAIR imaging. A multivariate linear effects model was used to determine if time after RT and mean RT dose delivered to the corresponding structures were significant predictors of tissue atrophy. Results: The hippocampus, amygdala, thalamus, putamen, and pallidum showed significant atrophy after RT as function of both time after RT and mean RT dose delivered to the corresponding structure. Only the caudate showed no dose or time dependant atrophy. Conversely, the hippocampus was the structure with the highest atrophy rate of 5.2 % after one year and assuming a mean dose of 30 Gy. Conclusion: The hippocampus showed the highest atrophy rates followed by the thalamus and the amygdala. The subcortical structures here found to decrease in volume indicative of radiosensitivity should be the focus of future studies investigating the relationship between neurocognitive decline and RT.

5.
Eur J Radiol Open ; 8: 100359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095357

RESUMO

PURPOSE: The early detection of cognitive function decline is crucial to help manage or slow the progression of symptoms. The Mini-Mental State Examination (MMSE) and revised Hasegawa's Dementia Scale (HDS-R) are widely used in screening for cognitive impairment. The purpose of this study was to explore common predictors of the two different cognitive testing systems using MR-based brain morphometry. MATERIALS AND METHODS: This retrospective study included 200 subjects with clinical suspicion of cognitive impairment who underwent 3D T1-weighted MRI at our institution between February 2019 and August 2020. Variables related to the volume of deep gray matter and 70 cortical thicknesses were obtained from the MR images using voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) and FreeSurfer software. The correlation between each variable including age and MMSE/HDS-R scores was evaluated using uni- and multi-variate logistic regression analyses. RESULTS: In univariate analysis, parameters include hippocampal volume and bilateral entorhinal cortex (ERC) thickness showed moderate correlation coefficients with both MMSE and HDS-R scores. Multivariate analysis demonstrated the right ERC thickness was the common parameter which significantly correlates with both MMSE and HDS-R scores (p < 0.05). CONCLUSION: Right ERC thickness appears to offer a useful predictive biomarker for both MMSE and HDS-R scores.

6.
Neurobiol Stress ; 14: 100334, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34013000

RESUMO

Stress is inevitably linked to life. It has many and complex facets. Notably, perception of stressful stimuli is an important factor when mounting stress responses and measuring its impact. Indeed, moved by the increasing number of stress-triggered pathologies, several groups drew on advanced neuroimaging techniques to explore stress effects on the brain. From that, several regions and circuits have been linked to stress, and a comprehensive integration of the distinct findings applied to common individuals is being pursued, but with conflicting results. Herein, we performed a volumetric regression analysis using participants' perceived stress as a variable of interest. Data shows that increased levels of perceived stress positively associate with the right amygdala and anterior hippocampal volumes.

7.
IBRO Neurosci Rep ; 10: 18-30, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33842909

RESUMO

BACKGROUND: The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. RESULTS: Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. CONCLUSION: The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.

8.
Cereb Circ Cogn Behav ; 2: 100013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36324717

RESUMO

Background: Cerebral small vessel diseases (SVDs) are a major cause of stroke and dementia. Yet, specific treatment strategies are lacking in part because of a limited understanding of the underlying disease processes. There is therefore an urgent need to study SVDs at their core, the small vessels themselves. Objective: This paper presents the rationale and design of the ZOOM@SVDs study, which aims to establish measures of cerebral small vessel dysfunction on 7T MRI as novel disease markers of SVDs. Methods: ZOOM@SVDs is a prospective observational cohort study with two years follow-up. ZOOM@SVDs recruits participants with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL, N = 20), sporadic SVDs (N = 60), and healthy controls (N = 40). Participants undergo 7T brain MRI to assess different aspects of small vessel function including small vessel reactivity, cerebral perforating artery flow, and pulsatility. Extensive work-up at baseline and follow-up further includes clinical and neuropsychological assessment as well as 3T brain MRI to assess conventional SVD imaging markers. Measures of small vessel dysfunction are compared between patients and controls, and related to the severity of clinical and conventional MRI manifestations of SVDs. Discussion: ZOOM@SVDs will deliver novel markers of cerebral small vessel function in patients with monogenic and sporadic forms of SVDs, and establish their relation with disease burden and progression. These small vessel markers can support etiological studies in SVDs and may serve as surrogate outcome measures in future clinical trials to show target engagement of drugs directed at the small vessels.

9.
Cereb Circ Cogn Behav ; 2: 100020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36324725

RESUMO

Background: Sporadic cerebral small vessel disease (SVD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) share clinical and neuroimaging features and possibly vascular dysfunction(s). However few studies have included both conditions, assessed more than one vascular dysfunction simultaneously, or included more than one centre. The INVESTIGATE-SVDs study will assess several cerebrovascular dysfunctions with MRI in participants with sporadic SVD or CADASIL at three European centres. Methods: We will recruit participants with sporadic SVDs (ischaemic stroke or vascular cognitive impairment) and CADASIL in Edinburgh, Maastricht and Munich. We will perform detailed clinical and neuropsychological phenotyping of the participants, and neuroimaging including structural MRI, cerebrovascular reactivity MRI (CVR: using carbon dioxide challenge), phase contrast MRI (arterial, venous and CSF flow and pulsatility), dynamic contrast-enhanced MRI (blood brain barrier (BBB) leakage) and multishell diffusion imaging. Participants will measure their blood pressure (BP) and its variability over seven days using a telemetric device. Discussion: INVESTIGATE-SVDs will assess the relationships of BBB integrity, CVR, pulsatility and CSF flow in sporadic SVD and CADASIL using a multisite, multimodal MRI protocol. We aim to establish associations between these measures of vascular function, risk factors particularly BP and its variability, and brain parenchymal lesions in these two SVD phenotypes. Additionally we will test feasibility of complex multisite MRI, provide reliable intermediary outcome measures and sample size estimates for future trials.

10.
Int J Cardiol Heart Vasc ; 30: 100619, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32904369

RESUMO

BACKGROUND AND AIMS: Extent of subclinical atherosclerosis has been associated with brain parenchymal loss in community-dwelling aged subjects. Identification of patient-related and plaque-related markers could identify subjects at higher risk of brain atrophy, independent of cerebrovascular accidents. Aim of the study was to investigate the relation between extent and characteristics of carotid plaques and brain atrophy in asymptomatic patients with no indication for revascularization. METHODS AND RESULTS: Sixty-four patients (aged 69 ± 8 years, 45% females) with carotid stenosis <70% based on Doppler flow velocity were enrolled in the study. Potential causes of cerebral damage other than atherosclerosis, including history of atrial fibrillation, heart failure, previous cardiac or neurosurgery and neurological disorders were excluded. All subjects underwent carotid computed tomography angiography, contrast enhanced ultrasound for assessment of plaque neovascularization and brain magnetic resonance imaging for measuring brain volumes. On multivariate regression analysis, age and fibrocalcific plaques were independently associated with lower total brain volumes (ß = -3.13 and ß = -30.7, both p < 0.05). Fibrocalcific plaques were also independently associated with lower gray matter (GM) volumes (ß = -28.6, p = 0.003). On the other hand, age and extent of carotid atherosclerosis were independent predictors of lower white matter (WM) volumes. CONCLUSIONS: WM and GM have different susceptibility to processes involved in parenchymal loss. Contrary to common belief, our results show that presence of fibrocalcific plaques is associated with brain atrophy.

11.
EClinicalMedicine ; 25: 100484, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32838240

RESUMO

BACKGROUND: Increasing evidence supported the possible neuro-invasion potential of SARS-CoV-2. However, no studies were conducted to explore the existence of the micro-structural changes in the central nervous system after infection. We aimed to identify the existence of potential brain micro-structural changes related to SARS-CoV-2. METHODS: In this prospective study, diffusion tensor imaging (DTI) and 3D high-resolution T1WI sequences were acquired in 60 recovered COVID-19 patients (56.67% male; age: 44.10 ± 16.00) and 39 age- and sex-matched non-COVID-19 controls (56.41% male; age: 45.88 ± 13.90). Registered fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were quantified for DTI, and an index score system was introduced. Regional volumes derived from Voxel-based Morphometry (VBM) and DTI metrics were compared using analysis of covariance (ANCOVA). Two sample t-test and Spearman correlation were conducted to assess the relationships among imaging indices, index scores and clinical information. FINDINGS: In this follow-up stage, neurological symptoms were presented in 55% COVID-19 patients. COVID-19 patients had statistically significantly higher bilateral gray matter volumes (GMV) in olfactory cortices, hippocampi, insulas, left Rolandic operculum, left Heschl's gyrus and right cingulate gyrus and a general decline of MD, AD, RD accompanied with an increase of FA in white matter, especially AD in the right CR, EC and SFF, and MD in SFF compared with non-COVID-19 volunteers (corrected p value <0.05). Global GMV, GMVs in left Rolandic operculum, right cingulate, bilateral hippocampi, left Heschl's gyrus, and Global MD of WM were found to correlate with memory loss (p value <0.05). GMVs in the right cingulate gyrus and left hippocampus were related to smell loss (p value <0.05). MD-GM score, global GMV, and GMV in right cingulate gyrus were correlated with LDH level (p value <0.05). INTERPRETATION: Study findings revealed possible disruption to micro-structural and functional brain integrity in the recovery stages of COVID-19, suggesting the long-term consequences of SARS-CoV-2. FUNDING: Shanghai Natural Science Foundation, Youth Program of National Natural Science Foundation of China, Shanghai Sailing Program, Shanghai Science and Technology Development, Shanghai Municipal Science and Technology Major Project and ZJ Lab.

12.
J Clin Exp Hepatol ; 9(3): 362-382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360029

RESUMO

Brain edema is a common feature associated with hepatic encephalopathy (HE). In patients with acute HE, brain edema has been shown to play a crucial role in the associated neurological deterioration. In chronic HE, advanced magnetic resonance imaging (MRI) techniques have demonstrated that low-grade brain edema appears also to be an important pathological feature. This review explores the different methods used to measure brain edema ex vivo and in vivo in animal models and in humans with chronic HE. In addition, an in-depth description of the main studies performed to date is provided. The role of brain edema in the neurological alterations linked to HE and whether HE and brain edema are the manifestations of the same pathophysiological mechanism or two different cerebral manifestations of brain dysfunction in liver disease are still under debate. In vivo MRI/magnetic resonance spectroscopy studies have allowed insight into the development of brain edema in chronic HE. However, additional in vivo longitudinal and multiparametric/multimodal studies are required (in humans and animal models) to elucidate the relationship between liver function, brain metabolic changes, cellular changes, cell swelling, and neurological manifestations in chronic HE.

13.
Eur J Radiol Open ; 6: 198-205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193664

RESUMO

Compartmental diffusion MRI models that account for intravoxel incoherent motion (IVIM) of blood perfusion allow for estimation of the fractional volume of the microvascular compartment. Conventional IVIM models are known to be biased by not accounting for partial volume effects caused by free water and cerebrospinal fluid (CSF), or for tissue-dependent relaxation effects. In this work, a three-compartment model (tissue, free water and blood) that includes relaxation terms is introduced. To estimate the model parameters, in vivo human data were collected with multiple echo times (TE), inversion times (TI) and b-values, which allowed a direct relaxation estimate alongside estimation of perfusion, diffusion and fractional volume parameters. Compared to conventional two-compartment models (with and without relaxation compensation), the three-compartment model showed less effects of CSF contamination. The proposed model yielded significantly different volume fractions of blood and tissue compared to the non-relaxation-compensated model, as well as to the conventional two-compartment model, suggesting that previously reported parameter ranges, using models that do not account for relaxation, should be reconsidered.

14.
Neuroimage Clin ; 20: 188-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094168

RESUMO

Background: Classification models based on magnetic resonance imaging (MRI) may aid early diagnosis of frontotemporal dementia (FTD) but have only been applied in established FTD cases. Detection of FTD patients in earlier disease stages, such as presymptomatic mutation carriers, may further advance early diagnosis and treatment. In this study, we aim to distinguish presymptomatic FTD mutation carriers from controls on an individual level using multimodal MRI-based classification. Methods: Anatomical MRI, diffusion tensor imaging (DTI) and resting-state functional MRI data were collected in 55 presymptomatic FTD mutation carriers (8 microtubule-associated protein Tau, 35 progranulin, and 12 chromosome 9 open reading frame 72) and 48 familial controls. We calculated grey and white matter density features from anatomical MRI scans, diffusivity features from DTI, and functional connectivity features from resting-state functional MRI. These features were applied in a recently introduced multimodal behavioural variant FTD (bvFTD) classification model, and were subsequently used to train and test unimodal and multimodal carrier-control models. Classification performance was quantified using area under the receiver operator characteristic curves (AUC). Results: The bvFTD model was not able to separate presymptomatic carriers from controls beyond chance level (AUC = 0.570, p = 0.11). In contrast, one unimodal and several multimodal carrier-control models performed significantly better than chance level. The unimodal model included the radial diffusivity feature and had an AUC of 0.646 (p = 0.021). The best multimodal model combined radial diffusivity and white matter density features (AUC = 0.680, p = 0.005). Conclusions: FTD mutation carriers can be separated from controls with a modest AUC even before symptom-onset, using a newly created carrier-control classification model, while this was not possible using a recent bvFTD classification model. A multimodal MRI-based classification score may therefore be a useful biomarker to aid earlier FTD diagnosis. The exclusive selection of white matter features in the best performing model suggests that the earliest FTD-related pathological processes occur in white matter.


Assuntos
Doenças Assintomáticas , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Heterozigoto , Imageamento por Ressonância Magnética/métodos , Mutação/genética , Adulto , Doenças Assintomáticas/classificação , Imagem de Tensor de Difusão/classificação , Imagem de Tensor de Difusão/métodos , Feminino , Demência Frontotemporal/classificação , Humanos , Imageamento por Ressonância Magnética/classificação , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/classificação , Imagem Multimodal/métodos , Estudos Retrospectivos
15.
Neuroimage Clin ; 20: 42-50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069426

RESUMO

Major depressive disorder (MDD) and bipolar disorder (BD) are common severe affective diseases. Although previous neuroimaging studies have investigated brain abnormalities in MDD or BD, the structural and functional differences between these two disorders remain unclear. In this study, we adopted a multimodal approach, combining voxel-based morphometry (VBM) and functional connectivity (FC), to study the common and distinct structural and functional alterations in unmedicated MDD and BD patients. The VBM analysis revealed that both the MDD and BD patients showed decreased gray matter volume (GMV) in the left anterior cingulate cortex (ACC_L) and right hippocampus (HIP_R) compared with the healthy controls, and the MDD patients showed decreased GMV in the left superior frontal gyrus (SFG_L) and ACC_L compared with the BD patients. Furthermore, we took these clusters as seed regions to analyze the abnormal resting-state functional connectivity (RSFC) in the patients. We found that both the MDD and BD groups had decreased RSFC between the ACC_L and the left orbitofrontal cortex (OFC_L) and that the MDD group had decreased RSFC between the SFG_L and the HIP_L, compared with the healthy controls. Our results revealed that the MDD and BD patients were more similar than different in GMV and RSFC. These findings indicate that investigating the frontal-limbic system could be useful for understanding the underlying mechanisms of these two disorders.


Assuntos
Transtorno Bipolar/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Adolescente , Adulto , Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Sistema Límbico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Córtex Pré-Frontal/fisiopatologia , Adulto Jovem
16.
Neuroimage Clin ; 19: 466-475, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29984155

RESUMO

Atrophy of the brain grey matter (GM) is an accepted and important feature of multiple sclerosis (MS). However, its accurate measurement is hampered by various technical, pathological and physiological factors. As a consequence, it is challenging to investigate the role of GM atrophy in the disease process as well as the effect of treatments that aim to reduce neurodegeneration. In this paper we discuss the most important challenges currently hampering the measurement and interpretation of GM atrophy in MS. The focus is on measurements that are obtained in individual patients rather than on group analysis methods, because of their importance in clinical trials and ultimately in clinical care. We discuss the sources and possible solutions of the current challenges, and provide recommendations to achieve reliable measurement and interpretation of brain GM atrophy in MS.


Assuntos
Atrofia/patologia , Mapeamento Encefálico , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Esclerose Múltipla/patologia , Atrofia/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/fisiopatologia , Substância Branca/patologia
17.
Neuroimage Clin ; 19: 497-506, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29984158

RESUMO

Introduction: Mutations in the progranulin (GRN) gene are a major source of inherited frontotemporal degeneration (FTD) spectrum disorders associated with TDP-43 proteinopathy. We use structural MRI to identify regions of baseline differences and longitudinal changes in gray matter (GM) and white matter (WM) in presymptomatic GRN mutation carriers (pGRN+) compared to young controls (yCTL). Methods: Cognitively intact first-degree relatives of symptomatic GRN+ FTD patients with identified GRN mutations (pGRN+; N = 11, mean age = 41.4) and matched yCTL (N = 11, mean age = 53.6) were identified. They completed a MRI session with T1-weighted imaging to assess GM density (GMD) and diffusion-weighted imaging (DWI) to assess fractional anisotropy (FA). Participants completed a follow-up session with T1 and DWI imaging (pGRN+ mean interval 2.20 years; yCTL mean interval 3.27 years). Annualized changes of GMD and FA were also compared. Results: Relative to yCTL, pGRN+ individuals displayed reduced GMD at baseline in bilateral orbitofrontal, insular, and anterior temporal cortices. pGRN+ also showed greater annualized GMD changes than yCTL at follow-up in right orbitofrontal and left occipital cortices. We also observed reduced FA at baseline in bilateral superior longitudinal fasciculus, left corticospinal tract, and frontal corpus callosum in pGRN+ relative to yCTL, and pGRN+ displayed greater annualized longitudinal FA change in right superior longitudinal fasciculus and frontal corpus callosum. Conclusions: Longitudinal MRI provides evidence of progressive GM and WM changes in pGRN+ participants relative to yCTL. Structural MRI illustrates the natural history of presymptomatic GRN carriers, and may provide an endpoint during disease-modifying treatment trials for pGRN+ individuals at risk for FTD.


Assuntos
Substância Cinzenta/patologia , Mutação/genética , Progranulinas/genética , Substância Branca/patologia , Adulto , Idoso , Anisotropia , Atrofia/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
18.
Neuroimage Clin ; 19: 190-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023169

RESUMO

Alzheimer's disease (AD) is characterized by an accumulation of ß-amyloid (Aß42) accompanied by brain atrophy and cognitive decline. Several recent studies have shown that Aß42 accumulation is associated with gray matter (GM) changes prior to the development of cognitive impairment, in the so-called preclinical stage of the AD (pre-AD). It also has been proved that the GM atrophy profile is not linear, both in normal ageing but, especially, on AD. However, several other factors may influence this association and may have an impact on the generalization of results from different samples. In this work, we estimate differences in rates of GM volume change in cognitively healthy elders in association with baseline core cerebrospinal fluid (CSF) AD biomarkers, and assess to what these differences are sample dependent. We report the dependence of atrophy rates, measured in a two-year interval, on Aß42, computed both over continuous and categorical values of Aß42, at voxel-level (p < 0.001; k < 100) and corrected for sex, age and education. Analyses were performed jointly and separately, on two samples. The first sample was formed of 31 individuals (22 Ctrl and 9 pre-AD), aged 60-80 and recruited at the Hospital Clinic of Barcelona. The second sample was a replica of the first one with subjects selected from the ADNI dataset. We also investigated the dependence of the GM atrophy rate on the basal levels of continuous p-tau and on the p-tau/Aß42 ratio. Correlation analyses on the whole sample showed a dependence of GM atrophy rates on Aß42 in medial and orbital frontal, precuneus, cingulate, medial temporal regions and cerebellum. Correlations with p-tau were located in the left hippocampus, parahippocampus and striatal nuclei whereas correlation with p-tau/Aß42 was mainly found in ventral and medial temporal areas. Regarding analyses performed separately, we found a substantial discrepancy of results between samples, illustrating the complexities of comparing two independent datasets even when using the same inclusion criteria. Such discrepancies may lead to significant differences in the sample size needed to detect a particular reduction on cerebral atrophy rates in prevention trials. Higher cognitive reserve and more advanced pathological progression in the ADNI sample could partially account for the observed discrepancies. Taken together, our findings in these two samples highlight the importance of comparing and merging independent datasets to draw more robust and generalizable conclusions on the structural changes in the preclinical stages of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Atrofia/líquido cefalorraquidiano , Atrofia/diagnóstico por imagem , Atrofia/patologia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
19.
Neuroimage Clin ; 19: 848-857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946510

RESUMO

SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.


Assuntos
Gânglios da Base/diagnóstico por imagem , Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Adulto Jovem
20.
Neuroimage Clin ; 18: 231-244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868447

RESUMO

One of the most common mitochondrial DNA (mtDNA) mutations, the A to G transition at base pair 3243, has been linked to changes in the brain, in addition to commonly observed hearing problems, diabetes and myopathy. However, a detailed quantitative description of m.3243A>G patients' brains has not been provided so far. In this study, ultra-high field MRI at 7T and volume- and surface-based data analyses approaches were used to highlight morphology (i.e. atrophy)-, microstructure (i.e. myelin and iron concentration)- and metabolism (i.e. cerebral blood flow)-related differences between patients (N = 22) and healthy controls (N = 15). The use of quantitative MRI at 7T allowed us to detect subtle changes of biophysical processes in the brain with high accuracy and sensitivity, in addition to typically assessed lesions and atrophy. Furthermore, the effect of m.3243A>G mutation load in blood and urine epithelial cells on these MRI measures was assessed within the patient population and revealed that blood levels were most indicative of the brain's state and disease severity, based on MRI as well as on neuropsychological data. Morphometry MRI data showed a wide-spread reduction of cortical, subcortical and cerebellar gray matter volume, in addition to significantly enlarged ventricles. Moreover, surface-based analyses revealed brain area-specific changes in cortical thickness (e.g. of the auditory cortex), and in T1, T2* and cerebral blood flow as a function of mutation load, which can be linked to typically m.3243A>G-related clinical symptoms (e.g. hearing impairment). In addition, several regions linked to attentional control (e.g. middle frontal gyrus), the sensorimotor network (e.g. banks of central sulcus) and the default mode network (e.g. precuneus) were characterized by alterations in cortical thickness, T1, T2* and/or cerebral blood flow, which has not been described in previous MRI studies. Finally, several hypotheses, based either on vascular, metabolic or astroglial implications of the m.3243A>G mutation, are discussed that potentially explain the underlying pathobiology. To conclude, this is the first 7T and also the largest MRI study on this patient population that provides macroscopic brain correlates of the m.3243A>G mutation indicating potential MRI biomarkers of mitochondrial diseases and might guide future (longitudinal) studies to extensively track neuropathological and clinical changes.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/genética , Mutação/genética , Adulto , Análise de Variância , Encéfalo/patologia , Estudos de Casos e Controles , Correlação de Dados , Diabetes Mellitus/etiologia , Feminino , Perda Auditiva/etiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/complicações , Doenças Musculares/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA