Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 950: 175362, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39117199

RESUMO

Information about sea surface nitrate (SSN) concentrations is crucial for estimating oceanic new productivity and for carbon cycle studies. Due to the absence of optical properties in SSN and the intricate relationships with environmental factors affecting spatiotemporal dynamics, developing a more representative and widely applicable remote sensing inversion algorithm for SSN is challenging. Most methods for the remote estimation of SSN are based on data-driven neural networks or deep learning and lack mechanistic descriptions. Since fitting functions between the SSN and sea surface temperature (SST), mixed layer depth (MLD), and chlorophyll (Chl) content have been established for the open ocean, it is important to include the remote sensing indicator photosynthetically active radiation (PAR), which is critical in nitrate biogeochemical processes. In this study, we employed an algorithm for estimating the monthly average SSN on a global 1° by 1° resolution grid; this algorithm relies on the empirical relationship between the World Ocean Atlas 2018 (WOA18) monthly interpolated climatology of nitrate in each 1° × 1° grid and the estimated monthly SST and PAR datasets from Moderate Resolution Imaging Spectroradiometer (MODIS) and MLD from the Hybrid Coordinate Ocean Model (HYCOM). These results indicated that PAR potentially affects SSN. Furthermore, validation of the SSN model with measured nitrate data from different months and locations for the years 2018-2023 yielded a high prediction accuracy (N = 12,846, R2 = 0.93, root mean square difference (RMSE) = 3.12 µmol/L, and mean absolute error (MAE) = 2.22 µmol/L). Further independent validation and sensitivity tests demonstrated the validity of the algorithm for retrieving SSN.

2.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931617

RESUMO

In a diesel engine, piston slap commonly occurs concurrently with fuel combustion and serves as the main source of excitation. Although combustion pressure can be measured using sensors, determining the slap force is difficult without conducting tests. In this study, we propose a method to identify the slap force of the piston to solve this difficult problem. The traditional VMD algorithm easily receives noise interference, which affects the value of parameter combination [k, α] and thus affects the extraction accuracy of the algorithm. First, we obtain the transfer function between the incentive and vibration response through percussion tests. Secondly, a variational modal decomposition method based on whale algorithm optimization is used to separate the slap response from the surface acceleration of the block. Finally, we calculated the slap force using the deconvolution method. Deconvolution is a typical inverse problem of mathematics, often prone to ill-conditioning, and the singular value decomposition and regularization method is used to overcome this flaw and improve accuracy. The proposed method provides an important means to evaluate the angular distribution of the slap force, identify the shock positions on the piston liner, and determine the peak value of the waveform which helps us analyze the vibration characteristics of the piston and optimize the structural design of the engine.

3.
PeerJ Comput Sci ; 10: e2001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699213

RESUMO

This study focuses on addressing computational limits in smartphones by proposing an efficient authentication model that enables implicit authentication without requiring additional hardware and incurring less computational cost. The research explores various wrapper feature selection strategies and classifiers to enhance authentication accuracy while considering smartphone limitations such as hardware constraints, battery life, and memory size. However, the available dataset is small; thus, it cannot support a general conclusion. In this article, a novel implicit authentication model for smartphone users is proposed to address the one-against-all classification problem in smartphone authentication. This model depends on the integration of the conditional tabular generative adversarial network (CTGAN) to generate synthetic data to address the imbalanced dataset and a new proposed feature selection technique based on the Whale Optimization Algorithm (WOA). The model was evaluated using a public dataset (RHU touch mobile keystroke dataset), and the results showed that the WOA with the random forest (RF) classifier achieved the best reduction rate compared to the Harris Hawks Optimization (HHO) algorithm. Additionally, its classification accuracy was found to be the best in mobile user authentication from their touch behavior data. WOA-RF achieved an average accuracy of 99.62 ± 0.40% with a reduction rate averaging 87.85% across ten users, demonstrating its effectiveness in smartphone authentication.

4.
Sci Rep ; 14(1): 8414, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600143

RESUMO

In this research paper, the intelligent learning abilities of the gray wolf optimization (GWO), multi-verse optimization (MVO), moth fly optimization, particle swarm optimization (PSO), and whale optimization algorithm (WOA) metaheuristic techniques and the response surface methodology (RSM) has been studied in the prediction of the mechanical properties of self-healing concrete. Bio-concrete technology stimulated by the concentration of bacteria has been utilized as a sustainable structural concrete for the future of the built environment. This is due to the recovery tendency of the concrete structures after noticeable structural failures. However, it requires a somewhat expensive exercise and technology to create the medium for the growth of the bacteria needed for this self-healing ability. The method of data gathering, analysis and intelligent prediction has been adopted to propose parametric relationships between the bacteria usage and the concrete performance in terms of strength and durability. This makes is cheaper to design self-healing concrete structures based on the optimized mathematical relationships and models proposed from this exercise. The performance of the models was tested by using the coefficient of determination (R2), root mean squared errors, mean absolute errors, mean squared errors, variance accounted for and the coefficient of error. At the end of the prediction protocol and model performance evaluation, it was found that the classified metaheuristic techniques outclassed the RSM due their ability to mimic human and animal genetics of mutation. Furthermore, it can be finally remarked that the GWO outclassed the other methods in predicting the concrete slump (Sl) with R2 of 0.998 and 0.989 for the train and test, respectively, the PSO outclassed the rest in predicting the flexural strength with R2 of 0.989 and 0.937 for train and test, respectively and the MVO outclassed the others in predicting the compressive strength with R2 of 0.998 and 0.958 for train and test, respectively.


Assuntos
Algoritmos , Prunella , Animais , Humanos , Bactérias , Ambiente Construído , Cetáceos , Força Compressiva
5.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610359

RESUMO

Targets faced by inverse synthetic aperture radar (ISAR) are often non-cooperative, with target maneuvering being the main manifestation of this non-cooperation. Maneuvers cause ISAR imaging results to be severely defocused, which can create huge difficulties in target identification. In addition, as the ISAR bandwidth continues to increase, the impact of migration through resolution cells (MTRC) on imaging results becomes more significant. Target non-cooperation may also result in sparse aperture, leading to the failure of traditional ISAR imaging algorithms. Therefore, this paper proposes an algorithm to realize MTRC correction and sparse aperture ISAR imaging for maneuvering targets simultaneously named whale optimization algorithm-fast iterative shrinkage thresholding algorithm (WOA-FISTA). In this algorithm, FISTA is used to perform MTRC correction and sparse aperture ISAR imaging efficiently and WOA is adopted to estimate the rotational parameter to eliminate the effects of maneuvering on imaging results. Experimental results based on simulation and measured datasets prove that the proposed algorithm implements sparse aperture ISAR imaging and MTRC correction for maneuvering targets simultaneously. The proposed algorithm achieves better results than traditional algorithms under different signal-to-noise ratio conditions.

6.
Environ Monit Assess ; 196(4): 359, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470540

RESUMO

Monitoring ground deformation in industrial parks is of great importance for the economic development of urban areas. However, limited research has been conducted on the deformation mechanism in industrial parks, and there is a lack of integrated monitoring and prediction models. Therefore, this study proposes a comprehensive monitoring and prediction model for industrial parks, utilizing time-series Interferometry Synthetic Aperture Radar (InSAR) technology and the Whale Optimization Algorithm-Back Propagation (WOA-BP) neural network algorithm. Taking Yinxi Industrial Park in Baiyin District as a case study, we used 68 scenes of Sentinel-1A ascending and descending orbit data from June 2018 to April 2021. The Stanford Method for Persistent Scatterers-Permanent Scatterers (StaMPS-PS) and the Small Baseline Subsets-Interferometry Synthetic Aperture Radar (SBAS-InSAR) technologies were employed to obtain the surface deformation information of the park. The deformation information obtained by the two technologies was cross-validated in terms of temporal and spatial distribution, and the vertical and east-west deformation of the park was obtained by combining the ascending and descending orbit data. The results show that the deformation feature points in the line of sight (LOS) direction obtained by the two technologies have a high consistency in spatial distribution, using the ascending orbit data as an example. Additionally, the SBAS-InSAR technology was used to obtain the east-west and vertical deformation results of the park after merging the ascending and descending orbit data for the same period. It was found that the park is mainly affected by vertical deformation, with a maximum subsidence rate of 14.67 mm/yr. The subsidence areas correspond to the deformation positions observed in field survey photos. Based on the ascending orbit deformation data, the two technologies were validated with 585 points of the same latitude and longitude, and the coefficient of determination R2 was found to be 0.82, with a root mean square error (RMSE) of 2.20 mm/a. The deformation rates were also highly consistent. Due to the 47% increase in the number of sampling points provided by the StaMPS-PS technique compared to the SBAS-InSAR technique, the former was found to be more applicable in the industrial park. Based on the ground deformation mechanism in the park, we combined the StaMPS-PS technique with the WOA-BP neural network to construct a deformation zone prediction model. We conducted predictive studies on the deformation zones of buildings and roads within the park, and the results showed that the WOA-optimized BP neural network achieved higher accuracy and lower overall error compared to the unoptimized network. Finally, we analyzed and discussed the geological conditions and inducing factors of ground deformation in the park, providing a reference for a better understanding of the deformation mechanism and early warning of disasters in the industrial park.


Assuntos
Monitoramento Ambiental , Radar , Animais , Fatores de Tempo , Cetáceos , Interferometria , Tecnologia
7.
Sci Rep ; 14(1): 3422, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341483

RESUMO

Biosensor nodes of a wireless body area network (WBAN) transmit physiological parameter data to a central hub node, spending a substantial portion of their energy. Therefore, it is crucial to determine an optimal location for hub placement to minimize node energy consumption in data transmission. Existing methods determine the optimal hub location by sequentially placing the hub at multiple random locations within the WBAN. Performance measures like link reliability or overall node energy consumption in data transmission are estimated for each hub location. The best-performing location is finally selected for hub placement. Such methods are time-consuming. Moreover, the involvement of other nodes in the process of hub placement results in an undesirable loss of network energy. This paper shows the whale optimization algorithm (WOA)-based hub placement scheme. This scheme directly gives the best location for the hub in the least amount of time and with the least amount of help from other nodes. The presented scheme incorporates a population of candidate solutions called "whale search agents". These agents carry out the iterative steps of encircling the prey (identifying the best candidate solution), bubble-net feeding (exploitation phase), and random prey search (exploration phase). The WOA-based model eventually converges into an optimized solution that determines the optimal location for hub placement. The resultant hub location minimizes the overall amount of energy consumed by the WBAN nodes for data transmission, which ultimately results in an elongated lifespan of WBAN operation. The results show that the proposed WOA-based hub placement scheme outperforms various state-of-the-art related WBAN protocols by achieving a network lifetime of 8937 data transmission rounds with 93.8% network throughput and 9.74 ms network latency.


Assuntos
Técnicas Biossensoriais , Baleias , Animais , Reprodutibilidade dos Testes , Tecnologia sem Fio , Redes de Comunicação de Computadores
8.
Comput Methods Programs Biomed ; 245: 108043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306944

RESUMO

BACKGROUND AND OBJECTIVE: Conflict may happen when more than one classifier is used to perform prediction or classification. The recognition model error leads to conflicting evidence. These conflicts can cause decision errors in a baby cry recognition and further decrease its recognition accuracy. Thus, the objective of this study is to propose a method that can effectively minimize the conflict among deep learning models and improve the accuracy of baby cry recognition. METHODS: An improved Dempster-Shafer evidence theory (DST) based on Wasserstein distance and Deng entropy was proposed to reduce the conflicts among the results by combining the credibility degree between evidence and the uncertainty degree of evidence. To validate the effectiveness of the proposed method, examples were analyzed, and applied in a baby cry recognition. The Whale optimization algorithm-Variational mode decomposition (WOA-VMD) was used to optimally decompose the baby cry signals. The deep features of decomposed components were extracted using the VGG16 model. Long Short-Term Memory (LSTM) models were used to classify baby cry signals. An improved DST decision method was used to obtain the decision fusion. RESULTS: The proposed fusion method achieves an accuracy of 90.15% in classifying three types of baby cry. Improvement between 2.90% and 4.98% was obtained over the existing DST fusion methods. Recognition accuracy was improved by between 5.79% and 11.53% when compared to the latest methods used in baby cry recognition. CONCLUSION: The proposed method optimally decomposes baby cry signal, effectively reduces the conflict among the results of deep learning models and improves the accuracy of baby cry recognition.


Assuntos
Algoritmos , Baleias , Lactente , Animais , Humanos , Incerteza , Entropia
9.
J Xray Sci Technol ; 32(2): 253-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189732

RESUMO

BACKGROUND: The coronavirus disease 2019 is a serious and highly contagious disease caused by infection with a newly discovered virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). OBJECTIVE: A Computer Aided Diagnosis (CAD) system to assist physicians to diagnose Covid-19 from chest Computed Tomography (CT) slices is modelled and experimented. METHODS: The lung tissues are segmented using Otsu's thresholding method. The Covid-19 lesions have been annotated as the Regions of Interest (ROIs), which is followed by texture and shape extraction. The obtained features are stored as feature vectors and split into 80:20 train and test sets. To choose the optimal features, Whale Optimization Algorithm (WOA) with Support Vector Machine (SVM) classifier's accuracy is employed. A Multi-Layer Perceptron (MLP) classifier is trained to perform classification with the selected features. RESULTS: Comparative experimentations of the proposed system with existing eight benchmark Machine Learning classifiers using real-time dataset demonstrates that the proposed system with 88.94% accuracy outperforms the benchmark classifier's results. Statistical analysis namely, Friedman test, Mann Whitney U test and Kendall's Rank Correlation Coefficient Test has been performed which indicates that the proposed method has a significant impact on the novel dataset considered. CONCLUSION: The MLP classifier's accuracy without feature selection yielded 80.40%, whereas with feature selection using WOA, it yielded 88.94%.


Assuntos
COVID-19 , Máquina de Vetores de Suporte , Humanos , Animais , COVID-19/diagnóstico por imagem , Baleias , SARS-CoV-2 , Algoritmos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Teste para COVID-19
10.
Psychiatr Danub ; 35(3): 355-368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917841

RESUMO

BACKGROUND: Anxiety and depression are two leading human psychological disorders. In this work, several swarm intelligence-based metaheuristic techniques have been employed to find an optimal feature set for the diagnosis of these two human psychological disorders. SUBJECTS AND METHODS: To diagnose depression and anxiety among people, a random dataset comprising 1128 instances and 46 attributes has been considered and examined. The dataset was collected and compiled manually by visiting the number of clinics situated in different cities of Haryana (one of the states of India). Afterwards, nine emerging meta-heuristic techniques (Genetic algorithm, binary Grey Wolf Optimizer, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony, Firefly Algorithm, Dragonfly Algorithm, Bat Algorithm and Whale Optimization Algorithm) have been employed to find the optimal feature set used to diagnose depression and anxiety among humans. To avoid local optima and to maintain the balance between exploration and exploitation, a new hybrid feature selection technique called Restricted Crossover Mutation based Whale Optimization Algorithm (RCM-WOA) has been designed. RESULTS: The swarm intelligence-based meta-heuristic algorithms have been applied to the datasets. The performance of these algorithms has been evaluated using different performance metrics such as accuracy, sensitivity, specificity, precision, recall, f-measure, error rate, execution time and convergence curve. The rate of accuracy reached utilizing the proposed method RCM-WOA is 91.4%. CONCLUSION: Depression and Anxiety are two critical psychological disorders that may lead to other chronic and life-threatening human disorders. The proposed algorithm (RCM-WOA) was found to be more suitable compared to the other state of art methods.


Assuntos
Depressão , Baleias , Animais , Humanos , Depressão/diagnóstico , Depressão/genética , Algoritmos , Ansiedade/diagnóstico , Transtornos de Ansiedade
11.
Sensors (Basel) ; 23(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836915

RESUMO

Partial discharge (PD) is the primary factor causing insulation degradation in transformers. However, the collected signals of partial discharge are often contaminated with significant noise. This makes it difficult to extract the PD signal and hinders subsequent signal analysis and processing. This paper proposes a denoising method for transformer partial discharge based on the Whale VMD algorithm combined with adaptive filtering and wavelet thresholding (WVNW). First, the WOA is used to optimize the important parameters of the VMD. The selected mode components from the VMD decomposition are then subjected to preliminary denoising based on the kurtosis criterion. The reconstructed signal is further denoised using the Adaptive Filter (NLMS) algorithm to remove narrowband interference noise. Finally, the residual white noise is eliminated using the Wavelet Thresholding algorithm. In simulation experiments and practical measurements, the proposed method is compared quantitatively with previous methods, VMD-WT, and EMD-WT, based on metrics such as SNR, RMSE, NCC, and NRR. The results indicate that the WVNW method effectively suppresses noise interference and restores the original PD signal waveform with high waveform similarity while preserving a significant amount of local discharge signal features.

12.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765764

RESUMO

Traditional methods for obtaining soil heavy metal content are expensive, inefficient, and limited in monitoring range. In order to meet the needs of soil environmental quality evaluation and health status assessment, visible near-infrared spectroscopy and XRF spectroscopy for monitoring heavy metal content in soil have attracted much attention, because of their rapid, nondestructive, economical, and environmentally friendly features. The use of either of these spectra alone cannot meet the accuracy requirements of traditional measurements, while the synergistic use of the two spectra can further improve the accuracy of monitoring heavy metal lead content in soil. Therefore, this study applied various spectral transformations and preprocessing to vis-NIR and XRF spectra; used the whale optimization algorithm (WOA) and competitive adaptive re-weighted sampling (CARS) algorithms to identify feature spectra; designed a combination variable model (CVM) based on multi-layer spectral data fusion, which improved the spectral preprocessing and spectral feature screening process to increase the efficiency of spectral fusion; and established a quantitative model for soil Pb concentration using partial least squares regression (PLSR). The estimation performance of three spectral fusion strategies, CVM, outer-product analysis (OPA), and Granger-Ramanathan averaging (GRA), was discussed. The results showed that the accuracy and efficiency of the CARS algorithm in the fused spectra estimation model were superior to those of the WOA algorithm, with an average coefficient of determination (R2) value of 0.9226 and an average root mean square error (RMSE) of 0.1984. The accuracy of the estimation models established, based on the different spectral types, to predict the Pb content of the soil was ranked as follows: the CVM model > the XRF spectral model > the vis-NIR spectral model. Within the CVM fusion strategy, the estimation model based on CARS and PLSR (CARS_D1+D2) performed the best, with R2 and RMSE values of 0.9546 and 0.2035, respectively. Among the three spectral fusion strategies, CVM had the highest accuracy, OPA had the smallest errors, and GRA showed a more balanced performance. This study provides technical means for on-site rapid estimation of Pb content based on multi-source spectral fusion and lays the foundation for subsequent research on dynamic, real-time, and large-scale quantitative monitoring of soil heavy metal pollution using high-spectral remote sensing images.

13.
Bioengineering (Basel) ; 10(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37627768

RESUMO

The COVID-19 pandemic has had a significant impact on the world, highlighting the importance of the accurate prediction of infection numbers. Given that the transmission of SARS-CoV-2 is influenced by temporal and spatial factors, numerous researchers have employed neural networks to address this issue. Accordingly, we propose a whale optimization algorithm-bidirectional long short-term memory (WOA-BILSTM) model for predicting cumulative confirmed cases. In the model, we initially input regional epidemic data, including cumulative confirmed, cured, and death cases, as well as existing cases and daily confirmed, cured, and death cases. Subsequently, we utilized the BILSTM as the base model and incorporated WOA to optimize the specific parameters. Our experiments employed epidemic data from Beijing, Guangdong, and Chongqing in China. We then compared our model with LSTM, BILSTM, GRU, CNN, CNN-LSTM, RNN-GRU, DES, ARIMA, linear, Lasso, and SVM models. The outcomes demonstrated that our model outperformed these alternatives and retained the highest accuracy in complex scenarios. In addition, we also used Bayesian and grid search algorithms to optimize the BILSTM model. The results showed that the WOA model converged fast and found the optimal solution more easily. Thus, our model can assist governments in developing more effective control measures.

14.
Environ Monit Assess ; 195(8): 918, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402931

RESUMO

Aquaculture fish diseases pose a serious threat to the security of food supplies. Fish species vary widely, and because they resemble one another so much, it is challenging to distinguish between them based solely on appearance. To stop the spread of disease, it is important to identify sick fish as soon as possible. Due to a lack of necessary infrastructure, it is still difficult to identify infected fish in aquaculture at an early stage. It is essential to promptly identify sick fish to stop the spread of disease. The purpose of this work is to suggest a machine learning technique based on the DCNN method for identifying and categorizing fish diseases. To solve problems involving global optimization, this paper suggests a brand-new hybrid algorithm called the Whale Optimization Algorithm with Genetic Algorithm (WOA-GA) and Ant Colony Optimization. In this work, for classification, the hybrid Random Forest algorithm is used. To facilitate the increased quality, distinctions between both the proposed WOA-GA-based DCNN architecture and the presently used methods for machine learning have been made. The effectiveness of the proposed detection technique is done with MATLAB. Performance metrics like sensitivity, specificity, accuracy, precision, recall, F-measure, NPV, FPR, FNR, and MCC are compared to the performance of the proposed technique.


Assuntos
Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte , Animais , Monitoramento Ambiental , Algoritmos , Aprendizado de Máquina
15.
Multimed Tools Appl ; : 1-31, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37362641

RESUMO

An unusual increase of nerves inside the brain, which disturbs the actual working of the brain, is called a brain tumor. It has led to the death of lots of lives. To save people from this disease timely detection and the right cure is the need of time. Finding of tumor-affected cells in the human brain is a cumbersome and time- consuming task. However, the accuracy and time required to detect brain tumors is a big challenge in the arena of image processing. This research paper proposes a novel, accurate and optimized system to detect brain tumors. The system follows the activities like, preprocessing, segmentation, feature extraction, optimization and detection. For preprocessing system uses a compound filter, which is a composition of Gaussian, mean and median filters. Threshold and histogram techniques are applied for image segmentation. Grey level co-occurrence matrix (GLCM) is used for feature extraction. The optimized convolution neural network (CNN) technique is applied here that uses whale optimization and grey wolf optimization for best feature selection. Detection of brain tumors is achieved through CNN classifier. This system compares its performance with another modern technique of optimization by using accuracy, precision and recall parameters and claims the supremacy of this work. This system is implemented in the Python programming language. The brain tumor detection accuracy of this optimized system has been measured at 98.9%.

16.
Entropy (Basel) ; 25(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37372233

RESUMO

In complex industrial environments, the vibration signal of the rolling bearing is covered by noise, which makes fault diagnosis inaccurate. In order to overcome the effect of noise on the signal, a rolling bearing fault diagnosis method based on the WOA-VMD (Whale Optimization Algorithm-Variational Mode Decomposition) and the GAT (Graph Attention network) is proposed to deal with end effect and mode mixing issues in signal decomposition. Firstly, the WOA is used to adaptively determine the penalty factor and decomposition layers in the VMD algorithm. Meanwhile, the optimal combination is determined and input into the VMD, which is used to decompose the original signal. Then, the Pearson correlation coefficient method is used to select IMF (Intrinsic Mode Function) components that have a high correlation with the original signal, and selected IMF components are reconstructed to remove the noise in the original signal. Finally, the KNN (K-Nearest Neighbor) method is used to construct the graph structure data. The multi-headed attention mechanism is used to construct the fault diagnosis model of the GAT rolling bearing in order to classify the signal. The results show an obvious noise reduction effect in the high-frequency part of the signal after the application of the proposed method, where a large amount of noise was removed. In the diagnosis of rolling bearing faults, the accuracy of the test set diagnosis in this study was 100%, which is higher than that of the four other compared methods, and the diagnosis accuracy rate of various faults reached 100%.

17.
Biomimetics (Basel) ; 8(2)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366844

RESUMO

This paper proposes a novel WOA-based robust control scheme with two kinds of propagation latencies and external disturbance implemented in Software-Defined Wireless Networks (SDWNs) to maximize overall throughput and enhance the stability of the global network. Firstly, an adjustment model developed using the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme with propagation latency in device-to-device paths and a closed-loop congestion control model with propagation latency in device-controller pairs are proposed, and the effect of channel competition from neighboring forwarding devices is analyzed. Subsequently, a robust congestion control model with two kinds of propagation latencies and external disturbance is established. Then, a new WOA-based scheduling strategy that considers each individual whale as a specific scheduling plan to allocate appropriate sending rates at the source side is presented to maximize the global network throughput. Afterward, the sufficient conditions are derived using Lyapunov-Krasovskii functionals and formulated using Linear Matrix Inequalities (LMIs). Finally, a numerical simulation is conducted to verify the effectiveness of this proposed scheme.

18.
Diagnostics (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900057

RESUMO

Due to the simplicity and convenience of PPG signal acquisition, the detection of the respiration rate based on the PPG signal is more suitable for dynamic monitoring than the impedance spirometry method, but it is challenging to achieve accurate predictions from low-signal-quality PPG signals, especially in intensive-care patients with weak PPG signals. The goal of this study was to construct a simple model for respiration rate estimation based on PPG signals using a machine-learning approach fusing signal quality metrics to improve the accuracy of estimation despite the low-signal-quality PPG signals. In this study, we propose a method based on the whale optimization algorithm (WOA) with a hybrid relation vector machine (HRVM) to construct a highly robust model considering signal quality factors to estimate RR from PPG signals in real time. To detect the performance of the proposed model, we simultaneously recorded PPG signals and impedance respiratory rates obtained from the BIDMC dataset. The results of the respiration rate prediction model proposed in this study showed that the MAE and RMSE were 0.71 and 0.99 breaths/min, respectively, in the training set, and 1.24 and 1.79 breaths/min, respectively, in the test set. Compared without taking signal quality factors into account, MAE and RMSE are reduced by 1.28 and 1.67 breaths/min, respectively, in the training set, and reduced by 0.62 and 0.65 breaths/min in the test set. Even in the nonnormal breathing range below 12 bpm and above 24 bpm, the MAE reached 2.68 and 4.28 breaths/min, respectively, and the RMSE reached 3.52 and 5.01 breaths/min, respectively. The results show that the model that considers the PPG signal quality and respiratory quality proposed in this study has obvious advantages and application potential in predicting the respiration rate to cope with the problem of low signal quality.

19.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991884

RESUMO

Terminal neurological conditions can affect millions of people worldwide and hinder them from doing their daily tasks and movements normally. Brain computer interface (BCI) is the best hope for many individuals with motor deficiencies. It will help many patients interact with the outside world and handle their daily tasks without assistance. Therefore, machine learning-based BCI systems have emerged as non-invasive techniques for reading out signals from the brain and interpreting them into commands to help those people to perform diverse limb motor tasks. This paper proposes an innovative and improved machine learning-based BCI system that analyzes EEG signals obtained from motor imagery to distinguish among various limb motor tasks based on BCI competition III dataset IVa. The proposed framework pipeline for EEG signal processing performs the following major steps. The first step uses a meta-heuristic optimization technique, called the whale optimization algorithm (WOA), to select the optimal features for discriminating between neural activity patterns. The pipeline then uses machine learning models such as LDA, k-NN, DT, RF, and LR to analyze the chosen features to enhance the precision of EEG signal analysis. The proposed BCI system, which merges the WOA as a feature selection method and the optimized k-NN classification model, demonstrated an overall accuracy of 98.6%, outperforming other machine learning models and previous techniques on the BCI competition III dataset IVa. Additionally, the EEG feature contribution in the ML classification model is reported using Explainable AI (XAI) tools, which provide insights into the individual contributions of the features in the predictions made by the model. By incorporating XAI techniques, the results of this study offer greater transparency and understanding of the relationship between the EEG features and the model's predictions. The proposed method shows potential levels for better use in controlling diverse limb motor tasks to help people with limb impairments and support them while enhancing their quality of life.


Assuntos
Interfaces Cérebro-Computador , Qualidade de Vida , Eletroencefalografia/métodos , Algoritmos , Aprendizado de Máquina
20.
Biomed Signal Process Control ; 83: 104638, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36741073

RESUMO

Coronavirus Disease 2019 (COVID-19), instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has hugely impacted global public health. To identify and intervene in critically ill patients early, this paper proposes an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier. In order to improve the problem that WOA is prone to fall into local optimum, an improved version named RRWOA is proposed based on the random contraction strategy (RCS) and the Rosenbrock method. To verify the capability of the proposed algorithm, RRWOA is tested against nine classical metaheuristics, nine advanced metaheuristics, and seven well-known WOA variants based on 30 IEEE CEC2014 competition functions, respectively. The experimental results in mean, standard deviation, the Friedman test, and the Wilcoxon signed-rank test are considered, proving that RRWOA won first place on 18, 24, and 25 test functions, respectively. In addition, a binary version of the algorithm, called BRRWOA, is developed for feature selection problems. An efficient prediction model based on BRRWOA and KNN classifier is proposed and compared with seven existing binary metaheuristics based on 15 datasets of UCI repositories. The experimental results show that the proposed algorithm obtains the smallest fitness value in eleven datasets and can solve combinatorial optimization problems, indicating that it still performs well in discrete cases. More importantly, the model was compared with five other algorithms on the COVID-19 dataset. The experiment outcomes demonstrate that the model offers a scientific framework to support clinical diagnostic decision-making. Therefore, RRWOA is an effectively improved optimizer with efficient value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA