Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Environ Manage ; 368: 122185, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39151337

RESUMO

Land use and land cover change (LUCC) can alter surface properties, such as albedo, roughness, and vegetation coverage, directly affecting dust emissions and aerosol concentrations, leading to variations in direct radiative forcing (DRF) of dust aerosols and consequently impacting the climate. This study utilized the Weather Research and Forecasting model with Chemistry (WRF-Chem) to quantify the impact of LUCC in northern China from 2000 to 2020 on dust aerosol DRF. Results indicated that LUCC's influence on shortwave radiative forcing of dust was significantly greater than its influence on longwave radiative forcing and exhibited obvious seasonal variations. Overall, LUCC can cause net direct radiative forcing to increase by 5.3 W m-2 at the surface and decrease by 7.8 W m-2 in the atmosphere. Different types of LUCC transformation showed distinct impacts on dust aerosol DRF, with the conversion from sparse vegetation to barren land had the most significant effect on net radiative intensity, resulting in a decrease of 8.1 W m-2 at the surface, an increase of 12.2 W m-2 in the atmosphere, and an increase of 4.1 W m-2 at the top of the atmosphere. Conversely, the conversion from barren land to sparse vegetation led to surface cooling and atmospheric warming. These findings are of great significance for enhancing our knowledge of the effects of LUCC on the radiative balance of dust aerosols.


Assuntos
Aerossóis , Poeira , Aerossóis/análise , China , Poeira/análise , Atmosfera , Monitoramento Ambiental
2.
Sci Total Environ ; 950: 175168, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39094653

RESUMO

A large fraction of fine particulate matter (PM2.5) and ozone (O3) in the troposphere originates from secondary formation through photochemical processes, which remarkably contributes to the deterioration of regional air quality in China. The photochemical reactions initiated by hydroxyl radicals (OH) play vital roles in secondary PM2.5 and O3 formation. In contrast, the OH levels in polluted areas are underestimated by current chemical transport models (CTMs) because of the strongly unknown daytime sources of tropospheric nitric acid (HONO), which has been recognized as the dominant source of primary OH in polluted areas of China. In this study, the atmospheric HONO levels at two urban sites were found to be significantly underestimated by the WRF-Chem model based on available information on HONO sources. The HONO levels could be well reproduced by the WRF-Chem model after incorporating two new potential HONO sources from the photochemical reactions of NOx, as proposed in our previous study based on chamber experiment results. Comparing the simulations with available information of HONO sources, the simulated levels of atmospheric OH, secondary inorganic and organic aerosols (SIA and SOA), PM2.5 and daily maximum 8-h average (MDA8) O3 were evidently elevated or were closer to the observations over the North China Plain (NCP), with elevation percentages of 0.48-20.1 %, and a decrement percentage of -5.79 % for pNO3-. Additionally, the compensating errors in modeling PM2.5 and the gap in MDA8 O3 levels between observation and simulation in 2 + 26 cities became evidently smaller. The results of this study indicated that the empirical parameterization of two new potential HONO sources through photochemical reactions of NOx improved the model performance in modeling PM2.5 and O3 by narrowing the gap in daytime HONO levels between simulation and observation, although their detailed chemical mechanisms are still unknown and should be further investigated and explicitly parameterized.

3.
Sci Total Environ ; 951: 175788, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187087

RESUMO

Biomass burning in Peninsular Southeast Asia (BB-PSEA) affects the climate in downwind regions, especially precipitation (PRE) in southern China. However, the impact of BB-PSEA on the meteorological drought in Southwest China (SWC), where closes to PSEA and often occurs seasonal drought, have not been clear yet. We selected a severe drought event in SWC from January to April 2010 and conducted sensitivity simulations using WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) to evaluate the impact of BB-PSEA on the meteorological drought in SWC. Comparisons with observations revealed that the model performed well in simulating the spatiotemporal evolution of the drought in SWC. BB-PSEA increased the drought severity by 0.01-0.75 levels, enlarged drought areas by about 10%, and prolonged the drought duration mainly by one month in SWC. The impact of BB-PSEA on the drought in SWC in March/April was almost tenfold that in January/February, due to the higher emissions of BB-PSEA in March/April. The mechanism that BB-PSEA influenced drought predominantly involved the reduction of PRE, potential evapotranspiration (PET), and moisture fluxes in SWC. BB-PSEA aerosols warmed the air at 600-800 hPa and cooled the air near the surface in SWC, which stabilized the atmosphere and suppressed PRE and reduced PET in SWC. BB-PSEA aerosols also increased the sea surface temperature in South China Sea and the geopotential heights in the north of the Bay of Bengal, where the moisture sources of SWC originated from. This perturbation reduced the moisture fluxes across the west and south boundaries of SWC, resulting in the reduction of the water vapor content and PRE in SWC. Through elucidating the impact of BB-PSEA on the drought in SWC, this study clarified how BB-PSEA affected the climate in the downwind region and provided new understanding for drought prediction in SWC.

4.
Environ Pollut ; 359: 124707, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128605

RESUMO

National Capital Territory of Delhi and its satellite cities suffer from poor air quality during the post-monsoon months of October-November. In this study, a novel attempt is made to estimate the contribution of different emission sources (industrial, residential, power generation, transportation, biomass burning, photochemical production, lateral transport, etc.) towards the criteria air pollutant carbon monoxide (CO) concentration over North India. Multiple simulations of the WRF-Chem model with a tagged tracer approach with different inputs (6 anthropogenic emission inventories and 3 biomass burning emission inventories) were used. The model performance was evaluated against the MOPITT retrieved CO surface concentration. Analysis of model simulated CO over North India suggests that anthropogenic emissions contribute around 32-49% to surface CO concentration while crop residue burning contributes 27-44% of which 80% originates from Punjab. For Delhi, the contribution from anthropogenic sources is dominant (53-77%) of which 10-28% is from the domestic sector and 14-55% is from the transport sector. Agricultural waste burning contributes about 15-30% to Delhi's surface CO concentration (of which 75% originates from Punjab). Crop residue burning emission is a chief source of CO over Punjab with a contribution of about 56-76%. The results suggest that industrial, transport, and domestic sector activities are more responsible for increased CO levels over New Delhi and surrounding regions than crop residue burning over Punjab. Furthermore, critical meteorological parameters like 10 m wind speed, boundary layer height, 2 m temperature, total precipitation, and relative humidity were evaluated against CO concentration to understand their impact on CO distribution. Results conclude that deteriorating air quality over the North Indian region is caused by a combination of prevailing meteorological factors (such as slow winds, shallow mixing layer, and cold temperatures) and man-made emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monóxido de Carbono , Monitoramento Ambiental , Índia , Monóxido de Carbono/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Produtos Agrícolas , Agricultura
5.
Environ Sci Pollut Res Int ; 31(39): 51774-51789, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39122971

RESUMO

In recent years, the concentrations of ozone and the pollution days with ozone as the primary pollutant have been increasing year by year. The sources of regional ozone mainly depend on local photochemical formation and transboundary transport. The latter is influenced by different weather circulations. How to effectively reduce the inter-regional emission to control ozone pollution under different atmospheric circulation is rarely reported. In this study, we classify the atmospheric circulation of ozone pollution days from 2014 to 2019 over Central China based on the Lamb-Jenkinson method and the global analysis data of the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5) operation. The effectiveness of emission control to alleviate ozone pollution under different atmospheric circulation is simulated by the WRF-Chem model. Among the 26 types of circulation patterns, 9 types of pollution days account for 79.5% of the total pollution days and further classified into 5 types. The local types (A and C type) are characterized by low surface wind speed and stable weather conditions over Central China due to a high-pressure system or a southwest vortex low-pressure system, blocking the diffusion of pollutants. Sensitivity simulations of A-type show that this heavy pollution process is mainly contributed by local emission sources. Removing the anthropogenic emission of pollutants over Central China would reduce the ozone concentration by 39.1%. The other three circulation patterns show pollution of transport characteristics affected by easterly, northerly, or southerly winds (N-EC, EC, S-EC-type). Under the EC-type, removing anthropogenic pollutants of East China would reduce the ozone concentration by 22.7% in Central China.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Ozônio , Poluentes Atmosféricos/análise , China , Poluição do Ar/prevenção & controle , Tempo (Meteorologia) , Vento
6.
Sci Total Environ ; 946: 174327, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955271

RESUMO

We employed an enhanced WRF-Chem to investigate the discrete mechanisms of aerosol-radiation-feedback (ARF), extinction-photochemistry (AEP), and heterogeneous-reactions (AHR) across different seasons in eastern China, aiming to assess the synergistic effects arising from the simultaneous operation of multiple processes on O3 and PM2.5. Our findings demonstrated that ARF fostered the accumulation of pollutants and moisture, initiating two distinct feedback mechanisms concerning O3. The elevation in the NO/NO2 ratio amplified O3 consumption. Increased near-surface moisture diminished upper-level cloud formation, thereby enhancing photolysis rates and O3 photochemical production. The pronounced impact of heightened NO/NO2 on O3 led to a decrease of 0.1-2.7 ppb. When decoupled from ARF, AEP led to a more significant reduction in photolysis rates, resulting in declines in both O3 and PM2.5, except for an anomalous increase observed in summer, with O3 increasing by 1.6 ppb and PM2.5 by 2.5 µg m-3. The heterogeneous absorption of hydroxides in spring, autumn, and winter predominantly governed the AHR-induced variation of O3, leading to a decrease in O3 by 0.7-1 ppb. Conversely, O3 variations in summer were primarily dictated by O3-sensitive chemistry, with heterogeneous absorption of NOy catalyzing a decrease of 2.4 ppb in O3. Furthermore, AHR accentuated PM2.5 by facilitating the formation of fine sulfates and ammonium while impeding nitrate formation. In summer, the collective impact of ARF, AEP, and AHR (ALL) led to a substantial reduction of 6.2 ppb in O3, alleviating the secondary oxidation of PM2.5 and leading to a decrease of 0.3 µg m-3 in PM2.5. Conversely, albeit aerosol substantially depleted O3 by 0.4-4 ppb through their interactions except for summer, aerosol feedback on PM2.5 was more pronounced, resulting in a significant increase of 1.7-6.1 µg m-3 in PM2.5. Our study underscored the seasonal disparities in the ramifications of multifaceted aerosol-ozone interplay on air quality.

7.
Toxics ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058114

RESUMO

Air pollution, particularly PM2.5, poses a significant environmental and public health concern, particularly in northern Thailand, where elevated PM2.5 levels are prevalent during the dry season (January-May). This study examines the influx and patterns of transboundary biomass burning PM2.5 (TB PM2.5) in this region during the 2019 dry season using the WRF-Chem model. The model's reliability was confirmed through substantial correlations between model outputs and observations from the Pollution Control Department (PCD) of Thailand at 10 monitoring stations. The findings indicate that TB PM2.5 significantly influences local PM2.5 levels, often surpassing contributions from local sources. The influx of TB PM2.5 began in January from southern directions, intensifying and shifting northward, peaking in March with the highest TB PM2.5 proportions. Elevated levels persisted through April and declined in May. Border provinces consistently exhibited higher TB PM2.5 concentrations, with Chiang Rai province showing the highest average proportion, reaching up to 45%. On days when PM2.5 levels were classified as 'Unhealthy for Sensitive Groups' or 'Unhealthy', TB PM2.5 contributed at least 50% to the total PM2.5 at all stations. Notably, stations in Chiang Rai and Nan showed detectable TB PM2.5 even at 'Very Unhealthy' levels, underscoring the significant impact of TB PM2.5 in the northern border areas. Effective mitigation of PM2.5-related health risks requires addressing PM2.5 sources both within and beyond Thailand's borders.

8.
Environ Sci Pollut Res Int ; 31(35): 47630-47643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39002081

RESUMO

In the heavy industrial city of Northeast China, there has been a significant decrease in particulate matter pollution while experiencing a sharp increase in ozone (O3) pollution. However, the main influencing factors and source contributions to O3 remain unclear. Taking the case of Siping as an example, this study analyzed the spatiotemporal characteristics, assessed local source contributions to O3, and revealed regional transmission effects using numeric simulation and statistical methods. Temporally, higher O3 concentrations were observed in summer and the afternoon, with hourly peaks up to 254 µg/m3. Spatially, O3 pollution was mainly contributed by background concentrations (34.52%), external transport (34.50%), and local emissions (30.98%) during the case study period (June 11-18, 2021). Among the local emission sources, biological emissions, the industrial sector, and the traffic sector accounted for 35.30%, 32.09%, and 23.58% of the O3 concentration, respectively. For regional atmospheric transmission, high O3 pollution was accompanied by wind from the southwest directions, and the trajectory of air mass transport suggests that eastern Mongolia, the Korean Peninsula, and its neighboring regions contribute to O3 pollution. Furthermore, sensitivity analysis showed that O3 pollution in Siping is a co-controlled region by anthropogenic volatile organic compounds (AVOCs) and NOX, which implies control in an optimal ratio of VOCs and NOX emissions. Thus, our results highlight the importance of joint prevention and control of O3 pollution in the region, optimization of biogenic landscape ecology, and control of VOCs and NOx in both the industrial and transport sectors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Ozônio , Ozônio/análise , China , Poluentes Atmosféricos/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Indústrias
9.
Environ Pollut ; 359: 124556, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39025291

RESUMO

Ground ozone (O3) pollution has emerged as a prominent environmental concern in eastern cities of China, particularly during the summer and autumn seasons. However, a comprehensive investigation into the three-dimensional (3-D) evolution characteristics of O3 within complicated urban environments, especially in lake-land environment, is notably scarce. To enhance our understanding of the mechanisms underlying elevated O3 concentrations within a 3-D scale, this study employed an ozone lidar to delineate vertical ozone profiles in Changzhou, a typical city in China with complicated anthropogenic and biogenic emissions and complex land cover. The process analysis tool integrated into the Weather Research and Forecasting with Chemistry (WRF-Chem) model was further utilized to analyze the formation processes of O3. The results unveil a persistent O3 pollution episode lasting over 15 days in Changzhou during the study period, with multiple peaks exceeding 200 µg m⁻³. Notably, O3 predominantly accumulated within the boundary layer, confined below 1.2 km. Both ground and vertical contributions to this pollution were mainly due to local chemical reactions, with a maximum near-surface contribution reaching 19 ppb h-1 and a vertical contribution of 10 ppb h-1 at the height of 900 ± 200 m. Furthermore, episodes of the enhanced O3 concentrations on August 9 and August 26, 2021, were influenced by external advection process. Our study also found that local circulation plays an important role in the accumulation of surface O3 during certain periods. There was a temperature difference between the surface of Lake Tai and the adjacent land, resulting in the formation of lake-land breezes that facilitate the transport of O3 from the lake surface to the terrestrial environment during pollution events. Our study emphasizes the necessity of reducing local pollutant emissions and implementing joint emission controls as the primary strategies for mitigating O3 pollution in Changzhou and the surrounding region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Ozônio , Ozônio/análise , China , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Estações do Ano , Cidades , Modelos Químicos
10.
Sci Rep ; 14(1): 12413, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816563

RESUMO

With its high energy consumption and pollutant emissions, the iron and steel industry is a significant source of air pollution and carbon emissions in the Beijing-Tianjin-Hebei (BTH) region. To improve air quality and reduce greenhouse gas emissions, a series of policies involving ultra-low emission, synergistic reduction of pollution, and carbon application have been implemented in the region. This study has assessed air pollutant and CO2 emission patterns in the iron and steel industry of the region by employing co-control effects coordinate system, marginal abatement cost curve, and numerical modeling, along with the synergistic benefits of typical technologies. The results have demonstrated that: (1) the intensive production activities pertinent to iron and steel enterprises has contributed greatly to the emission in Tangshan and Handan, where the sintering process is the main source of SO2, NOx, PM2.5, and CO, accounting for 64.86%, 55.15%, 29.98%, and 46.43% of the total emissions, respectively. (2) Among the typical pollution control and reduction measures, industrial restructuring and adjustment of the energy-resource structure have led to the greatest effects on emission reduction. Technologies exhibiting great potential in emission reduction and high-cost efficiency such as Blast Furnace Top Gas Recovery Turbine Unit (TRT) need to be promoted. (3) In Tangshan city with the highest level of steel production, the iron and steel production activities contributed to the concentration of 30.51% of PM2.5, 50.67% of SO2, and 42.54% of NO2 during the non-heating period. During the heating period, pollutants pertinent to the combustion of fossil energy for heating have increased, while iron and steel induced emissions have decreased to 23.7%, 34.32%, and 29.13%, respectively. By 2030, it is speculated that the contribution of the iron and steel industry to air quality will be significantly decreased as result of successful implementation of ultra-low emission policies and typical synergistic reduction technologies.

11.
Sci Total Environ ; 931: 172980, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705308

RESUMO

A quantitative understanding of the roles of rainfall and pollutant concentrations in wet deposition is important because they critically influence terrestrial and aquatic ecosystems. However, their relative contributions to wet deposition, which vary across regions, have not yet been identified. We propose two methods that quantitatively separate the contributions of rain and pollutant concentrations to wet deposition: one is based on simplified equations describing the wet scavenging of pollutants and the other is based on random forest models employing SHapley Additive exPlanations. Three-dimensional long-term air quality simulations from 2003 to 2019 are used as inputs for both the physics-based and machine learning models. Remarkably, the results drawn from the explainable machine learning model are consistent with those from the physics-based approach: overall, rain is a more important limiting factor than pollutant concentrations and the relative contribution of rain is larger than that of pollutants by up to a factor of 3-4 in polluted regions. In polluted regions, pollutant concentrations can remain relatively high even in the presence of precipitation owing to continuous and intense emissions; therefore, wet deposition is limited by rainfall. The contribution of rainfall is larger by 1.5-2.5 than that of pollutant concentrations in regions even with low emissions and this considerably large role of rain suggests that regional or transboundary pollutant transport plays a key role in modulating wet deposition. However, in very remote regions, once the rainfall amount exceeds a certain value, rainfall no longer contributes to increasing wet deposition because atmospheric pollutants are readily removed by rain. So, the contributions of the two factors are comparable in pristine regions. Our results can serve as a basis for explaining interannual variations in wet deposition and for future projections of wet deposition under emission control plans and climate change scenarios across regions.

12.
Sci Total Environ ; 928: 172336, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614350

RESUMO

Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and âˆ¼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.

13.
Sci Total Environ ; 929: 172591, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663597

RESUMO

With the issue of ozone (O3) pollution having increasingly gained visibility and prominence in China, the Chinese government explored various policies to mitigate O3 pollution. In some provinces and cities, diurnal regulations of O3 precursor were implemented, such as shifting O3 precursor emission processes to nighttime and offering preferential refueling at night. However, the effectiveness of these policies remains unverified, and their impact on the O3 generation process requires further elucidation. In this study, we utilized a regional climate and air quality model (WRF-Chem, v4.5) to test three scenarios aimed at exploring the impact of diurnal industry emission variation of O3 precursors on O3 formation. Significant O3 variations were observed mainly in urban areas. Shifting volatile organic compounds (VOCs) to nighttime have slight decreased daytime O3 levels while moving nitrogen oxides (NOx) to nighttime elevates O3 levels. Simultaneously moving both to nighttime showed combined effects. Process analysis indicates that the diurnal variation in O3 was mainly attributed to chemical process and vertical mixing in urban areas, while advection becomes more important in non-urban areas, contributing to the changes in O3 and O3 precursors levels through regional transportation. Further photochemical analysis reveals that the O3 photochemical production in urban areas was affected by reduced daytime O3 precursors emissions. Specifically, decreasing VOCs lowered the daytime O3 production by reducing the ROx radicals (ROx = HO + HO˙2 + RO˙2), whereas decreasing NOx promoted the daytime O3 production by weakening ROx radical loss. Our results demonstrate that diurnal regulation of O3 precursors will disrupt the ROx radical and O3 formation in local areas, resulting in a change in O3 concentration and atmospheric oxidation capacity, which should be considered in formulating new relevant policies.

14.
Environ Pollut ; 350: 124013, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670421

RESUMO

Intensive crop residue burning (CRB) in northern India triggers severe air pollution episodes over the Indo-Gangetic Plain (IGP) each year during October and November. We have quantified the contribution of hotspot districts (HSDs) and total CRB to poor air quality over the IGP. Initially, we investigated the spatiotemporal distribution of CRB fire within the domain and pinpointed five HSD in each Punjab and Haryana. Furthermore, we have simulated air quality and quantified the impact of CRB using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), incorporating recent anthropogenic emissions (EDGAR v5) and biomass burning emissions (FINN v2.4) inventories, along with MOZART-MOSAIC chemistry. The key finding is that HSDs contributed ∼80% and ∼50% of the total fire counts in Haryana and Punjab, respectively. The model effectively captured observed PM2.5 concentrations, with a normalized mean bias (NMB) below 0.2 and R-squared (R2) exceeding 0.65 at the majority of validation sites. However, some discrepancies were observed at a few sites in Delhi, Punjab, Haryana, and West Bengal. The National Capital Region experienced the highest PM2.5 concentrations, followed by Punjab, Haryana, Uttar Pradesh, Bihar, and West Bengal. Moreover, HSDs were responsible for about 70% of the total increase in CRB-induced PM2.5 in the western, central, and eastern cities, and around 50% in the northern cities. By eliminating CRB emissions across the domain, we could potentially save approximately 18,000 lives annually. Policymakers, scientists, and institutions can leverage the framework to address air pollution at national and global scales by targeting source-specific hotspots. This approach, coupled with appropriate technological and financial solutions, can contribute to achieving climate change and sustainable development goals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Estações do Ano , Índia , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Produtos Agrícolas , Material Particulado/análise , Incêndios
15.
Sci Total Environ ; 927: 171874, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537834

RESUMO

The planetary boundary layer (PBL) characteristics during ozone (O3) episodes in China have been extensively studied; however, knowledge of the impact of boundary layer jets (BLJs) on O3 vertical distribution is limited. This study conducted a field campaign from 1 to 8 December 2020 to examine the vertical structure of the O3 concentration and wind velocity within the boundary layer at two sites (Foshan: FS, Maoming: MM) in Guangdong. Utilising lidar observations and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), distinct spatial distribution patterns of O3 over FS and MM influenced by BLJs were identified. The BLJs at both locations exhibited pronounced diurnal variations with a nocturnal maximum exceeding 11 m/s at a height of approximately 500 m. The nocturnal enhancement of BLJs resulted from inertial oscillations coupled with diurnal thermal forcing over sloping terrain. A stronger BLJ at FS induced an evident uplift of O3 and the prevailing northeasterly wind facilitated the transport of O3 in the nocturnal residual layer from FS to MM. After sunrise, surface heating and the development of the PBL caused the air mass with elevated O3 levels in the residual layer to descend to ground level. At MM, calm surface winds, a weaker BLJ at 500 m height, and strong downdrafts collectively contributed to a significant increase in surface O3 concentration in subsequent days. These findings contribute to our understanding of the interactions between BLJs and variations in surface air pollutant concentrations, thereby providing important insights for future regional emissions control measures.

16.
Sci Total Environ ; 917: 170287, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266728

RESUMO

Wet scavenging was critical in the atmospheric transport of 137Cs aerosols following the Fukushima accident. The aerosol size diversity and related microphysical processes produce complex behaviors during wet scavenging. Such behaviors are difficult to investigate using traditional simplified size distributions, resulting in inaccurate modeling. This study establishes an improved size-resolved wet scavenging model that considers the activation process. Using this model, five monodisperse simulations with five representative observed diameters with realistic solubility setting are performed to investigate the spatiotemporal wet scavenging behaviors of 137Cs aerosols. One polydisperse simulation with an empirical size distribution is also validated against the observation. The results reveal that 137Cs aerosols with diameters of 0.6 and 2.0 µm are mainly subject to below-cloud scavenging, which makes a significant contribution to low-deposition areas (<300 kBq/m2). For 137Cs aerosols with diameters of 6.4, 15, and 30 µm, in-cloud scavenging dominates, and the resulting depositions make significant contributions in high-deposition areas. The polydisperse results satisfy the criteria for good performance and better agree with the size, and deposition observations than the five monodisperse simulations, whereas for the concentration, the results show a similar RANK2 with the best mono1 and mono2 cases and reach the satisfactory criteria. These findings reveal the complex behavior and wet scavenging process of multi-mode 137Cs aerosols, improving our understanding and modeling.

17.
Sci Total Environ ; 917: 170319, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278241

RESUMO

Regional transport of air pollutants is a crucial factor influencing atmospheric environment, and aerosol radiative forcing (ARF) feedback to atmospheric boundary layer (ABL) structure and ambient air pollution is yet to be comprehensively understood over the receptor region of regional transport. By simulating meteorology and air pollutants during a heavy PM2.5 pollution event with WRF-Chem model, we quantitatively investigated the ARF and ABL interaction for PM2.5 pollution over the Twain-Hu Basin (THB), a key receptor region of regional transport over central China. Driven by northerly winds, PM2.5 was transported from upstream north China to downstream THB accompanied by high PM2.5 levels in the free troposphere. The ARF exacerbated local PM2.5 accumulation by up to 20 µg m-3 and inhibited the impact of regional transport on PM2.5 levels in the ABL with reducing near-surface PM2.5 concentrations of 5 µg m-3 over the THB. The ARF-intensified air temperature inversion at the top of ABL was unfavorable for the transported air pollutants crossing the ABL top to the near-surface layer, thus weakening the impact of regional PM2.5 transport on air quality in the receptor region. Meanwhile, the ARF of transported PM2.5 induced updrafts in the free troposphere, promoting vertical mixing of air pollutants with positive feedback on increasing secondary PM2.5 concentrations in the free troposphere. The ARF induced more and less secondary PM2.5 formations respectively in the free troposphere and the near-surface layer during the regional transport period of air pollution. These results enhance our comprehension of aerosol-meteorology feedback in regional changes of atmospheric environment with inverse effects of ARF on PM2.5 pollution of local accumulation and regional transport.

18.
Environ Sci Technol ; 58(5): 2423-2433, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270134

RESUMO

Isotopic source apportionment results revealed that nonagricultural sectors are significant sources of ammonia (NH3) emissions, particularly in urban areas. Unfortunately, nonagricultural sources have been substantially underrepresented in the current anthropogenic NH3 emission inventories (EIs). Here, we propose a novel approach to develop a gridded EI of nonagricultural NH3 in China for 2016 using a combination of isotopic source apportionment results and the emission ratios of carbon monoxide (CO) and NH3. We estimated that isotope-corrected nonagricultural NH3 emissions were 4370 Gg in China in 2016, accounting for an increase in the total NH3 emissions from 7 to 31%. As a result, compared to the original NH3 EI, the annual emissions of total NH3 increased by 35%. Thus, in comparison to the simulation driven by the original NH3 EI, the WRF-Chem model driven by the isotope-corrected NH3 EI has reduced the model biases in the surface concentrations and dry deposition flux of reduced nitrogen (NHx = gaseous NH3 + particulate NH4+) by 23 and 31%, respectively. This study may have wide-ranging implications for formulating targeted strategies for nonagricultural NH3 emissions controls, making it facilitate the achievement of simultaneously alleviating nitrogen deposition and atmospheric pollution in the future.


Assuntos
Poluentes Atmosféricos , Amônia , Amônia/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China , Nitrogênio/análise , Isótopos
19.
Sci Total Environ ; 916: 170208, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246372

RESUMO

The lockdowns implemented during the coronavirus disease 2019 (COVID-19) pandemic provide a unique opportunity to investigate the impact of emission sources and meteorological conditions on the trans-boundary transportation of black carbon (BC) aerosols to the Tibetan Plateau (TP). In this study, we conducted an integrative analysis, including in-situ observational data, reanalysis datasets, and numerical simulations, and found a significant reduction in the trans-boundary transport of BC to the TP during the 2020 pre-monsoon season as a result of the lockdowns and restrictive measures. Specifically, we observed a decrease of 0.0211 µgm-3 in surface BC concentration over the TP compared to the 2016 pre-monsoon period. Of this reduction, approximately 6.04 % can be attributed to the decrease in emissions during the COVID-19 pandemic, surpassing the 4.47 % decrease caused by changes in meteorological conditions. Additionally, the emission reductions have weakened the trans-boundary transport of South Asia BC to the TP by 0.0179 µgm-2s-1; indicating that the recurring spring atmospheric pollution from South Asia to the TP will be alleviated through the reduction of anthropogenic emissions. Moreover, it is important to note that BC deposition on glaciers contributes significantly to glacier melting due to its enrichment, posing a threat to the water sustainability of the TP. Therefore, urgent measures are needed to reduce emissions from adjacent regions to preserve the TP as the "Asian Water Tower."


Assuntos
Poluentes Atmosféricos , COVID-19 , Humanos , Tibet/epidemiologia , Pandemias , Poluentes Atmosféricos/análise , Monitoramento Ambiental , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Aerossóis e Gotículas Respiratórios , Fuligem/análise , Carbono/análise , Água/análise
20.
Sci Total Environ ; 912: 169065, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065496

RESUMO

Nitrate has been a dominant component of PM2.5 since the stringent emission control measures implemented in China in 2013. Clarifying key physical and chemical processes influencing nitrate concentrations is crucial for eradicating heavy air pollution in China. In this study, we explored dominant processes impacting nitrate concentrations in Shandong of the North China Plain during three haze events from 9 to 25 December 2021, named cases P1 (94.46 (30.85) µg m-3 for PM2.5 (nitrate)), P2 (148.95 (50.12) µg m-3) and P3 (88.03 (29.21) µg m-3), by using the Weather Research and Forecasting/Chemistry model with an integrated process rate analysis scheme and updated heterogeneous hydrolysis of dinitrogen pentoxide on the wet aerosol surface (HET-N2O5) and additional nitrous acid (HONO) sources (AS-HONO). The results showed that nitrate increases in the three cases were attributed to aerosol chemistry, whereas nitrate decreases were due mainly to the vertical mixing process in cases P1 and P2 and to the advection process in case P3. HET-N2O5 (the reaction of OH + NO2) contributed 45 % (51 %) of the HNO3 production rate during the study period. AS-HONO produced a nitrate enhancement of 24 % in case P1, 12 % in case P2 and 19 % in case P3, and a HNO3 production rate enhancement of 0.79- 0.97 (0.18- 0.60) µg m-3 h-1 through the reaction of OH + NO2 (HET-N2O5) in the three cases. This study implies that using suitable parameterization schemes for heterogeneous reactions on aerosol and ground surfaces and nitrate photolysis is vital in simulations of HONO and nitrate, and the MOSAIC module for aerosol water simulations needs to be improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA