Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
Forensic Sci Int ; 361: 112128, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002412

RESUMO

Wastewater based epidemiology (WBE) has been used worldwide to estimate drug consumption routinely. Even though WBE provides valuable data to support legal and health interventions associated to drug use, monitoring studies in Portuguese wastewaters are scarce. Hence, this work aimed to estimate the consumption of some conventional abuse and illicit drugs such as amphetamine (AMP), methamphetamine (MAMP), 3,4-methylenedioxymethamphetamine (MDMA), and the synthetic cathinones buphedrone (BPD), butylone (BTL), 3,4-dimethylmethcathinone (3,4-DMMC) and 3-methylmethcathinone (3-MMC), considering not only the liquid phase, but also the suspended particulate matter (SPM). Moreover, the enantiomeric profiling of the samples was studied, exploring for the first time the possible enantioselective sorption of these drugs onto SPM. For that, 24 h composite raw wastewaters were collected from a conventional wastewater treatment plant (WWTP) in Portugal. After extraction, the liquid phase and SPM extracts were derivatized with an enantiomerically pure reagent and then, analysed using a gas chromatography-mass spectrometry (GC-MS) analytical method. The results showed a low and non-enantioselective adsorption to SPM at environmental relevant levels. Only (S)-AMP was detected in two SPM samples, whereas AMP, MAMP, MDMA, BPD, and 3,4-DMMC were detected in the liquid phase. AMP was the most frequently found drug with an estimated load up to 166.0 mg day-1 1000 people-1 and mostly found with enrichment of (S)-AMP. Nevertheless, (R)-AMP was also determined, which may be related to the consumption of either the illicit racemic AMP or the medicine (R)-deprenyl. The use of MDMA, MAMP and synthetic cathinones (BPD and 3,4-DMMC) was also suggested in Portugal. Nevertheless, the levels and the consumption estimate of the target chemicals were lower than in other European countries or worldwide. These findings provide the first step to the implementation of WBE monitoring campaigns to assess the status of drug consumption in Portuguese communities, contributing to the understanding of drug use patterns and trends worldwide and helping enforce preventive measures.

2.
Sci Total Environ ; : 174715, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002592

RESUMO

Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.

3.
Sci Total Environ ; 947: 174486, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969135

RESUMO

Efforts to regulate and monitor emerging contaminants are insufficient because new chemicals are continually brought to market, and many are unregulated and potentially harmful. Domestic wastewater treatment plants are not designed to remove micropollutants and are important sources of emerging contaminants in the aquatic environment. In this study, non-target screening, an unbiased method for analyzing compounds without prior information, was used to identify compounds that may be emitted in wastewater treatment plant effluent and should be monitored. Nine wastewater treatment plants using different treatment methods were studied, and a non-target screening data-processing method was used. The frequencies at which the contaminants were detected and contaminant persistence through the treatment processes were considered, and then the contaminants were prioritized. The predicted no-effect concentration of each prioritized contaminant was used to determine whether further analysis and monitoring of the contaminant was necessary. Quantitative analyses of five compounds (amantadine, atenolol, benzotriazole, diphenhydramine, and sulpiride) were performed using reference standards. Probable molecular formulae and structures were proposed for 17 contaminants, and the risks posed by the contaminants were estimated using predicted no-effect concentrations. The results provide valuable insights into how unregulated micropollutants can be identified and prioritized for monitoring in future studies.

4.
Huan Jing Ke Xue ; 45(7): 4063-4073, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022954

RESUMO

The emission of nitrous oxide (N2O) during wastewater treatment cannot be ignored. The analysis of statistical data from literature based on 126 empirical studies revealed that the geographical factors of wastewater treatment plants (WWTPs) had a significant impact on N2O emission factors. However, the N2O emission factors of WWTPs in all regions of the world were generally lower than the Intergovernmental Panel on Climate Change (IPCC) recommended values. In China, the N2O emission factors (in N2O-N/Ninfluent) of WWTPs were approximately 0.000 35-0.065 20 kg·kg-1. Meanwhile, the N2O emission factors of different wastewater treatment processes were also significantly different, especially since the sequencing batch reactor (SBR) process had higher emissions. The use of uniform default emission factors for accounting was prone to overestimate N2O emissions, and it is recommended that countries conduct actual monitoring or modeling studies to develop categorical emission factors suitable for local conditions. In addition, the N2O emission factor based on total nitrogen (TN) removal was weakly negatively correlated with TN removal in 126 empirical data, which was more in line with bioprocessing stoichiometry and could provide an accurate accounting method for N2O. To this end, a digital twin model was developed to dynamically simulate a case anaerobic-anoxic-aerobic (AAO) WWTP to comprehensively quantify the dynamic emission behavior of N2O, which demonstrated that N2O emissions had significant seasonal and daily variability and were only equivalent to 11% of the calculated value of the emission factor based on the IPCC recommendation. Comparing the scatter linear fitting and categorical mean exponential fitting methods, it was found that the latter could more accurately reflect the negative correlation between the N2O emission factors and the TN removal rate, and an exponential regression equation between the average N2O emission factor based on the amount of TN removed and the TN removal rate was further developed to predict the N2O emission. The dynamic simulation and categorical index fitting methods provided in this study are important references for the accurate accounting of N2O emissions in similar WWTPs and provide help for understanding and responding to the N2O emission problems.

5.
Mar Pollut Bull ; 206: 116688, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029148

RESUMO

The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.

6.
Sci Total Environ ; 948: 174819, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019274

RESUMO

Gadolinium (Gd) is a rare earth element (REE) used in the formulation of contrast agents for Magnetic Resonance Imaging (MRI) due to its paramagnetic properties. The growth in population and the improved quality of the healthcare systems over the last years, has promoted the use of MRI as an effective diagnostic tool thus increasing the consumption of gadolinium and its release into the wastewater treatment network. Therefore, the tracking and quantification of this metal in sewage treatment plants and water bodies, is of paramount importance since there are currently no specific rare earth treatment technologies installed in WWTPs, and consequently gadolinium is finally discharged into the environment. In this work, the presence of gadolinium and all other rare earth elements was monitored during a year in three WWTPs in northern Spain (Vuelta Ostrera and San Román in Cantabria and Galindo in País Vasco). These WWTPs are located close to urban centres with hospitals where MRI tests are performed. By tracing Gd throughout the wastewater treatment facilities, its presence was confirmed in water streams, in the order of ng per litter, and in sludge and ashes, in the order of mg per kilogram. A significant human influence was observed, with Gd anomaly values between 3.14 and 79.2 and anthropogenic Gd percentages above 90 %. The presence of Gd in water streams is affected by the sampling period due to the variations of the activity periods of the hospitals nearby the treatment plants. On the contrary, its content in sludge and ashes remains almost constant along the year. The concentration of this metal found in the ashes opens the door to its possible recovery together with other critical raw materials in the context of the circular economy.

7.
Sci Total Environ ; 945: 173993, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879026

RESUMO

A total of 17 groups of wastewaters from the chemical industrial parks and matched receiving river waters were collected in the east of China. The measured total concentrations of 21 analyzed PFAS analogues (∑21PFAS) in the influents and effluents of the wastewater treatment plants (WWTPs) were in the range of 0.172-20.6 µg/L (mean: 18.2 µg/L, median: 3.9 µg/L) and 0.167-93.6 µg/L (mean: 10.8 µg/L, median: 1.12 µg/L), respectively, which were significantly higher than those observed in the upstream (range: 0.0158-7.05 µg/L, mean: 1.09 µg/L, median: 0.482 µg/L) and downstream (range: 0.0237-1.82 µg/L, mean: 0.697 µg/L, median: 0.774 µg/L) receiving waters. Despite the concentrations and composition profiles of PFAS varied in the water samples from different sampling sites, PFOA was generally the major PFAS analogue in the research areas, mainly due to the history of PFOA production and usage as well as the specific exemptions. The calculated concentration ratios of the short-chain PFCAs and PFSAs to their respective predecessors (PFOA and PFOS) in most of the samples far exceeded 1, indicating a shift from legacy PFOA and PFOS to short-chain PFAS in the research areas. Correlation network analysis and the calculated concentration ratios of PFAS in the effluents versus influents indicated transformation may have occurred during the water treatment processes and PFAS could not be efficiently removed in the WWTPs. Wastewater discharge of chemical industrial parks is a vital source of PFAS dispersed into the aquatic environment.

8.
Microorganisms ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38930526

RESUMO

BACKGROUND: Wastewater treatment plants (WWTPs) are crucial in the scope of European Commission circular economy implementation. However, bioaerosol production may be a hazard for occupational and public health. A scoping review regarding microbial contamination exposure assessment in WWTPs was performed. METHODS: This study was performed through PRISMA methodology in PubMed, Scopus and Web of Science. RESULTS: 28 papers were selected for data extraction. The WWTPs' most common sampled sites are the aeration tank (42.86%), sludge dewatering basin (21.43%) and grit chamber. Air sampling is the preferred sampling technique and culture-based methods were the most frequently employed assays. Staphylococcus sp. (21.43%), Bacillus sp. (7.14%), Clostridium sp. (3.57%), Escherichia sp. (7.14%) and Legionella sp. (3.57%) were the most isolated bacteria and Aspergillus sp. (17.86%), Cladosporium sp. (10.71%) and Alternaria sp. (10.71%) dominated the fungal presence. CONCLUSIONS: This study allowed the identification of the following needs: (a) common protocol from the field (sampling campaign) to the lab (assays to employ); (b) standardized contextual information to be retrieved allowing a proper risk control and management; (c) the selection of the most suitable microbial targets to serve as indicators of harmful microbial exposure. Filling these gaps with further studies will help to provide robust science to policy makers and stakeholders.

9.
J Environ Manage ; 364: 121430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38875983

RESUMO

Optimization and control of wastewater treatment process (WTP) can contribute to cost reduction and efficiency. A wastewater treatment process multi-objective optimization (WTPMO) framework is proposed in this paper to provide suggestions for decision-making in setting parameters of WTP. Firstly, the prediction models based on Extreme Gradient Boosting (XGB) with Bayesian optimization (BO) are developed for predicting effluent water quality (EQ) and energy consumption (EC) for different influent quality and process parameter settings. Then, the SHapley Additive exPlanations (SHAP) algorithm is used to complement the interpretability of machine learning to quantitatively evaluate the impact of different features on the predicted targets. Finally, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the Technique for Ordering Preferences on Similarity of Ideal Solutions (TOPSIS) is introduced to solve and make decisions on the multi-objective optimization problem. The WTPMO applicability is validated on Benchmark Simulation Model 1 (BSM1). The results show that BOXGB achieves accurate prediction for EQ and EC with R2 values of 0.923 and 0.965, respectively, indicating that BO can effectively select the model hyperparameters in XGB. Based on SHAP supplemented the interpretability of the model to fully explain how the influent water quality and decision variables affect the EQ and EC of the WTP. In addition, the optimized process parameters are determined based on NSGA-II and TOPSIS, and the EC optimization rate is 1.552% while guaranteeing water quality compliance. Overall, this research can effectively achieve the optimization of WTP, ensure that the effluent water quality meets the standards while reducing energy consumption, assist Wastewater treatment plants (WWTPs) to achieve more intelligent and efficient operation and maintenance management, and provide strong support for environmental protection and sustainable development goals.


Assuntos
Algoritmos , Teorema de Bayes , Aprendizado de Máquina , Eliminação de Resíduos Líquidos , Águas Residuárias , Qualidade da Água , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Modelos Teóricos
10.
Environ Sci Pollut Res Int ; 31(25): 37387-37403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769261

RESUMO

In response to China's policies on pollution control and carbon emission (CE) reductions, more stringent regulations have been implemented to evaluate CE in wastewater treatment facilities. In this study, we have analyzed CE from China's wastewater treatment plants (WWTPs) and influencing factor. Emission factor (EF) and operational data integrated methods (ODIM) were utilized to measure emissions, using data collected from 247 WWTPs over a 1-year period across seven regions in China. The average CE intensity was 0.45 kgCO2-eq/m3, affected by region, season, influent water quality, treatment processes, effluent discharge standards, and facilities. The scale effect was obvious only in the range of 2 × 105 m3/day. Underground WWTPs exhibited significantly higher CE compared to aboveground WWTPs. In summary, the assessment of CE in 247 actual WWTPs not only identifies emission reduction potential but also provides a scientific basis for formulating targeted emission reduction measures.


Assuntos
Monitoramento Ambiental , Gases de Efeito Estufa , Eliminação de Resíduos Líquidos , Águas Residuárias , China , Gases de Efeito Estufa/análise
11.
Sci Total Environ ; 937: 173419, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38802024

RESUMO

Residual pollutants in discharged and reused water pose both direct and indirect human exposure. However, health effects caused by whole effluent remain largely unknown due to the lack of human relevant model for toxicity test. Effluents from four secondary wastewater treatment plants (SWTPs), a tertiary wastewater treatment plant (TWTP) and a constructed wetland (CW) were evaluated for the integrated toxicity of the organic extractions. Multiple-endpoint human mesenchymal stem cells (MSCs) assay was used as an in vitro model relevant to human health. The effluents caused cytotoxicity, oxidative stress and genotoxicity in MSCs. The osteogenic and neurogenic differentiation were inhibited and the adipogenic differentiation were stimulated by some of the effluent extractions. The SWTP, TWTP and CW treatments reduced integrated biomarker response (IBR) by 26.3 %, 17.5 % and 33.3 % respectively, where the IBR values of final CW (8.3) and TWTP (8.2) effluents were relatively lower than SWTPs (9.1). Among multiple biomarkers, the inhibition of osteogenesis was the least reduced by wastewater treatment. Besides, ozone disinfection in tertiary treatment increased cytotoxicity and differentiation effects suggesting the generation of toxic products. The mRNA expressions of estrogen receptor alpha (ERα) and peroxisome proliferator-activated receptor gamma (PPARγ) were significantly upregulated by effluents. The inhibitory effects of effluents on neural differentiation were mitigated after antagonizing ERα and PPARγ in the cells. It is suggested that ERα and PPARγ agonists in effluents were largely accountable for the impairment of stem cell differentiation. Besides, the concentrations of n-C29H60, o-cresol, fluorene and phenanthrene in the effluents were significantly correlated with the intergrated stem cell toxicity. The present study provided toxicological evidence for the relation between water contamination and human health, with an insight into the key toxicity drivers. The necessity for deep water treatment and the potential means were suggested for improving water quality.


Assuntos
Receptor alfa de Estrogênio , PPAR gama , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Humanos , PPAR gama/metabolismo , Poluentes Químicos da Água/toxicidade , Receptor alfa de Estrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
12.
Water Res ; 258: 121764, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761593

RESUMO

Wastewater treatment plants (WWTPs) have been recognized as one of the major potential sources of the spread of airborne pathogenic microorganisms under the global pandemic of COVID-19. The differences in research regions, wastewater treatment processes, environmental conditions, and other aspects in the existing case studies have caused some confusion in the understanding of bioaerosol pollution characteristics. In this study, we integrated and analyzed data from field sampling and performed a systematic literature search to determine the abundance of airborne microorganisms in 13 countries and 37 cities across four continents (Asia, Europe, North America, and Africa). We analyzed the concentrations of bioaerosols, the core composition, global diversity, determinants, and potential risks of airborne pathogen communities in WWTPs. Our findings showed that the culturable bioaerosol concentrations of global WWTPs are 102-105 CFU/m3. Three core bacterial pathogens, namely Bacillus, Acinetobacter, and Pseudomonas, as well as two core fungal pathogens, Cladosporium and Aspergillus, were identified in the air across global WWTPs. WWTPs have unique core pathogenic communities and distinct continental divergence. The sources of airborne microorganisms (wastewater) and environmental variables (relative humidity and air contaminants) have impacts on the distribution of airborne pathogens. Potential health risks are associated with the core airborne pathogens in WWTPs. Our study showed the specificity, multifactorial influences, and potential pathogenicity of airborne pathogenic communities in WWTPs. Our findings can improve the understanding of the global diversity and biogeography of airborne pathogens in WWTPs, guiding risk assessment and control strategies for such pathogens. Furthermore, they provide a theoretical basis for safeguarding the health of WWTP workers and ensuring regional ecological security.


Assuntos
Microbiologia do Ar , Bactérias , Fungos , Águas Residuárias , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Eliminação de Resíduos Líquidos , SARS-CoV-2 , COVID-19 , Monitoramento Ambiental , Humanos
13.
Chemosphere ; 361: 142460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821128

RESUMO

This study investigated the occurrence, removal rate, and potential risks of 43 organic micropollutants (OMPs) in four municipal wastewater treatment plants (WWTPs) in Korea. Results from two-year intensive monitoring confirmed the presence of various OMPs in the influents, including pharmaceuticals such as acetaminophen (pain relief), caffeine (stimulants), cimetidine (H2-blockers), ibuprofen (non-steroidal anti-inflammatory drugs- NSAIDs), metformin (antidiabetics), and naproxen (NSAIDs) with median concentrations of >1 µg/L. Some pharmaceuticals (carbamazepine-anticonvulsants, diclofenac-NSAIDs, propranolol-ß-blockers), corrosion inhibitors (1H-benzotriazole-BTR, 4-methyl-1H-benzotriazole-4-TTR), and perfluorinated compounds (PFCs) were negligibly removed during WWTP treatment. The OMP concentrations in the influents and effluents were mostly lower in August than those of other months (p-value <0.05) possibly due to wastewater dilution by high precipitation or enhanced biodegradation under high-temperature conditions. The anaerobic-anoxic-oxic process (A2O) with a membrane bioreactor exhibited higher OMP removal than other processes, such as A2O with sedimentation or the conventional activated sludge process (p-value <0.05). Pesticides (DEET and atrazine), corrosion inhibitors (4-TTR and BTR), and metformin were selected as priority OMPs in toxicity-driven prioritization, whereas PFCs were determined as priority OMPs given their persistence and bioaccumulation properties. Overall, our results contribute to an important database on the occurrence, removal, and potential risks of OMPs in Korean WWTPs.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , República da Coreia , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Monitoramento Ambiental , Preparações Farmacêuticas/análise , Metformina/análise , Anti-Inflamatórios não Esteroides/análise
14.
Heliyon ; 10(9): e29601, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765125

RESUMO

Antibiotic resistance (AR) is a major global health concern, but current surveillance efforts primarily focus on healthcare settings, leaving a lack of understanding about AR across all sectors of the One Health approach. To bridge this gap, wastewater surveillance provides a cost-effective and efficient method for monitoring AR within a population. In this study, we implemented a surveillance program by monitoring the wastewater effluent from two large-scale municipal treatment plants situated in Isfahan, a central region of Iran. These treatment plants covered distinct catchment regions and served a combined population about two million of residents. Furthermore, the effect of physicochemical and microbial characteristics of wastewater effluent including biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), temperature, total coliforms and Escherichia coli concentration on the abundance of ARGs (blaCTX-M, tetW, sul1, cmlA, and ermB) and class 1 integron-integrase gene (intI1) were investigated. Sul1 and blaCTX-M were the most and least abundant ARGs in the two WWTPs, respectively. Principal Component Analysis showed that in both of the WWTPs all ARGs and intI1 gene abundance were positively correlated with effluent temperature, but all other effluent characteristics (BOD, COD, TSS, total coliforms and E. coli) showed no significant correlation with ARGs abundance. Temperature could affect the performance of conventional activated sludge process, which in turn could affect the abundance of ARGs. The results of this study suggest that other factors than BOD, COD and TSS may affect the ARGs abundance. The predicted AR could lead to development of effective interventions and policies to combat AR in the clinical settings. However, further research is needed to determine the relationship between the AR in wastewater and clinical settings as well as the effect of other influential factors on ARGs abundance.

15.
Sci Total Environ ; 932: 172880, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692310

RESUMO

As widely acknowledged, wastewater treatment plants (WWTPs) stand as significant contributors to the presence of microplastics in surface water. Nonetheless, there exists a notable research gap regarding the extent of potential pollution resulting from the concurrent and uninterrupted discharges originating from multiple WWTPs into small-scale receiving water bodies. This study endeavors to address this knowledge deficit by conducting a thorough investigation into the prevalence of microplastics in surface water. The research encompasses seven distinct locations within the Changzhou section of the Beijing-Hangzhou Grand Canal and the effluent of three WWTPs situated along the tributary. The results indicate differences in the distribution of microplastics in surface waters of mainstream and tributaries. While the microplastic abundance and composition showed little variation along the main stream, the tributaries displayed an overall increasing trend in microplastic abundance from upstream to downstream. Notably, the major contributors to this increase were fragments, fiber particles, and microplastics with particle sizes ranging from 100 to 300 µm. Considering that the primary distinction between the tributaries and the mainstream is the presence of the three WWTPs along the tributaries, the study conducted a correlation analysis between river surface water and effluents from these plants. The results indicated a stronger correlation between the tributaries and the effluents, suggesting that WWTPs are one of the primary factors contributing to the elevated levels of microplastics in the tributaries. Finally, a comparative analysis of microplastic abundance in the Beijing-Hangzhou Grand Canal's Changzhou section and other regions was conducted. The findings revealed that the microplastic pollution level in the Beijing-Hangzhou Grand Canal's Changzhou section is higher than that in most other rivers. Therefore, the issue of microplastic pollution in the Beijing-Hangzhou Grand Canal's Changzhou section warrants our attention, particularly with regard to the effectiveness of microplastic removal by the WWTPs along its course.

16.
J Am Acad Dermatol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777185

RESUMO

The second part of this CME article discusses sunscreen regulation and safety considerations for humans and the environment. First, we provide an overview of the history of the United States Food and Drug Administration's regulation of sunscreen. Recent Food and Drug Administration studies clearly demonstrate that organic ultraviolet filters are systemically absorbed during routine sunscreen use, but to date there is no evidence of associated negative health effects. We also review the current evidence of sunscreen's association with vitamin D levels and frontal fibrosing alopecia, and recent concerns regarding benzene contamination. Finally, we review the possible environmental effects of ultraviolet filters, particularly coral bleaching. While climate change has been shown to be the primary driver of coral bleaching, laboratory-based studies suggest that organic ultraviolet filters represent an additional contributing factor, which led several localities to ban certain organic filters.

17.
Sci Total Environ ; 931: 172884, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701920

RESUMO

Among the challenges that wastewater treatment plants face in the path towards sustainability, reducing CO2 emissions and decrease the amount of waste highlight. Within these wastes, those that can cause eutrophication, such as nutrients (nitrogen and phosphorous) are of great concern. Herein we study a novel process to concentrate nutrients via membrane technology. In particular, we propose the use of forward osmosis, applying the carbonated solvent which contains the CO2 captured from the biogas stream as draw solution. This carbonated solvent has a high potential osmotic pressure, which can be used in forward osmosis to concentrate the nutrients stream. To this end, we present the results of an experimental plan specifically designed and performed to evaluate two main parameters: (1) nutrients concentration; and (2) water recovery. The process designed involves pH adjustment, membrane filtration to separate solids, pH reduction and forward osmosis concentration of nutrients. With this process, concentrations factor for nutrients in between 2 and 2.5 and water recovery of approximately 50 % with water flux of 7 to 8 L/(m2h) can be achieved.

18.
Ecotoxicol Environ Saf ; 280: 116513, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820820

RESUMO

In Canada, every day, contaminants of emerging concern (CEC) are discharged from waste treatment facilities into freshwaters. CECs such as pharmaceutical active compounds (PhACs), personal care products (PCPs), per- and polyfluoroalkyl substances (PFAS), and microplastics are legally discharged from sewage treatment plants (STPs), water reclamation plants (WRPs), hospital wastewater treatment plants (HWWTPs), or other forms of wastewater treatment facilities (WWTFs). In 2006, the Government of Canada established the Chemicals Management Plan (CMP) to classify chemicals based on a risk-priority assessment, which ranked many CECs such as PhACs as being of low urgency, therefore permitting these substances to continue being released into the environment at unmonitored rates. The problem with ranking PhACs as a low priority is that CMP's risk management assessment overlooks the long-term environmental and synergistic effects of PhAC accumulation, such as the long-term risk of antibiotic CEC accumulation in the spread of antibiotic resistance genes. The goal of this review is to specifically investigate antibiotic CEC accumulation and associated environmental risks to human and environmental health, as well as to determine whether appropriate legislative strategies are in place within Canada's governance framework. In this research, secondary data on antibiotic CEC levels in Canadian and international wastewaters, their potential to promote antibiotic-resistant residues, associated environmental short- and long-term risks, and synergistic effects were all considered. Unlike similar past reviews, this review employed an interdisciplinary approach to propose new strategies from the perspectives of science, engineering, and law.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Canadá , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco , Saúde Ambiental , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
19.
Huan Jing Ke Xue ; 45(5): 2741-2747, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629537

RESUMO

To evaluate the effect of thermal hydrolysis pretreatment time on the sludge anaerobic digestion system of wastewater treatment plants (WWTPs) in Daxing district, Beijing, the structure and diversity of microbial communities in primary sludge and an activated sludge anaerobic digestion system with different thermal hydrolysis pretreatment times (15 min, 30 min, and 45 min) were analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the dominant groups of digested sludge were mainly distributed in Firmicutes, Cloacimonadota, Chloroflexi, and Synergistota, with W5 being the most common genus. The sum of relative abundance of the dominant phylum was greater than 60%, and W5 accounted for 20.8%-54.5%, showing a high abundance of a few dominant species. During the anaerobic digestion of thermo-hydrolyzed sludge, the relative abundance of acetogenic methanogens decreased due to high levels of volatile fatty acids (VFAs) and ammonia nitrogen (NH4+-N) concentrations, which suggested that the hydrogenophilic methanogenic pathway was more than that of the acetogenic methanogenic pathway. Correlation analysis showed that the soluble protein and pH of thermo-hydrolyzed sludge, NH4+-N of digested sludge, and thermal hydrolysis pretreatment time were the four main environmental factors affecting microbial community structure, and NH4+-N of digested sludge had the largest negative correlation with methanogens. The thermal hydrolysis pretreatment time was negatively correlated with both the Chao index and Shannon index, so longer thermal hydrolysis pretreatment time was not conducive to microbial flora during anaerobic digestion.


Assuntos
Microbiota , Esgotos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Metano , Reatores Biológicos
20.
Biosensors (Basel) ; 14(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667186

RESUMO

The release of endocrine-disrupting compounds (EDCs) to the environment poses a health hazard to both humans and wildlife. EDCs can activate or inhibit endogenous endocrine functions by binding hormone receptors, leading to potentially adverse effects. Conventional analytical methods can detect EDCs at a high sensitivity and precision, but are blind to the biological activity of the detected compounds. To overcome this limitation, yeast-based bioassays have previously been developed as a pre-screening method, providing an effect-based overview of hormonal-disruptive activity within the sample prior to the application of analytical methods. These yeast biosensors express human endocrine-specific receptors, co-transfected with the relevant response element fused to the specific fluorescent protein reporter gene. We describe several molecular manipulations of the sensor/reporter circuit in a Saccharomyces cerevisiae bioreporter strain that have yielded an enhanced detection of estrogenic-like compounds. Improved responses were displayed both in liquid culture (96-well plate format) as well as in conjunction with sample separation using high-performance thin-layer chromatography (HPTLC). The latter approach allows for an assessment of the biological effect of individual sample components without the need for their chemical identification at the screening stage.


Assuntos
Técnicas Biossensoriais , Estrogênios , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Humanos , Disruptores Endócrinos/análise , Engenharia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA