Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Environ Manage ; 365: 121651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955043

RESUMO

Hydraulic mixing of stratified reservoirs homogenizes physicochemical gradients and microbial communities. This has potential repercussions for microbial metabolism and water quality, not least in dams and hydraulically controlled waters. A better understanding of how key taxa respond to mixing of such stratified water bodies is needed to understand and predict the impact of hydraulic operations on microbial communities and nutrient dynamics in reservoirs. We studied taxa transitions between cyanobacteria and sulfur-transforming bacteria following mixing of stratified water columns in bioreactors and complemented the experimental approach with a biogeochemical model. Model predictions were consistent with experimental observations, suggesting that stable stratification of DO is restored within 24 h after episodic and complete mixing, at least in the absence of other more continuous disturbances. Subsequently, the concentration of S2- gradually return to pre-mixing states, with higher concentration at the surface and lower in the bottom waters, while the opposite pattern was seen for SO42-. The total abundance of sulfate-reducing bacteria and phototrophic sulfur bacteria increased markedly after 24h of mixing. The model further predicted that the rapid re-oxygenation of the entire water column by aeration will effectively suppress the water stratification and the growth of sulfur-transforming bacteria. Based on these results, we suggest that a reduction of thermocline depth by optimal flow regulation in reservoirs may also depress sulfur transforming bacteria and thereby constrain sulfur transformation processes and pollutant accumulation. The simulation of microbial nutrient transformation processes in vertically stratified waters can provide new insights about effective environmental management measures for reservoirs.


Assuntos
Bactérias , Bactérias/metabolismo , Cianobactérias , Qualidade da Água , Microbiologia da Água , Modelos Teóricos
2.
Environ Sci Technol ; 58(24): 10582-10590, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836357

RESUMO

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago. We cover a range of sites with contrasting water column redox conditions and rates of organic matter degradation, with the latter reflected by the depth of the sulfate-methane transition zone (SMTZ) in the sediment. We find the highest benthic release of methane (2.2-8.6 mmol m-2 d-1) at sites where the SMTZ is located close to the sediment-water interface (2-10 cm). A large proportion of methane is removed in the water column via aerobic or anaerobic microbial pathways. At many locations, water column methane is highly depleted in 13C, pointing toward substantial bubble dissolution. Calculated and measured rates of methane release to the atmosphere range from 0.03 to 0.4 mmol m-2 d-1 and from 0.1 to 1.7 mmol m-2 d-1, respectively, with the highest fluxes at locations with a shallow SMTZ and anoxic and sulfidic bottom waters. Taken together, our results show that sites suffering most from both eutrophication and deoxygenation are hotspots of coastal marine methane emissions.


Assuntos
Eutrofização , Metano , Sedimentos Geológicos/química , Água do Mar/química , Oxigênio , Atmosfera/química
3.
Mar Pollut Bull ; 205: 116632, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943896

RESUMO

The Timavo River estuary (northern Adriatic Sea) is characterised by strong thermohaline stratification that keeps the deep waters hypoxic. The consequence is an harmful algal bloom at the surface in summer that can be mitigated with a forced aeration system installed at the bottom to improve water oxygenation. The nutrient and metal(loid) cycle was investigated, before and during reoxygenation, using an in situ benthic chamber coupled with sampling and analyses of the water column, sediments and porewater. Dissolved oxygen (DO) decreased along the water column and quickly within the benthic chamber when aeration was not in operation, resulting in hypoxia (2.29 mg L-1) at the bottom and consequent increase in nutrient and metal(loid) concentrations. In contrast, DO levels increased during the activation of the forced aeration system, which proved effective in mitigating oxygen depletion and the efflux of metal(loid)s and nutrients into the overlying water.


Assuntos
Estuários , Metais , Oxigênio , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Oxigênio/análise , Metais/análise , Nutrientes/análise , Sedimentos Geológicos/química , Monitoramento Ambiental , Eutrofização , Água do Mar/química
4.
Talanta ; 276: 126203, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718648

RESUMO

T-2 toxin, a hazardous mycotoxin often present in cereals and products based on cereals, poses a substantial risk to humans and animals due to its high toxicity. The development of uncomplicated, quick and highly sensitive methods for detecting T-2 toxin is imperative. In this work, a portable sensing system was constructed using water column height as a readout device in combination with a controlled release system, which allows for an accurate quantitative analysis of T-2 toxin without the need for expensive instrumentation or skilled technicians. Hyaluronic acid (HA) hydrogel was constructed by double cross-linked DNA/aptamer hybrids with polyethyleneimine (PEI) and embedded with platinum nanoparticles (Pt NPs). The aptamer specifically bound to T-2 toxin in its presence, resulting in the disruption of the hydrogel and subsequent release of the Pt NPs. These Pt NPs were later mixed with a solution of H2O2 in a confined reaction flask, leading to the decomposition of H2O2 into O2. A glass capillary tube containing a column of red water had been inserted into the cap of the reaction flask, and the low solubility of O2 led to an increase in pressure within the reaction unit, causing the red water column to rise. There is a good linear correlation between the height of the capillary liquid level and the T-2 toxin concentration in the range of 20 ng/mL to 6 µg/mL. The system has been successfully used to detect T-2 toxin in samples of barley tea and corn.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Platina , Toxina T-2 , Toxina T-2/análise , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Platina/química , Água/química , DNA/química , DNA/análise , Hidrogéis/química , Limite de Detecção , Ácido Hialurônico/química , Polietilenoimina/química
5.
Sci Total Environ ; 937: 173538, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38802009

RESUMO

Many researchers have evaluated the fishery carbon sink potential of bivalve aquaculture, with most studies focusing on the Life Cycle Assessment (LCA) of individual bivalves, and there is currently no consensus on whether bivalves are carbon sinks or carbon sources. It is worth noting that most studies have not considered the impact of bivalve aquaculture on ecosystems when evaluating its carbon sink potential. In this context, based on existing literature, this article aims to comprehensively review the effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. In general, our findings revealed that moderate and low stocking densities of bivalve aquaculture do not lead to significant changes in the abundance of phytoplankton, but it does indeed alter the phytoplankton community structure from dominated by huge diatom with lower carbon densities to dominated by small phytoplankton with higher carbon densities. Therefore, bivalve aquaculture may increase the total carbon storage in the water column. In addition, bivalve aquaculture also increases the sedimentation rate of suspended particles, increasing the rate of carbon burial, especially in low-energy environment and shallow water areas. The findings of this article fill the knowledge gap of fishery carbon sink in bivalve aquaculture from an ecosystem perspective.


Assuntos
Aquicultura , Bivalves , Sequestro de Carbono , Carbono , Sedimentos Geológicos , Animais , Bivalves/metabolismo , Sedimentos Geológicos/química , Carbono/análise , Ecossistema , Monitoramento Ambiental , Fitoplâncton
6.
Microorganisms ; 12(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38674652

RESUMO

Prokaryotes play a key role in particulate organic matter's decomposition and remineralization processes in the vertical scale of seawater, and prokaryotes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity of the vertical distribution in the trenches. The composition and distribution of prokaryotes in the water columns and benthic boundary layers of the Kermadec Trench and the Diamantina Trench were investigated using high-throughput sequencing and quantitative PCR, together with the Biolog EcoplateTM microplates culture to analyze the microbial metabolic activity. Microbial communities in both trenches were dominated by Nitrososphaera and Halobacteria in archaea, and by Alphaproteobacteria and Gammaproteobacteria in bacteria, and the microbial community structure was significantly different between the water column and the benthic boundary layer. At the surface water, amino acids and polymers were used preferentially; at the benthic boundary layers, amino acids and amines were used preferentially. Cooperative relationships among different microbial groups and their carbon utilization capabilities could help to make better use of various carbon sources along the water depths, reflected by the predominantly positive relationships based on the co-occurrence network analysis. In addition, the distinct microbial metabolic activity detected at 800 m, which was the lower boundary of the twilight zone, had the lowest salinity and might have had higher proportions of refractory carbon sources than the shallower water depths and benthic boundary layers. This study reflected the initial preference of the carbon source by the natural microbes in the vertical scale of different trenches and should be complemented with stable isotopic tracing experiments in future studies to enhance the understanding of the complex carbon utilization pathways along the vertical scale by prokaryotes among different trenches.

7.
Water Res ; 257: 121648, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663215

RESUMO

Reconstructing transient states presents significant challenges, particularly within complex pipe networks. These challenges arise due to nonlinear behaviours, inherent uncertainties in the system, and limitations in data availability. This work proposed a novel approach employing Physics-Informed Neural Networks (PINN) to reconstruct transient states in pipe networks, even with limited sensor data. To integrate the complex topology of pipe network systems into neural networks, the method integrates the PINN framework with an efficient elastic water column (EWC) model which can be simply formulated across diverse pipe network configurations. The results showed the proposed PINN method can accurately reconstruct the pressure and flow variation at unmonitored locations, even provided with noisy data at a limited number of locations. One of its advantages lies in its ability to effectively capture extreme values that hold potential significance for pipe infrastructure, providing a promising avenue for pipe failure analysis and enhanced safety management. Laboratory experiments have also been conducted to validate the efficacy and reliability of this method, thus further underlining its potential for real-world applications.


Assuntos
Redes Neurais de Computação , Pressão , Modelos Teóricos , Abastecimento de Água
8.
Sci Rep ; 14(1): 8802, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627480

RESUMO

This study explores the impact of a wind storm on sediment resuspension and marine biogeochemical dynamics. Additionally, the storm took place during an expedition researching bottom trawling, enabling the direct comparison of certain natural and fisheries-related disturbances. The storm was initiated by a decline in atmospheric pressure and a 2 h period of gale force winds, which was followed by over 40 h of elevated bottom currents. Storm induced turbidity, potentially a cumulative post-fishing impact, was remarkably higher compared to what was observed in a recent trawling event. Storm-induced mixing and movement of water masses led to decreased silicate and increased phosphate concentrations in the water column, accompanied by lower salinity and higher fluorescence. The erosion depth of the seabed averaged around 0.3 cm during the peak turbidity period. Trawl-induced erosion in the area has been measured at over twice that depth, and has been linked to intermittent reductions in near-bed oxygen levels. In contrast, storm-induced turbidity coincided with increased oxygen due to wave mixing, suggesting inherent differences in how trawling and storms can oxidize reduced substances. These findings suggest that storms have a greater regional impact, whereas the local impacts of bottom trawling on biogeochemistry can be more significant.


Assuntos
Efeitos Antropogênicos , Pesqueiros , Caça , Água , Oxigênio , Ecossistema
9.
Dis Aquat Organ ; 158: 75-80, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661139

RESUMO

In Great Bay Estuary, New Hampshire, USA, Haplosporidium nelsoni and Perkinsus marinus are 2 active pathogens of the eastern oyster Crassostrea virginica (Gmelin), that cause MSX (multinucleated sphere with unknown affinity 'X') and dermo mortalities, respectively. Whereas studies have quantified infection intensities in oyster populations and determined whether these parasites exist in certain planktonic organisms, no studies thus far have examined both infectious agents simultaneously in water associated with areas that do and do not have oyster populations. As in other estuaries, both organisms are present in estuarine waters throughout the Bay, especially during June through November, when oysters are most active. Waters associated with oyster habitats had higher, more variable DNA concentrations from these pathogenic organisms than waters at a non-oyster site. This finding allows for enhanced understanding of disease-causing organisms in New England estuaries, where oyster restoration is a priority.


Assuntos
Alveolados , Estuários , Haplosporídios , Animais , Haplosporídios/fisiologia , New Hampshire , Alveolados/isolamento & purificação , Crassostrea/parasitologia , Baías
10.
Ultrasonics ; 139: 107276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461795

RESUMO

Conventional water immersion ultrasonic testing faces limitations due to factors such as environmental conditions, workpiece dimensions, corrosion, and resource wastage. Contact-based coupling methods, which employ coupling media or specific coupling structures, offer a convenient approach to coupling acoustic waves and reduce signal attenuation. However, these methods are time-sensitive and lack adaptability to uneven surfaces, particularly when dealing with workpieces featuring subtle undulations, resulting in significant signal decay. This paper presents an ultrasonic coupling method based on a flexible capillary water column array. By employing a stable and flexible water column array within the micro-channels as the coupling medium, stable contact-based transmission of ultrasonic signals is achieved. The influence of water column array unit dimensions and array structures is explored through theoretical analysis and experimentation, demonstrating lower energy attenuation compared to reductions in water column area. Notably, the tests revealed the method's adaptability at oblique angles below 20°, which surpasses the performance of submerged detection at similar angles. This research presents an innovative and stable approach for contact-based ultrasonic coupling testing, particularly in scenarios involving dynamic contact scanning between ultrasonic waves and workpieces.

11.
Microorganisms ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543525

RESUMO

Free-living amoebae (FLA) are widely distributed protozoa in both natural and artificial environments such as drinking water. In addition to the ability of all FLA to transport various pathogenic microorganisms, certain species, such as Acanthamoeba spp. or Balamuthia mandrillaris, have intrinsic pathogenic abilities and cause severe cerebral infections. Previous work has shown an enrichment of FLA cysts in biofilm developed in upper levels of Drinking Water Storage Towers (DWSTs), suggesting that differences in densities of FLA cysts may play a role in their unequal distribution in the water column. To evaluate this hypothesis, a model of a water column was created for this study and used to analyze the vertical distribution of cysts of the FLA Acanthamoeba castellanii, Vermamoeba vermiformis, and Balamuthia mandrillaris from 0 to 23 weeks. Interestingly, our data showed that the cysts of both A. castellanii and V. vermiformis were enriched in upper water levels during their aging. However, B. mandrillaris cysts were equally distributed in the water column during the entire study. These results show that, in addition to the role of water level variation in the DWST, some FLA cysts can become less dense during their aging, which contributes to their enrichment in upper water and therefore biofilm levels.

12.
J Hazard Mater ; 469: 133956, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460258

RESUMO

Polyhalogenated carbazoles (PHCZs), an emerging persistent halogenated organic pollutant, have been detected in the environment. However, our understanding of PHCZs in the ocean remains limited. In this study, 47 seawater samples (covering 50 - 4000 m) and sediment samples (49 surface and 3 cores) were collected to investigate the occurrence and spatial distribution patterns of carbazole and its halogenated derivants (CZDs) in the Western Pacific Ocean. In seawater, the detection frequencies of CZ (97.87%) and 3-CCZ (57.45%) were relatively high. In addition, the average concentration of ΣPHCZs in the upper water (< 150 m, 0.23 ± 0.21 ng/L) was significantly lower than that in the deep ocean (1000 - 4000 m, 0.65 ± 0.56 ng/L, P < 0.05), which may indicate the vertical transport of PHCZs in the marine environment. The concentration of ΣCZDs in surface sediment ranges from 0.46 to 6.48 ng/g (mean 1.54 ng/g), among which CZ and 36-CCZ were the predominant components. Results from sediment cores demonstrate a noteworthy negative correlation between the concentration of CZDs and depth, indicating the ongoing natural degradation process occurring in sediment cores over a long period. This study offers distinctive insights into the occurrence, composition, and vertical features of CZDs in oceanic environments.

13.
Water Res ; 255: 121467, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508041

RESUMO

Algal blooms have been identified as one major threat to coastal safety and marine ecosystem functioning, but the dominant mechanism regulating the formation of algal blooms remains controversial, ranging from physical control (via water column stability), the chemical control (via coastal nutrients) to joint control. Here we leveraged the unique data collected in the Hong Kong water over the annual cycle and past three decades, including direct observations of algal blooms and coastal nutrients and process model output of water column stability, and evaluated the differential competing hypotheses in regulating algal blooms. Our results demonstrate that the joint mechanism rather than the single mechanism effectively predicts all algal blooms. Meanwhile, we observed that the adequate nutrients (phosphate, PO43-) significantly originate from coastal groundwater. The production and fluctuation of PO43- in beach aquifers are primarily governed by groundwater temperature, leading to a sustained and sufficient supply of PO43- in a low groundwater temperature environment. Furthermore, along with submarine groundwater discharge (SGD), the ongoing release of PO43- in groundwater enters coastal waters and serves as sufficient nourishment for promoting algal blooms in coastal areas. These results highlight the importance of both physical and chemical mechanisms, as well as SGD, in regulating coastal algal blooms. These findings have practical implications for the prevention of coastal algal blooms and provide insights into mariculture, water security, and the sustainability of coastal ecosystems.

14.
J Hazard Mater ; 469: 133926, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484661

RESUMO

There have been growing apprehensions and concerns regarding the increasing presence of plastic pollutants in the holiest river of India, the Ganga, and its major tributary, Yamuna. In response to this issue, the current study aimed to conduct a comprehensive investigation of the seasonal and spatial distribution of macro to microplastics (MPs) in the surface water, water column, and sediments from the River Ganga and Yamuna. MP samples were collected from various points of these Rivers, including upstream, downstream, and drainage points around the vicinity of Haridwar, Agra, Prayagraj, and Patna cities. With a significant seasonal variation, the estimated MPs and plastic flux were higher during the wet season than during the dry season. MPs sized 300 µm-1 mm and fibre-shaped blue and black colored MPs were pre-dominant in both rivers. Polyacrylamide, polyamide, and polyvinyl chloride were the most ascertained polymers. MPs including hazardous polymers (hazard score >1000) may pose a risk to the population of Indo-Gangetic Plain via direct and indirect exposure to MPs. The information provided in this study could serve as a starting point for the action plan required by municipal corporations to mitigate plastic pollution and target the possible sources at each location.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Microplásticos , Plásticos , Estações do Ano , Poluentes Químicos da Água/análise , Água , Fatores de Risco , Sedimentos Geológicos
15.
Environ Sci Pollut Res Int ; 31(15): 23178-23192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418781

RESUMO

Microplastics (MPs) are a pervasive pollutant in the marine environment. Pantai Teluk Likas in Sabah, Malaysia is one of the most visited beaches where tourism, recreational, and fisheries activities are high in this area. Hence, the area suffers from severe pollution, particularly from plastics. This study aims to quantify the microplastic composition in terms of color, shapes, and polymer types in marine bivalves (Anadara granosa, Glauconome virens, and Meretrix lyrata) and water column samples from Pantai Teluk Likas. All samples were digested using sodium hydroxide (NaOH) and incubated in the oven for at least 48 h. Serial filtration was done for each sample before they were observed under the dissecting microscope. The microplastics were identified and counted based on their physical attributes which were colors and shapes. The functional group of the polymers was determined using FTIR spectroscopy. Microplastics were found present in all samples collected. G. virens had the highest abundance of microplastics at 113.6 ± 6.5 particles/g followed by M. lyrata at 78.4 ± 3.7 particles/g. On the contrary, A. granosa had the least microplastics with an abundance of 24.4 ± 0.6 particles/g. Meanwhile, 110.0 ± 36.2 particles/L of microplastics were found in water column samples from Pantai Teluk Likas. Based on the analysis, fibers were the most common shape in bivalves, while fibers and films were common in the water column. In terms of colors, black, blue, and red were a few of the most abundant colors observed in both samples. The most common polymer detected in all bivalve species and water column samples is polycarbonate (PC), followed by polymethyl methacrylate (PMMA). Future study that focuses on the correlation between microplastic abundance in the marine biota and the water column is recommended to better understand microplastic availability and exposure.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/análise , Malásia , Água/análise , Bornéu , Monitoramento Ambiental , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 915: 170155, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38228241

RESUMO

Plastic pollution in the Southern Ocean around Antarctica is a growing concern, but many areas in this vast region remain unexplored. This study provides the first comprehensive analysis of marine microplastic (MPs) concentrations in Potter Cove, located near the Argentinian Carlini research station on 25 de Mayo/King George Island, Antarctica. Water samples were collected at 14 sites within the cove, representing various influences from the station's activities. Two sampling methods were used: a 5 L Niskin bottle and an in-situ filtering device called Microfilter, allowing for large water volumes to be filtered. MPs were found in 100 % of the samples. Microfilter samples ranged from 0.02 to 2.14 MPs/L, with a mean concentration of 0.44 ± 0.44 MPs/L. Niskin bottle samples showed concentrations from 0.40 to 55.67 MPs/L, with a mean concentration of 19.03 ± 18.21 MPs/L. The dominant types of MPs were anthropogenic black, transparent, and pink microfibers (MFs) measuring between 0.11 and 3.6 mm (Microfilter) and 0.06 to 7.96 mm (Niskin bottle), with a median length of 0.01 mm for both methods. Transparent and black irregular microfragments (MFRs) with diameters from 0.10 to 5.08 mm and a median diameter of 0.49 mm were also prevalent. FTIR-spectroscopy revealed the presence of 14 types of polymers. Cellulose-based materials and polyethylene terephthalate were the most abundant in MFs, while polyurethanes and styrene-based copolymers dominated in MFRs. MPs were more abundant near the Carlini station. Compared to other coastal Antarctic areas, the MPs in the cove were relatively abundant and mostly smaller than 1 mm. Local activities on the island were identified as the primary source of MPs in the cove, and the cyclonic water circulation likely affects the distribution of small-sized particles. To protect the ecosystem, reducing plastic usage, improving waste management, regulating MPs debris, and enhancing wastewater practices are essential.

17.
Mar Pollut Bull ; 199: 116005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219292

RESUMO

This study examines the mercury content in the marine matrices water column, surface sediment and benthic invertebrates of Coronel and Coliumo bays, central Chile, under winter and summer conditions. Coronel Bay has been subject to intense industrialization in the last three decades, while Coliumo Bay remains as a fisherman's cove and a popular summer tourism destination. Our results reveal significantly higher mercury concentrations in the three environmental matrices analyzed for Coronel Bay, while Coliumo Bay exhibits levels within the range considered natural. Moreover, the mercury levels in Coronel Bay exceed the optimal criteria for aquatic life, indicating a deterioration in environmental quality of this locality. Industrial development is identified as main factor explaining the differences observed between these two coastal water bodies. This study presents the most updated record of mercury levels in the Southeast Pacific and represents the first comprehensive evaluation of marine environmental matrices in two bays with divergent activities.


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Chile , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água do Mar , Água , Biota , Baías , Sedimentos Geológicos
18.
Environ Pollut ; 342: 123065, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043766

RESUMO

The presence of antimicrobial resistance genes (ARGs) in the microbiome of freshwater communities is a consequence of thousands of years of evolution but also of the pressure exerted by anthropogenic activities, with potential negative impact on environmental and human health. In this study, we investigated the distribution of ARGs in Lake Tanganyika (LT)'s water column to define the resistome of this ancient lake. Additionally, we compared the resistome of LT with that of Lake Baikal (LB), the oldest known lake with different environmental characteristics and a lower anthropogenic pollution than LT. We found that richness and abundance of several antimicrobial resistance classes were higher in the deep water layers in both lakes. LT Kigoma region, known for its higher anthropogenic pollution, showed a greater richness and number of ARG positive MAGs compared to Mahale. Our results provide a comprehensive understanding of the antimicrobial resistome of LT and underscore its importance as reservoir of antimicrobial resistance. In particular, the deepest water layers of LT are the main repository of diverse ARGs, mirroring what was observed in LB and in other aquatic ecosystems. These findings suggest that the deep waters might play a crucial role in the preservation of ARGs in aquatic ecosystems.


Assuntos
Anti-Infecciosos , Microbiota , Humanos , Lagos , Água , Tanzânia , Genes Bacterianos , Antibacterianos
19.
Med Eng Phys ; 120: 104036, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37838410

RESUMO

We present a calibration system called Dried Water Column (DWC). It applies pressure on a sensor with a latex finger filled with water, which pressure is controlled with a water column. This is intended to mimic the way the deformable tongue mechanically interacts with the hard palate. We show that, once some specificities of the elastic/plastic behavior of the latex finger are taken into account, namely the softening due to Mullins Effect and the non-elastic deformation occurring above a certain pressure level, the DWC provides a reliable measure of the linear relation between the pressure and the output voltage of the sensor within the limited pressure range [0, 2.5 kPa]. Such a precise calibration would not be possible with a rigid actuator, which position on the sensor can dramatically influence the measures. Extrapolating the linear relationship thus determined to a larger pressure range compatible with speech production and swallowing ([0, 35 kPa]), is possible once it has been verified that the behavior of the sensor is linear over this pressure range. This can be done with any rigid or semi rigid actuator. This reliable calibration procedure can be easily reproduced in any laboratory, and can be applied to any pressure sensor.


Assuntos
Látex , Palato Duro , Humanos , Água , Calibragem , Pressão , Língua , Deglutição
20.
Appl Environ Microbiol ; 89(11): e0102723, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37882569

RESUMO

IMPORTANCE: The contribution of non-cyanobacterial diazotrophs (NCDs) to total N2 fixation in the marine water column is unknown, but their importance is likely constrained by the limited availability of dissolved organic matter and low O2 conditions. Light could support N2 fixation and growth by NCDs, yet no examples from bacterioplankton exist. In this study, we show that the phototrophic NCD, Rhodopseudomonas sp. BAL398, which is a member of the diazotrophic community in the surface waters of the Baltic Sea, can utilize light. Our study highlights the significance of biofilm formation for utilizing light and fixing N2 under oxic conditions and the role of cell plasticity in regulating these processes. Our findings have implications for the general understanding of the ecology and importance of NCDs in marine waters.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Água do Mar/microbiologia , Plasticidade Celular , Cianobactérias/metabolismo , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA