RESUMO
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
RESUMO
Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.
Assuntos
Apoptose , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Replicação do DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related deaths worldwide. Adavosertib (AZD1775), a small molecule inhibitor of WEE1 kinase, abrogates G2/M cell cycle arrest and induces double-stranded DNA breaks. According to previous findings, adavosertib, in combination with other DNA-damaging agents, causes premature mitosis and cell death in p53-mutated cancer cells mainly via abrogation of the G2/M cell cycle checkpoint. This study aims to evaluate the inhibition of WEE1 kinase by adavosertib as monotherapy in the TP53-wildtype human CRC cell line HCT116. MATERIALS AND METHODS: In this study, HCT116 cells were treated with different concentrations of adavosertib for 24 to 72 hours. Cell viability was assessed by Water-Soluble Tetrazolium 1 (WST-1) assay and crystal violet assays. Cell migration was evaluated by the wound healing assay. Cell cycle distribution and apoptosis were analyzed by flow cytometry. RESULTS: The IC50 value of adavosertib for the HCT116 cell line was 0.1310 µM. Adavosertib monotherapy (both 0.125 and 0.250 µM) significantly reduced cell viability, inhibited cell migration and abrogated intra-S phase cell cycle arrest. In addition, 0.250 µM of adavosertib significantly induced apoptosis in HCT116 cells. CONCLUSION: Adavosertib effectively inhibits the TP53-wildtype HCT116 cells via the abrogation of intra-S phase cell cycle arrest. Our findings suggest that adavosertib monotherapy may be a potential targeted therapy for CRC.
Assuntos
Apoptose , Neoplasias Colorretais , Pirazóis , Pirimidinonas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Pirimidinonas/farmacologia , Células HCT116 , Pirazóis/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Deep learning has gained increasing attention in recent years, yielding promising results in hit screening and molecular optimization. Herein, we employed an efficient strategy based on multiple deep learning techniques to optimize Wee1 inhibitors, which involves activity interpretation, scaffold-based molecular generation, and activity prediction. Starting from our in-house Wee1 inhibitor GLX0198 (IC50 = 157.9 nM), we obtained three optimized compounds (IC50 = 13.5 nM, 33.7 nM, and 47.1 nM) out of five picked molecules. Further minor modifications on these compounds led to the identification of potent Wee1 inhibitors with desirable inhibitory effects on multiple cancer cell lines. Notably, the best compound 13 exhibited superior cancer cell inhibition, with IC50 values below 100 nM in all tested cancer cells. These results suggest that deep learning can greatly facilitate decision-making at the stage of molecular optimization.
RESUMO
Tumor suppressor p53-mediated cell cycle arrest and DNA damage repair may exert cytoprotective effects against cancer therapies, including WEE1 inhibition. Considering that p53 activation can also lead to multiple types of cell death, the role of this tumor suppressor in WEE1 inhibitor-based therapies remains disputed. In this study, we reported that nucleolar stress-mediated p53 activation enhanced the WEE1 inhibitor AZD1775-induced ferroptosis to suppress lung cancer growth. Our findings showed that AZD1775 promoted ferroptosis by blocking cystine uptake, an action similar to that of Erastin. Meanwhile, inhibition of WEE1 by the WEE1 inhibitors or siRNAs induced compensatory upregulation of SLC7A11, which conferred resistance to ferroptosis. Mechanistically, AZD1775 prevented the enrichment of H3K9me3, a histone marker of transcriptional repression, on the SLC7A11 promoter by repressing the expression of the histone methyltransferase SETDB1, thereby enhancing NRF2-mediated SLC7A11 transcription. This finding was also validated using the H3K9me3 inhibitor BRD4770. Remarkably, we found that the nucleolar stress-inducing agent Actinomycin D (Act. D) inhibited SLC7A11 expression by activating p53, thus augmenting AZD1775-induced ferroptosis. Moreover, the combination of AZD1775 and Act. D synergistically suppressed wild-type p53-harboring lung cancer cell growth both in vitro and in vivo. Altogether, our study demonstrates that AZD1775 promotes ferroptosis by targeting cystine uptake but also mediates the adaptive activation of SLC7A11 through the WEE1-SETDB1 cascade and NRF2-induced transcription, and inhibition of SLC7A11 by Act. D boosts the anti-tumor efficacy of AZD1775 by enhancing ferroptosis in cancers with wild-type p53.
RESUMO
BACKGROUND: Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20-30%) and lacks of effective treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 is the first reported drug with inhibitory activity against both Wee1 and PKMYT1. METHODS: Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evaluated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein-protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public database and assessed their prognostic implications with Kaplan-Meier curves. RESULT: PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. Moreover, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apoptosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apoptotic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 and γ-H2AX in LUSCs, suggesting involvement in DNA damage. CONCLUSIONS: In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.
RESUMO
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit.
RESUMO
Glioblastoma is characterized by a pronounced resistance to therapy with dismal prognosis. Transcriptomics classify glioblastoma into proneural (PN), mesenchymal (MES) and classical (CL) subtypes that show differential resistance to targeted therapies. The aim of this study was to provide a viable approach for identifying combination therapies in glioblastoma subtypes. Proteomics and phosphoproteomics were performed on dasatinib inhibited glioblastoma stem cells (GSCs) and complemented by an shRNA loss-of-function screen to identify genes whose knockdown sensitizes GSCs to dasatinib. Proteomics and screen data were computationally integrated with transcriptomic data using the SamNet 2.0 algorithm for network flow learning to reveal potential combination therapies in PN GSCs. In vitro viability assays and tumor spheroid models were used to verify the synergy of identified therapy. Further in vitro and TCGA RNA-Seq data analyses were utilized to provide a mechanistic explanation of these effects. Integration of data revealed the cell cycle protein WEE1 as a potential combination therapy target for PN GSCs. Validation experiments showed a robust synergistic effect through combination of dasatinib and the WEE1 inhibitor, MK-1775, in PN GSCs. Combined inhibition using dasatinib and MK-1775 propagated DNA damage in PN GCSs, with GCSs showing a differential subtype-driven pattern of expression of cell cycle genes in TCGA RNA-Seq data. The integration of proteomics, loss-of-function screens and transcriptomics confirmed WEE1 as a target for combination with dasatinib against PN GSCs. Utilizing this integrative approach could be of interest for studying resistance mechanisms and revealing combination therapy targets in further tumor entities.
RESUMO
Inhibition of WEE1, a key regulator of the G2/M checkpoint of the cell cycle, induces apoptosis by initiating mitosis without repairing DNA damage. However, the effects of WEE1 inhibitors on the tumor immune microenvironment in colorectal cancer (CRC) remain unclear. Here, we investigated the association between WEE1 expression and CRC clinicopathological features using surgically resected CRC specimens and assessed the antitumor effects of a WEE1 inhibitor using CRC cell lines and orthotopic transplantation mouse models. WEE1 expression was not correlated with the clinicopathological features of CRC. The WEE1 inhibitor suppressed cell proliferation in a concentration-dependent manner in all CRC cell lines. It also increased the percentage of cells in the G2/M phase and apoptotic cells, especially in cell lines with p53 mutations, but did not alter these cell percentages in most p53 wild-type cell lines. In the orthotopic mouse model of CRC, tumor volume was significantly reduced in the WEE1 inhibitor-treated group compared to that in the control group. RNA sequencing and immunohistochemistry analyses of mouse tumors revealed that treatment with the WEE1 inhibitor activated tumor immunity and suppressed stromal reactions. These results demonstrate the potential antitumor effects of WEE1 inhibitors in CRC, particularly in patients with p53 mutations.
RESUMO
BACKGROUND: WEE1 is a critical kinase in the DNA damage response pathway and has been shown to be effective in treating serous uterine cancer. However, its role in gliomas, specifically low-grade glioma (LGG), remains unclear. The impact of DNA methylation on WEE1 expression and its correlation with the immune landscape in gliomas also need further investigation. METHODS: This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) and utilized various bioinformatics tools to analyze gene expression, survival, gene correlation, immune score, immune infiltration, genomic alterations, tumor mutation burden, microsatellite instability, clinical characteristics of glioma patients, WEE1 DNA methylation, prognostic analysis, single-cell gene expression distribution in glioma tissue samples, and immunotherapy response prediction based on WEE1 expression. RESULTS: WEE1 was upregulated in LGG and glioblastoma (GBM), but it had a more significant prognostic impact in LGG compared to other cancers. High WEE1 expression was associated with poorer prognosis in LGG, particularly when combined with wild-type IDH. The WEE1 inhibitor MK-1775 effectively inhibited the proliferation and migration of LGG cell lines, which were more sensitive to WEE1 inhibition. DNA methylation negatively regulated WEE1, and high DNA hypermethylation of WEE1 was associated with better prognosis in LGG than in GBM. Combining WEE1 inhibition and DNA methyltransferase inhibition showed a synergistic effect. Additionally, downregulation of WEE1 had favorable predictive value in immunotherapy response. Co-expression network analysis identified key genes involved in WEE1-mediated regulation of immune landscape, differentiation, and metastasis in LGG. CONCLUSION: Our study shows that WEE1 is a promising indicator for targeted therapy and prognosis evaluation. Notably, significant differences were observed in the role of WEE1 between LGG and GBM. Further investigation into WEE1 inhibition, either in combination with DNA methyltransferase inhibition or immunotherapy, is warranted in the context of LGG.
Assuntos
Neoplasias Encefálicas , Proteínas de Ciclo Celular , Metilação de DNA , Glioma , Imunoterapia , Proteínas Tirosina Quinases , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Prognóstico , Glioma/genética , Glioma/patologia , Glioma/terapia , Glioma/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Feminino , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proliferação de Células/genética , MasculinoRESUMO
Cancer cells lacking functional p53 exhibit poor prognosis, necessitating effective treatment strategies. Inhibiting WEE1, the G2/M cell cycle checkpoint gatekeeper, represents a promising approach for treating p53-deficient NSCLC. Here, we investigate the connection between p53 and WEE1, as well as explore a synergistic therapeutic approach for managing p53-deficient NSCLC. Our study reveals that p53 deficiency upregulates both protein levels and kinase activity of WEE1 by inhibiting its SUMOylation process, thereby enhancing the susceptibility of p53-deficient NSCLC to WEE1 inhibitors. Furthermore, we demonstrate that the WEE1 inhibitor Adavosertib induces intracellular lipid peroxidation, specifically in p53-deficient NSCLC cells, suggesting potential synergy with pro-oxidant reagents. Repurposing Disulfiram (DSF), an alcoholism medication used in combination with copper (Cu), exhibits pro-oxidant properties against NSCLC. The levels of WEE1 protein in p53-deficient NSCLC cells treated with DSF-Cu exhibit a time-dependent increase. Subsequent evaluation of the combination therapy involving Adavosertib and DSF-Cu reveals reduced cell viability along with smaller tumor volumes and lighter tumor weights observed in both p53-deficient cells and xenograft models while correlating with solute carrier family 7-member 11 (SLC7A11)/glutathione-regulated ferroptosis pathway activation. In conclusion, our findings elucidate the molecular interplay between p53 and WEE1 and unveil a novel synergistic therapeutic strategy for treating p53-deficient NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ciclo Celular , Cobre , Dissulfiram , Ferroptose , Neoplasias Pulmonares , Proteínas Tirosina Quinases , Proteína Supressora de Tumor p53 , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Ferroptose/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Dissulfiram/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Cobre/metabolismo , Camundongos , Pirazóis/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Sinergismo Farmacológico , Pirimidinonas/farmacologiaRESUMO
Patients with small-cell lung cancer (SCLC) are in dire need of more effective therapeutic options. Frequent disruption of the G1 checkpoint in SCLC cells creates a dependency on the G2/M checkpoint to maintain genomic integrity. Indeed, in pre-clinical models, inhibiting the G2/M checkpoint kinase WEE1 shows promise in inhibiting SCLC growth. However, toxicity and acquired resistance limit the clinical effectiveness of this strategy. Here, using CRISPR-Cas9 knockout screens in vitro and in vivo, we identified multiple factors influencing the response of SCLC cells to the WEE1 kinase inhibitor AZD1775, including the GCN2 kinase and other members of its signaling pathway. Rapid activation of GCN2 upon AZD1775 treatment triggers a stress response in SCLC cells. Pharmacological or genetic activation of the GCN2 pathway enhances cancer cell killing by AZD1775. Thus, activation of the GCN2 pathway represents a promising strategy to increase the efficacy of WEE1 inhibitors in SCLC.
Assuntos
Proteínas de Ciclo Celular , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Pirimidinonas , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Pirazóis/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos NusRESUMO
Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.
Assuntos
Apoptose , Proteínas de Ciclo Celular , Dano ao DNA , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Animais , Pirazóis , PirimidinonasRESUMO
Adavosertib (AZD1775) is a potent small-molecule inhibitor of Wee1 kinase. This analysis utilized pharmacokinetic data from 8 Phase I/II studies of adavosertib to characterize the population pharmacokinetics of adavosertib in patients (n = 538) with solid tumors and evaluate the impact of covariates on exposure. A nonlinear mixed-effects modeling approach was employed to estimate population and individual parameters from the clinical trial data. The model for time dependency of apparent clearance (CL) was developed in a stepwise manner and the final model validated by visual predictive checks (VPCs). Using an adavosertib dose of 300 mg once daily on a 5 days on/2 days off dosing schedule given 2 weeks out of a 3-week cycle, simulation analyses evaluated the impact of covariates on the following exposure metrics at steady state: maximum concentration during a 21-day cycle, area under the curve (AUC) during a 21-day cycle, AUC during the second week of a treatment cycle, and AUC on day 12 of a treatment cycle. The final model was a linear 2-compartment model with lag time into the dosing compartment and first-order absorption into the central compartment, time-varying CL, and random effects on all model parameters. VPCs and steady-state observations confirmed that the final model satisfied all the requirements for reliable simulation of randomly sampled Phase I and II populations with different covariate characteristics. Simulation-based analyses revealed that body weight, renal impairment status, and race were key factors determining the variability of drug-exposure metrics.
Assuntos
Modelos Biológicos , Neoplasias , Pirazóis , Pirimidinonas , Humanos , Neoplasias/tratamento farmacológico , Pirazóis/farmacocinética , Pirazóis/sangue , Pirazóis/administração & dosagem , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Pirimidinonas/farmacocinética , Pirimidinonas/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Área Sob a Curva , Ensaios Clínicos Fase I como Assunto , Idoso de 80 Anos ou mais , Adulto Jovem , Simulação por Computador , Ensaios Clínicos Fase II como Assunto , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/sangueRESUMO
WEE1 kinase is involved in the G2/M cell cycle checkpoint control and DNA damage repair. A functional G2/M checkpoint is crucial for DNA repair in cancer cells with p53 mutations since they lack a functional G1/S checkpoint. Targeted inhibition of WEE1 kinase may cause tumor cell apoptosis, primarily, in the p53-deficient tumor, via bypassing the G2/M checkpoint without properly repairing DNA damage, resulting in genome instability and chromosomal deletion. This review aims to provide a comprehensive overview of the biological role of WEE1 kinase and the potential of WEE1 inhibitor (WEE1i) for treating gynecological malignancies. We conducted a thorough literature search from 2001 to September 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of WEE1i and gynecologic oncology. WEE1i has been shown to inhibit tumor activity and enhance the sensitivity of chemotherapy or radiotherapy in preclinical models, particularly in p53-mutated gynecologic cancer models, although not exclusively. Recently, WEE1i alone or combined with genotoxic agents has confirmed its efficacy and safety in Phase I/II gynecological malignancies clinical trials. Furthermore, it has become increasingly clear that other inhibitors of DNA damage pathways show synthetic lethality with WEE1i, and WEE1 modulates therapeutic immune responses, providing a rationale for the combination of WEE1i and immune checkpoint blockade. In this review, we summarize the biological function of WEE1 kinase, development of WEE1i, and outline the preclinical and clinical data available on the investigation of WEE1i for treating gynecologic malignancies.
Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Neoplasias dos Genitais Femininos , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Neoplasias dos Genitais Femininos/tratamento farmacológico , Neoplasias dos Genitais Femininos/enzimologia , Feminino , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Dano ao DNA/efeitos dos fármacosRESUMO
Podocyte loss in glomeruli is a fundamental event in the pathogenesis of chronic kidney diseases. Currently, mitotic catastrophe (MC) has emerged as the main cause of podocyte loss. However, the regulation of MC in podocytes has yet to be elucidated. The current work aimed to study the role and mechanism of p53 in regulating the MC of podocytes using adriamycin (ADR)-induced nephropathy. In vitro podocyte stimulation with ADR triggered the occurrence of MC, which was accompanied by hyperactivation of p53 and cyclin-dependent kinase (CDK1)/cyclin B1. The inhibition of p53 reversed ADR-evoked MC in podocytes and protected against podocyte injury and loss. Further investigation showed that p53 mediated the activation of CDK1/cyclin B1 by regulating the expression of Wee1. Restraining Wee1 abolished the regulatory effect of p53 inhibition on CDK1/cyclin B1 and rebooted MC in ADR-stimulated podocytes via p53 inhibition. In a mouse model of ADR nephropathy, the inhibition of p53 ameliorated proteinuria and podocyte injury. Moreover, the inhibition of p53 blocked the progression of MC in podocytes in ADR nephropathy mice through the regulation of the Wee1/CDK1/cyclin B1 axis. Our findings confirm that p53 contributes to MC in podocytes through regulation of the Wee1/CDK1/Cyclin B1 axis, which may represent a novel mechanism underlying podocyte injury and loss during the progression of chronic kidney disorder.
Assuntos
Proteína Quinase CDC2 , Proteínas de Ciclo Celular , Ciclina B1 , Mitose , Podócitos , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Podócitos/metabolismo , Podócitos/patologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Proteína de Leucina Linfoide-Mieloide/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/genéticaRESUMO
The clinical development of Kirsten rat sarcoma virus (KRAS)-G12C inhibitors for the treatment of KRAS-mutant lung cancer is limited by the presence of co-mutations, intrinsic resistance, and the emergence of acquired resistance. Therefore, innovative strategies for enhancing apoptosis in KRAS-mutated non-small cell lung cancer (NSCLC) are urgently needed. Through CRISPR-Cas9 knockout screening using a library of 746 crRNAs and drug screening with a custom library of 432 compounds, we discover that WEE1 kinase inhibitors are potent enhancers of apoptosis, particularly in KRAS-mutant NSCLC cells harboring TP53 mutations. Mechanistically, WEE1 inhibition promotes G2/M transition and reduces checkpoint kinase 2 (CHK2) and Rad51 expression in the DNA damage response (DDR) pathway, which is associated with apoptosis and the repair of DNA double-strand breaks, leading to mitotic catastrophe. Notably, the combined inhibition of KRAS-G12C and WEE1 consistently suppresses tumor growth. Our results suggest targeting WEE1 as a promising therapeutic strategy for KRAS-mutated NSCLC with TP53 mutations.
Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Mutação , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas p21(ras) , Proteína Supressora de Tumor p53 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Mutação/genética , Linhagem Celular Tumoral , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVES: GL-V9 exhibited anti-tumour effects on various types of tumours. This study aimed to verify if GL-V9 synergized with oxaliplatin in suppressing colorectal cancer (CRC) and to explore the synergistic mechanism. METHODS: The synergy effect was tested by MTT assays and the mechanism was examined by comet assay, western blotting and immunohistochemistry (IHC). Xenograft model was constructed to substantiated the synergy effect and its mechanism in vivo. RESULTS: GL-V9 was verified to enhance the DNA damage effect of oxaliplatin, so as to synergistically suppress colon cancer cells in vitro and in vivo. In HCT-116 cells, GL-V9 accelerated the degradation of Wee1 and induced the abrogation of cell cycle arrest and mis-entry into mitosis, bypassing the DNA damage response caused by oxaliplatin. Our findings suggested that GL-V9 binding to HSP90 was responsible for the degradation of Wee1 and the vulnerability of colon cancer cells to oxaliplatin. Functionally, overexpression of either HSP90 or WEE1 annulled the synergistic effect of GL-V9 and oxaliplatin. CONCLUSIONS: Collectively, our findings revealed that GL-V9 synergized with oxaliplatin to suppress CRC and displayed a promising strategy to improve the efficacy of oxaliplatin.
Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Sinergismo Farmacológico , Proteínas de Choque Térmico HSP90 , Camundongos Nus , Oxaliplatina , Proteínas Tirosina Quinases , Oxaliplatina/farmacologia , Humanos , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HCT116 , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Pirimidinonas/farmacologia , Pirimidinas/farmacologia , Pirazóis/farmacologiaRESUMO
Oral squamous cell carcinoma (OSCC) is a common and highly lethal epithelial cancer. This study aimed to confirm the role of METTL3 in promoting OSCC and investigate its specific underlying mechanisms. Expression of the METTL3, YTH domain-containing family 2 (YTHDF2), and WEE1 were examined in normal oral epithelial cells and OSCC cells. Cell functions were examined after overexpressing WEE1 in OSCC cells. MeRIP-qPCR analysis was used to detect WEE1 m6A levels in HOK, SCC25, and CAL27 cells. WEE1 and its m6A levels were evaluated in OSCC cells by knocking down METTL3/YTHDF2, assessing the interaction between METTL3/YTHDF2 and WEE1. The impact of METTL3 and YTHDF2 downregulation on WEE1 mRNA stability was also investigated. The tumor weight and volume in a nude mouse model of OSCC after overexpression of WEE1 and YTHDF2 were measured. Expression of Ki-67 and WEE1 in OSCC tissue was detected using immunohistochemistry. Compared to normal oral epithelial cells, METTL3 and YTHDF2 were upregulated in OSCC cells, while WEE1 was downregulated, and there was a negative correlation between WEE1 and METTL3/YTHDF2 expression. WEE1 overexpression inhibited proliferation, invasion, and migration while promoting apoptosis in OSCC cells. METTL3 and YTHDF2 bound to WEE1 mRNA. METTL3/YTHDF2 knockdown increased WEE1 levels and WEE1 mRNA stability. METTL3 inhibition reduced WEE1 m6A levels. Inhibition of METTL3 weakened the interaction between YTHDF2 and WEE1 mRNA. In vivo, overexpression of WEE1 suppressed OSCC development, which was reversed by overexpression of YTHDF2. METTL3 facilitates the progression of OSCC through m6A-YTHDF2-dependent downregulation of WEE1.