Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.069
Filtrar
1.
Physiol Rep ; 12(19): e70073, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358836

RESUMO

In persons with a spinal cord injury (SCI), resistance training using neuromuscular electrical stimulation (NMES-RT) increases lean mass in the lower limbs. However, whether protein supplementation in conjunction with NMES-RT further enhances this training effect is unknown. In this randomized controlled pilot trial, 15 individuals with chronic SCI engaged in 3 times/week NMES-RT, with (NMES+PRO, n = 8) or without protein supplementation (NMES, n = 7), for 12 weeks. Before and after the intervention, whole body and regional body composition (DXA) and fasting glucose and insulin concentrations were assessed in plasma. Adherence to the intervention components was ≥96%. Thigh lean mass was increased to a greater extent after NMES+PRO compared to NMES (0.3 (0.2, 0.4) kg; p < 0.001). Furthermore, fasting insulin concentration and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were decreased similarly in both groups (fasting insulin: 1 [-9, 11] pmol∙L-1; HOMA-IR: 0.1 [-0.3, 0.5] AU; both p ≥ 0.617). Twelve weeks of home-based NMES-RT increased thigh lean mass, an effect that was potentiated by protein supplementation. In combination with the excellent adherence and apparent improvement in cardiometabolic health outcomes, these findings support further investigation through a full-scale randomized controlled trial.


Assuntos
Composição Corporal , Terapia por Estimulação Elétrica , Treinamento Resistido , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Masculino , Treinamento Resistido/métodos , Feminino , Adulto , Projetos Piloto , Terapia por Estimulação Elétrica/métodos , Pessoa de Meia-Idade , Suplementos Nutricionais , Resistência à Insulina , Insulina/sangue , Proteínas Alimentares/administração & dosagem , Glicemia/metabolismo , Músculo Esquelético/metabolismo
2.
Food Chem X ; 23: 101745, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257490

RESUMO

Sustainable food production implements circular economic system, valuing side streams and minimizing waste. This study was aimed to develop a new food by fermenting a blend of dehulled sunflower seed protein powder (SSPP) and reconstituted bovine sweet whey powder (RSWP). Blends were inoculated with Lactococcus lactis B12 alone or in association with Saccharomyces cerevisiae L12, and fermentation proceeded until reaching pH 4.8. After in vitro static gastrointestinal digestion, RSWP and SSPP proteins were highly proteolyzed and the soluble nitrogen content was 69-71% of total nitrogen. In digests, 42-75 unique peptides were identified, and most of them weighed 500-1000 Da. Free amino acids accounted for 202-228 mg/g protein in digests. Few bioactive peptides derived from RSWP were identified. These findings demonstrated strong degradability of RSWP and SSPP proteins during digestion and shed light on nutritional properties exploitable for food applications of the developed fermented blend.

3.
Food Chem X ; 23: 101739, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39263336

RESUMO

Impacts of co-cold extrusion (≤50 °C) of whey protein isolate (WPI) and cysteine (Cys, 0, 20, 40, 60, 80 and 100 mmol/L) on its physicochemical, in vitro digestion and rheological properties were investigated. As Cys concentration increased, the emulsifying properties and in vitro digestibility of co-extruded WPI-Cys products showed an increasing trend. Specifically, when Cys reached 100 mmol/L, surface hydrophobicity, emulsification activity index (EAI), emulsification stability index (ESI) and in vitro stomach digestibility of the co-extruded WPI-Cys products increased by 205.07%, 77.51%, 193.95% and 71.81% compared with WPI, respectively. Principal component analysis (PCA) results further indicated that co-extruded WPI-Cys at a concentration of 100 mmol/L had the best functional properties. In addition, co-extruded WPI-Cys exhibited the strongest Péclet number (Pe) value and apparent viscosity at a Cys concentration of 100 mmol/L among all samples. Therefore, co-extrusion would be an effective method for modifying WPI, providing whey protein-based ingredients with excellent functional properties for food processing.

4.
Food Chem ; 463(Pt 1): 141092, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39255696

RESUMO

A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.

5.
Food Chem ; 463(Pt 1): 141123, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39260165

RESUMO

Milk oligosaccharides are high added value compounds that could be obtained by exploiting cheese whey, a byproduct of dairy industry. The objective was to compare the abundance and diversity of oligosaccharides in whey samples from domestic animals and humans. During fresh cheese making, whey samples were collected and analyzed by untargeted and targeted small molecule analysis using high-resolution mass-spectrometry. A great similarity in the metabolite profile between goat and sheep was observed. Up to 11 oligosaccharides were observed in the sheep whey from those typically found in humans. The concentration of 2'-Fucosyllactose (0.136 ± 0.055 g/L) and 3-Fucosyllactose (0.079 ± 0.009 g/L) were significantly higher (p-value <0.01) in sheep whey, while the concentration of 3'-Sialyllactose (0.826 ± 0.638 g/L) was higher in goat whey. No significant differences were observed between goat and sheep whey for the other oligosaccharides (p-value >0.05). Therefore, sheep and goat whey could become an important source of oligosaccharides through their revalorization.

6.
Int J Biol Macromol ; 279(Pt 4): 135322, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236946

RESUMO

The study aimed to investigating the mechanisms of relieved intestinal barrier damage by dynamic high-pressure microfluidization assisted with galactooligosaccharide- glycated whey protein isolate. The modifications changed the multi-structure, and the modified whey protein isolate could promote the proliferation of IEC-6 cells and contributed to the restoration of LPS-induced occludin damage in IEC-6 cells. Also, it could repair cyclophosphamide-induced ileal villus rupture and crypt destruction in BALB/c mice, significantly altered the abundance of dominant bacteria, which were associated with propionic acid, butyric acid, isovaleric acid, and valeric acid. Ileum transcriptomics revealed that the modified whey protein isolate significantly regulate of the levels of Cstad, Cyp11a1, and Hs6st2 genes, relating to the increase of propionic acid, isovaleric acid, and valeric acid. In conclusion, galactooligosaccharide- modified whey protein isolate could regulate the level of Cstad, Cyp11a1 and Hs6st2 genes by altering the gut microbial structure and the level of SCFAs, thereby repairing the intestinal barrier.

7.
J Dairy Sci ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265835

RESUMO

Fermented milk beverages have been known for years and are characterized by excellent health-promoting properties. Therefore, consumer attention has been drawn to this product type in recent years. In the presented research, the technology of production in laboratory and industrial scale of controlled fermentation of whey beverages containing sweet and sour organic cow's or goat's whey with the addition of organic fruit juices (apple, blackcurrant juice or Kamchatka berry), has been described. Food production on a laboratory scale involves small batch processes designed for experimentation and refinement, often with precise control over variables and conditions. In contrast, industrial-scale food production in enterprises focuses on large volume output with an emphasis on efficiency, consistency, and adherence to regulatory standards for mass consumption. In this study was examined the amino acid content and nutritional value of the obtained products. Tests were carried out on fermented whey drinks' microbiology and antioxidant properties. The significance was determined using an ANOVA (ANOVA)-each prepared drink was characterized by better antioxidant properties and nutritional values compared with product without juice addition. Microbiological examination proved that only one product was not fit for consumption according to the Polish norm. Using whey (goat and cow) as a base for a fermented beverage with enhanced health benefits is a positive step toward using products commonly regarded as waste.

8.
Int J Biol Macromol ; 280(Pt 1): 135585, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270912

RESUMO

Magnolol (Mag) is a promising natural compound with therapeutic potential for ulcerative colitis (UC). Here we designed and fabricated an oral food-grade whey protein isolate-Tremella fuciformis polysaccharides (WPI-TFPS) stabilized pickering emulsions to encapsulate Mag (Mag-WPI-TFPS) for targeted treatment of UC. With the assistance of the WPI-TFPS, pickering emulsions were well encapsulated and formed stable microparticles with a particle size of approximately 9.49 ± 0.047 µm, a 93.63 ± 0.21 % encapsulation efficiency and a loading efficiency of 21.53 ± 0.01 %. In vitro, the formulation exhibited sustained-release properties in simulated colon fluid with a cumulative release rate of 60.78 % at 48 h. In vivo, the Mag-WPI-TFPS specifically accumulated in the colon tissue for 24 h with stronger fluorescence intensity, which demonstrated that TFPS and WPI had a good adherence ability to inflamed mucosa by electrostatic attraction and ligand-receptor interactions. As expected, compared with Free-Mag, the oral administration of Mag-WPI-TFPS remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. More importantly, WPI-TFPS enhanced gut microbiota balance by increasing the diversity and relative abundances of Lactobacillaceae and Firmicutes. Overall, this study presents a convenient, eco-friendly, food-derived oral formulation with potential as a dietary supplement for targeted UC treatment.

9.
Food Chem ; 463(Pt 2): 141290, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39305665

RESUMO

The rising demand for sustainable proteins leads to increased interest in plant proteins like hemp protein (HP). However, commercial HP's poor functionality, including heat aggregation, limit its use. This study explored the heat-induced interactions of hemp protein particles (HPPs) with milk proteins, specifically whey proteins and caseins. Using various analysis techniques-static light scattering, TEM, SDS electrophoresis, surface hydrophobicity, and free sulfhydryl content-results showed that co-heating HPPs with whey protein isolate (WPI) or sodium caseinate (NaCN) at 95 °C for 20 min reduced HPPs aggregation. HPPs/WPI particles had a d4,3 of ∼3.8 µm, while HPPs/NaCN were ∼1.9 µm, compared to ∼27.5 µm for HPPs alone. SDS-PAGE indicated that whey proteins irreversibly bound to HPPs, through disulfide bonds, whereas casein bound reversibly, possibly involving the chaperone-like property of casein. This study proposes possible mechanisms by which HPPs interact with milk proteins and impact protein aggregation. This may provide opportunities for developing hybrid protein microparticles.

10.
Food Chem ; 463(Pt 2): 141174, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39305670

RESUMO

This work aims to verify the feasibility of improving protein function by regulating its hydrophobicity and reveal the relationship between structure and function. Whey protein (WP) and zein were the source of hydrophilic and hydrophobic polypeptide chains to prepare complex proteins (CPs) with much different structure and function. The results showed that the water- and oil-holding capacities, emulsifying properties and gel properties of CPs can be significantly improved via changing WP-zein ratio. All these can be attributed to the changes in protein hydrophobicity, which not only regulated the binding strength of protein to water and oil, but also modified their molecular structure (surface characteristics, availability of free thiols, α-helix, ß-sheet, random coil and the formation of disulfide bonds). Notably, optimal protein hydrophobicity varies greatly among different functional properties. Overall, the techno-functional properties of protein can be improved via tuning its hydrophobicity, which may provide novel sights in protein modification.

11.
Biotechnol Biofuels Bioprod ; 17(1): 124, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342290

RESUMO

BACKGROUND: Production of cheese whey in the EU exceeded 55 million tons in 2022, resulting in lactose-rich effluents that pose significant environmental challenges. To address this issue, the present study investigated cheese-whey treatment via membrane filtration and the utilization of its components as fermentation feedstock. A simulation model was developed for an industrial-scale facility located in Italy's Apulia region, designed to process 539 m3/day of untreated cheese-whey. The model integrated experimental data from ethanolic fermentation using a selected strain of Kluyveromyces marxianus in lactose-supplemented media, along with relevant published data. RESULTS: The simulation was divided into three different sections. The first section focused on cheese-whey pretreatment through membrane filtration, enabling the recovery of 56%w/w whey protein concentrate, process water recirculation, and lactose concentration. In the second section, the recovered lactose was directed towards fermentation and downstream anhydrous ethanol production. The third section encompassed anaerobic digestion of organic residue, sludge handling, and combined heat and power production. Moreover, three different scenarios were produced based on ethanol yield on lactose (YE/L), biomass yield on lactose, and final lactose concentration in the medium. A techno-economic assessment based on the collected data was performed as well as a sensitivity analysis focused on economic parameters, encompassing considerations on cheese-whey by assessing its economical impact as a credit for the simulated facility, dictated by a gate fee, or as a cost by considering it a raw material. The techno-economic analysis revealed different minimum ethanol selling prices across the three scenarios. The best performance was obtained in the scenario presenting a YE/L = 0.45 g/g, with a minimum selling price of 1.43 €/kg. Finally, sensitivity analysis highlighted the model's dependence on the price or credit associated with cheese-whey handling. CONCLUSIONS: This work highlighted the importance of policy implementation in this kind of study, demonstrating how a gate fee approach applied to cheese-whey procurement positively impacted the final minimum selling price for ethanol across all scenarios. Additionally, considerations should be made about the implementation of the simulated process as a plug-in addition in to existing processes dealing with dairy products or handling multiple biomasses to produce ethanol.

12.
Nutrients ; 16(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39275186

RESUMO

As older adults tend to reduce their intake of animal-source proteins, plant-source proteins may offer valuable resources for better protein intake. The aim of this study was to assess whether the pea proteins can be used to achieve blood amino acid levels that stimulate muscle protein synthesis. We measured variations in plasma amino acid concentrations in young and older adults given pea (NUTRALYS® S85 Plus) or whey proteins either alone or in a standardized meal. The effect of amino acid concentrations on protein synthesis in C2C12 myotubes was determined. In terms of results, plasma amino acid concentrations reflected the difference between the amino acid contents of whey and pea proteins. Blood leucine showed a greater increase of 91 to 130% with whey protein compared to pea protein, while the opposite was observed for arginine (A greater increase of 147 to 210% with pea compared to whey). Culture media prepared with plasmas from the human study induced age-dependent but not protein-type-dependent changes in myotube protein synthesis. In conclusion, pea and whey proteins have the same qualities in terms of their properties to maintain muscle protein synthesis. Pea proteins can be recommended for older people who do not consume enough animal-source proteins.


Assuntos
Aminoácidos , Fibras Musculares Esqueléticas , Proteínas de Ervilha , Proteínas do Soro do Leite , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Humanos , Masculino , Animais , Idoso , Aminoácidos/sangue , Camundongos , Feminino , Adulto , Adulto Jovem , Biossíntese de Proteínas/efeitos dos fármacos , Linhagem Celular , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Pisum sativum/química
13.
Int J Biol Macromol ; 280(Pt 1): 135712, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39288859

RESUMO

Probiotics are exposed to a variety of abiotic and biotic stresses during food fermentation and production, such as acidity, heat, osmolality, and oxidation, which affect their metabolic activity and efficiency. Therefore, it is essential to develop new protective agents to maintain the activity and stability of probiotics. This study introduces a new protectant, spray-dried whey protein isolate (WPI) and isomaltose (ISO). We evaluated the effects of four WPI-ISO ratios (1:0, 2:1, 1:1, 1:2) on the physical properties, including moisture content, water activity (aw), wettability, and glass transition temperature. In addition, we evaluated the environmental tolerance of Lactobacillus rhamnosus to different WPI-ISO ratios under thermal, storage, and simulated gastrointestinal conditions. The results showed that the moisture content (< 7 %) and water activity (< 0.3) of the protectant and probiotic powders met storage stability requirements. The moisture content, water activity, wettability index (WI), and glass transition temperature decreased significantly with the addition of isomalt, thereby improving the pressure resistance of L. rhamnosus through the synergistic effect of WPI and ISO. The WPI-ISO protectant not only improved the environmental tolerance and wettability of probiotics by reducing the moisture content and water activity but also significantly improved the survival rate of L. rhamnosus under various stress conditions such as high temperature and gastrointestinal environment. L. rhamnosus maintains good activity with a viable bacterial count of over 9 lg CFU/g after 90 days of storage, demonstrating effective protection against the environment stress. This study provides a promising new strategy to improve the stability of probiotics in the food industry.

14.
Foods ; 13(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39335906

RESUMO

Food proteins and peptides are generally considered a source of dietary antioxidants. The aim of this study was to investigate the antioxidant activity, allergenicity, and peptide profiles of whey protein hydrolysates (WPHs) using different hydrolysis methods. The results demonstrated that the degrees of hydrolysis of the hydrolysates with one-step (O-AD) and two-step (T-AD) methods reached 16.25% and 17.64%, respectively. The size exclusion chromatography results showed that the O-AD had a higher content of >5 and <0.3 kDa, and the distribution of peptide profiles for the two hydrolysates was significantly different. Furthermore, 5 bioactive peptides and 15 allergenic peptides were identified using peptidomics. The peptide profiles and the composition of the master proteins of the O-AD and T-AD were different. The DPPH and ABTS radical scavenging abilities of WPHs were measured, and hydrolysates were found to exhibit a strong radical scavenging ability after being treated using different hydrolysis methods. An enzyme-linked immunosorbent assay showed that the sensitization of WPHs was significantly reduced. This study may provide useful information regarding the antioxidant properties and allergenicity of WPHs.

15.
Food Chem ; 463(Pt 1): 141080, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39332052

RESUMO

Protein-polysaccharide interactions are crucial for food system structure and stability. This study investigates the interaction of Lycium barbarum polysaccharide (LBP) at 0-2.00 % concentrations with whey protein isolate (WPI), focusing on functionality and structural changes. LBP covalently grafted onto WPI, as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), forming WPI-LBP complexes with a maximum degree of grafting (DG) of 44.58 % at 2.00 % LBP. This grafting reduced WPI's surface hydrophobicity (H0) and improved solubility, emulsifying properties, and digestibility under certain conditions, with optimal antioxidant activity at 1.00 % LBP. Multispectral analysis and microscopy showed LBP grafting alters WPI's secondary, tertiary, crystalline, and micro/nanostructures. The comprehensive analysis indicates that the interaction between LBP and WPI involves covalent bonding, hydrogen bonding, hydrophobic interactions, and electrostatic forces, as supported by zeta potential and chemical forces results. These findings suggest LBP-protein complexes as promising food materials for enhancing functionality and stability in the food industry.

16.
Membranes (Basel) ; 14(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39330532

RESUMO

This work proposes an integrated production of whey protein concentrate (WPC) and lactose and the recovery of water from diafiltration (DF) steps. Whey protein and lactose can be concentrated using ultrafiltration and nanofiltration, respectively, and both can be purified using DF. However, DF uses three-fold the initial volume of whey. We propose a method to reclaim this water using reverse osmosis and adsorption by activated carbon. We produced WPC with 88% protein and purified lactose (90%), and 66% of the water can be reclaimed as drinking water. Additionally, the reclaimed water was used to produce another batch of WPC, with no decrease in product quality. Water recovery from the whey process is necessary to meet the needs of a dairy refinery.

17.
Clin Nutr ; 43(10): 2412-2426, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39303495

RESUMO

BACKGROUND: The efficacy of whey protein supplement (WPS) in improving muscle strength, physical performance, and body composition in older adults has been widely promoted. However, the results of randomized clinical trials in this regard have been inconsistent. We aimed to determine the impact of WPS, compared to a placebo, during or without training on muscle strength, physical function, and body composition in older adults. METHODS: Randomized controlled trials were thoroughly searched using PubMed, EMBASE, the Cochrane Library Database, and Scopus databases up to June 2024. The analysis focused on key parameters such as handgrip strength (HS), leg press, knee extension, gait speed (GS), 6-min walking test (6MWT), Timed-up and go test (TUG), lean body mass (LBM), fat mass (FM), and appendicular skeletal muscle mass (ASM). A pooled effect size was calculated using a random-effects model based on standardized mean differences (SMD). RESULTS: Thirty studies involving 2105 participants aged 60 and older met the inclusion criteria. The meta-analysis of 26 RCTs showed no significant positive effect of WPS on HS (n = 11, SMD: 0.18; 95% CI: -0.13, 0.49; I2 = 69%), 6MWT (n = 5, SMD: -0.08; 95%CI: -0.31, 0.16; I2 = 0%), GS test (n = 4, SMD: -0.08; 95%CI: -0.43, 0.28; I2 = 36%), TUG test (n = 9, SMD: 0.0, 95% CI -0.15, 0.14; I2 = 0%), LBM (n = 11, SMD: 0.02; 95%CI: -0.13, 0.17; I2 = 0%), FM (n = 15, SMD: -0.04; 95%CI: -0.18, 0.10; I2 = 0%). However, ASM significantly improved after WPS consumption but with high heterogeneity (n = 2, SMD: 0.39; 95%CI: 0.28, 0.51; I2 = 69%). In interventions incorporating RE, statistically significant positive effects of WPS on lower body strength were observed (n = 11, SMD: 0.25; 95%CI: 0.05, 0.45; I2 = 0%). CONCLUSION: The present meta-analysis indicates that WPS, when combined with resistance training (RT), can enhance lower body strength but does not seem to have a significant beneficial effect on handgrip strength, physical performance, or body composition. Further large-scale studies are necessary to confirm these findings and elucidate the potential benefits of WPS in this population.


Assuntos
Composição Corporal , Suplementos Nutricionais , Força Muscular , Desempenho Físico Funcional , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Idoso , Masculino , Pessoa de Meia-Idade , Feminino , Músculo Esquelético/fisiologia , Músculo Esquelético/efeitos dos fármacos
18.
J Food Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323284

RESUMO

Pingyin rose is an edible flower rich in anthocyanins. In this study, antioxidant capacity and color were used as the main evaluation indexes to investigate the effects of common physical and chemical factors on the stability of rose anthocyanin extracts (RAEs). In addition, the physicochemical properties of the whey protein isolate (WPI)-RAEs complex after spray drying were studied. Vitamin C, temperature, and some metal ions can cause different degrees of discoloration of RAEs solution. More importantly, heat treatment, as well as most metal ions and sugars, had no significant effect on the antioxidant capacity of RAEs solution (p > 0.05). Moreover, compared to spray-dried pure WPI, the WPI-RAEs powder was delicate and uniform, and had higher particle size, bulk density, moisture activity, and better gel properties. The release rate of all WPI-RAEs sol/gel to RAEs reached about 89% in the intestinal digestion stage, but the WPI-RAEs interaction reduced the digestibility of protein in the intestinal digestion stage. We hope that this study can provide a theoretical basis for the development and utilization of WPI-RAEs as food ingredients.

19.
Int J Food Microbiol ; 425: 110895, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222566

RESUMO

Global concerns over folate deficiency, the risks of excessive synthetic folic acid consumption, and food loss implications for environmental sustainability and food security drive needs of innovative approaches that align food by-product valorisation with folate bio-enrichment. This study explored the use of three fruit by-products extracts (grape, passion fruit, and pitaya) and whey to develop a folate bio-enriched fermented whey-based beverage. Three strains (Lacticaseibacillus rhamnosus LGG, Bifidobacterium infantis BB-02, and Streptococcus thermophilus TH-4) were tested for folate production in different fermentation conditions in modified MRS medium and in a whey-based matrix prepared with water extracts of these fruit by-products. B. infantis BB-02 and S. thermophilus TH-4, alone and in co-culture, were the best folate producers. The selection of cultivation conditions, including the presence of different substrates and pH, with grape by-product water extract demonstrating the most substantial effect on folate production among the tested extracts, was crucial for successfully producing a biofortified fermented whey-based beverage (FWBB). The resulting FWBB provided 40.7 µg of folate per 100 mL after 24 h of fermentation at 37 °C, effectively leveraging food by-products. Moreover, the beverage showed no cytotoxicity in mouse fibroblast cells tests. This study highlights the potential for valorising fruit by-products and whey for the design of novel bioenriched foods, promoting health benefits and contributing to reduced environmental impact from improper disposal.


Assuntos
Fermentação , Ácido Fólico , Frutas , Soro do Leite , Animais , Frutas/química , Camundongos , Humanos , Soro do Leite/química , Bebidas/microbiologia , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Vitis/química
20.
Foods ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272503

RESUMO

Egg-free mayonnaise is receiving greater attention due to its potential health benefits. This study used whey protein isolate (WPI) as an emulsifier to develop high internal phase emulsions (HIPEs) based on beeswax (BW) oleogels through a simple one-step method. The effects of WPI, NaCl and sucrose on the physicochemical properties of HIPEs were investigated. A novel simulated mayonnaise was then prepared and characterized. Microstructural observation revealed that WPI enveloped oil droplets at the interface, forming a typical O/W emulsion. Increase in WPI content led to significantly enhanced stability of HIPEs, and HIPEs with 5% WPI had the smallest particle size (11.9 ± 0.18 µm). With the increase in NaCl concentration, particle size was increased and ζ-potential was decreased. Higher sucrose content led to reduced particle size and ζ-potential, and slightly improved stability. Rheological tests indicated solid-like properties and shear-thinning behaviors in all HIPEs. The addition of WPI and sucrose improved the structures and viscosity of HIPEs. Simulated mayonnaises (WE-0.3%, WE-1% and YE) were then prepared based on the above HIPEs. Compared to commercial mayonnaises, the mayonnaises based on HIPEs exhibited higher viscoelastic modulus and similar tribological characteristics, indicating the potential application feasibility of oleogel-based HIPEs in mayonnaise. These findings provided insights into the development of novel and healthier mayonnaise alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA