Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pneumonia (Nathan) ; 14(1): 5, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153636

RESUMO

Although it varies with age and geographical distribution, the global burden of infection with Streptococcus pneumoniae (pneumococcus) remains considerable. The elderly, and younger adults with comorbid conditions, are at particularly high risk of pneumococcal infection, and this risk will increase as the population ages. Vaccination should be the backbone of our current strategies to deal with this infection.Main body: This manuscript reviews the history of the development of pneumococcal vaccines, and the impact of different vaccines and vaccination strategies over the past 111 years. It documents the early years of vaccine development in the gold mines of South Africa, when vaccination with killed pneumococci was shown to be effective, even before the recognition that different pneumococci were antigenically distinct. The development of type-specific vaccines, still with whole killed pneumococci, showed a high degree of efficacy. The identification of the importance of the pneumococcal capsule heralded the era of vaccination with capsular polysaccharides, although with the advent of penicillin, interest in pneumococcal vaccine development waned. The efforts of Austrian and his colleagues, who documented that despite penicillin therapy, patients still died from pneumococcal infection in the first 96 h, ultimately led to the licensing first of a 14-valent pneumococcal polysaccharide in 1977 followed by the 23-valent pneumococcal polysaccharide in 1983. The principal problem with these, as with other polysaccharide vaccines, was that that they failed to immunize infants and toddlers, who were at highest risk for pneumococcal disease. This was overcome by chemical linking or conjugation of the polysaccharide molecules to an immunogenic carrier protein. Thus began the era of pneumococcal conjugate vaccine (PCV), starting with PCV7, progressing to PCV10 and PCV13, and, most recently, PCV15 and PCV20. However, these vaccines remain serotype specific, posing the challenge of new serotypes replacing vaccine types. Current research addresses serotype-independent vaccines which, so far, has been a challenging and elusive endeavor.Conclusion: While there has been enormous progress in the development of pneumococcal vaccines during the past century, attempts to develop a vaccine that will retain its efficacy for most pneumococcal serotypes are ongoing.

2.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139558

RESUMO

Antigenic differences formed by alterations in gene expression and alternative splicing are predicted in breast cancer cells undergoing epithelial to mesenchymal transition (EMT) and the reverse plasticity known as MET. How these antigenic differences impact immune interactions and the degree to which they can be exploited to enhance immune responses against mesenchymal cells is not fully understood. We utilized a master microRNA regulator of EMT to alter mesenchymal-like EO771 mammary carcinoma cells to a more epithelial phenotype. A computational approach was used to identify neoantigens derived from the resultant differentially expressed somatic variants (SNV) and alternative splicing events (neojunctions). Using whole cell vaccines and peptide-based vaccines, we find superior cytotoxicity against the more-epithelial cells and explore the potential of neojunction-derived antigens to elicit T cell responses through experiments designed to validate the computationally predicted neoantigens. Overall, results identify EMT-associated splicing factors common to both mouse and human breast cancer cells as well as immunogenic SNV- and neojunction-derived neoantigens in mammary carcinoma cells.

3.
Bol Med Hosp Infant Mex ; 79(3): 152-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882025

RESUMO

Pertussis is a highly contagious disease caused by Bordetella pertussis, which may be preventable by vaccination. There are two types of vaccines: whole-cell vaccines and acellular vaccines. Since pertussis control worldwide is heterogeneous, re-emergence of whooping cough has been observed in some countries. This re-emergence has been related to several factors: increased susceptibility to infection, better detection of disease, problems in obtaining adequate vaccination coverage, increase in susceptible subjects (mainly under 6 months of age), loss of immunity in adolescents and young adults, and likely genetic and adaptive B. pertussis changes. This paper discusses whole-cell and acellular vaccines' characteristics, advantages, and disadvantages. International recommendations are presented, and the participants' position is offered regarding the influence of the use of acellular vaccines and the potential disadvantages of reintroducing whole-cell vaccines, mainly due to their reactogenicity. Finally, strategies to achieve better control of pertussis in Mexico are discussed.


La tos ferina es una enfermedad causada por Bordetella pertussis. Aunque es altamente contagiosa, puede ser prevenible por vacunación. Existen dos tipos de vacunas: las de células enteras y las acelulares. La tos ferina ha resurgido en algunos países debido a que su control a escala mundial es heterogéneo. Esta reemergencia se ha relacionado con diversos factores: mayor sensibilidad hacia la infección, mejor detección de la enfermedad, problemas para obtener adecuadas coberturas de vacunación, incremento en los sujetos susceptibles (especialmente menores de 6 meses), pérdida de la inmunidad en los adolescentes y adultos jóvenes, y probables cambios genéticos y adaptativos de B. pertussis. En este documento se analizan las características, las ventajas y las desventajas de las vacunas de células enteras y de las vacunas acelulares. Se presentan las recomendaciones internacionales y se ofrece el posicionamiento de los participantes con respecto a la influencia del uso de vacunas acelulares y las desventajas potenciales de volver a utilizar vacunas de células enteras, en especial por su reactogenicidad. Por último, se analizan las estrategias para lograr un mejor control de la tos ferina en México.


Assuntos
Coqueluche , Adolescente , Bordetella pertussis , Humanos , México/epidemiologia , Vacina contra Coqueluche , Vacinas Acelulares , Coqueluche/epidemiologia , Coqueluche/prevenção & controle
4.
J Cancer Res Clin Oncol ; 148(12): 3337-3350, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35748951

RESUMO

METHODS: In this study, we developed a strategy for the prevention and therapy of melanoma using a whole-cell vaccine combined with a CpG/αOX40/cGAMP triple adjuvant. The CpG/αOX40/cGAMP triple adjuvant was used to co-culture melanoma cells in vitro to induce immunogenic death of tumor cells. The mixture of inactivated tumor cells and the triple drug was an optimized tumor whole-cell vaccine, which was injected subcutaneously into mice for tumor prevention and therapy. Furthermore, we analyzed the changes of immune cells in spleen and tumor by flow cytometry and immunohistochemistry, and detected the changes of cytokines after vaccine application by cytometric bead array to explore the specific mechanism of vaccine. RESULTS: In vaccine prevention and therapy experiments, it was observed that the tumor growth was significantly inhibited in the whole-cell vaccine group, and the survival time of mice was significantly prolonged. Flow cytometry results showed that the proportion of CD4+ T cells and CD8+ T cells in tumor of mice in vaccine group was higher than that in control group, especially the CD4+ T cells. CONCLUSION: The optimized vaccine has the unique ability to amplify tumor-specific CD4+ T cells, which improves antitumor sensitivity, and has a significant effect on the prevention and therapy of melanoma mice.


Assuntos
Vacinas Anticâncer , Melanoma , Camundongos , Animais , Melanoma/tratamento farmacológico , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Adjuvantes Imunológicos , Citocinas , Camundongos Endogâmicos C57BL
5.
Bol. méd. Hosp. Infant. Méx ; 79(3): 152-160, may.-jun. 2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1394019

RESUMO

Resumen La tos ferina es una enfermedad causada por Bordetella pertussis. Aunque es altamente contagiosa, puede ser prevenible por vacunación. Existen dos tipos de vacunas: las de células enteras y las acelulares. La tos ferina ha resurgido en algunos países debido a que su control a escala mundial es heterogéneo. Esta reemergencia se ha relacionado con diversos factores: mayor sensibilidad hacia la infección, mejor detección de la enfermedad, problemas para obtener adecuadas coberturas de vacunación, incremento en los sujetos susceptibles (especialmente menores de 6 meses), pérdida de la inmunidad en los adolescentes y adultos jóvenes, y probables cambios genéticos y adaptativos de B. pertussis. En este documento se analizan las características, las ventajas y las desventajas de las vacunas de células enteras y de las vacunas acelulares. Se presentan las recomendaciones internacionales y se ofrece el posicionamiento de los participantes con respecto a la influencia del uso de vacunas acelulares y las desventajas potenciales de volver a utilizar vacunas de células enteras, en especial por su reactogenicidad. Por último, se analizan las estrategias para lograr un mejor control de la tos ferina en México.


Abstract Pertussis is a highly contagious disease caused by Bordetella pertussis, which may be preventable by vaccination. There are two types of vaccines: whole-cell vaccines and acellular vaccines. Since pertussis control worldwide is heterogeneous, re-emergence of whooping cough has been observed in some countries. This re-emergence has been related to several factors: increased susceptibility to infection, better detection of disease, problems in obtaining adequate vaccination coverage, increase in susceptible subjects (mainly under 6 months of age), loss of immunity in adolescents and young adults, and likely genetic and adaptive B. pertussis changes. This paper discusses whole-cell and acellular vaccines' characteristics, advantages, and disadvantages. International recommendations are presented, and the participants' position is offered regarding the influence of the use of acellular vaccines and the potential disadvantages of reintroducing whole-cell vaccines, mainly due to their reactogenicity. Finally, strategies to achieve better control of pertussis in Mexico are discussed.

6.
Front Immunol ; 12: 701285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211481

RESUMO

Background: Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives: In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method: The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results: While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion: Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.


Assuntos
Imunidade nas Mucosas/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Humanos
7.
Vaccines (Basel) ; 9(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807962

RESUMO

Whooping cough, or pertussis, mostly caused by Bordetella pertussis, is a respiratory disease that affects all age groups, but severe and fatal pertussis occurs almost exclusively in young children. The widespread use of whole-cell and, more recently, of acellular vaccines has substantially reduced the disease incidence. However, it has not been eliminated in any part of the world and has made a worrisome rebound in several areas. Cocoon and maternal immunization have been implemented in several countries but have their intrinsic limitations. To effectively control pertussis, novel vaccines are needed that protect against disease and prevent B. pertussis infection and transmission, which is not the case for current vaccines. Several approaches are contemplated, including alternative administration routes, such as nasal immunization, improvement of acellular vaccines by adding more antigens and T-cell-promoting adjuvants, and the development of novel vaccines, such as outer membrane vesicles and live attenuated vaccines. Among them, only a live attenuated vaccine has so far been assessed for safety and immunogenicity in preclinical models other than mice and is in clinical development. Before any of these vaccines can be used in neonates, extensive safety and immunogenicity assessment in pre-clinical neonatal models and in carefully designed clinical trials is necessary. The aim of this review is to discuss the current pertussis problem, implemented strategies to resolve it, the value of animal models and novel vaccine approaches.

8.
Vaccine ; 39(18): 2545-2554, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33814233

RESUMO

The severe consequences of ZIKV infection and its emergence and re-emergence in several countries have boosted vaccines' development. Yeasts such as Pichia pastoris has been widely employed as antigen carriers for immunization against infectious agents. Components of the yeast cell wall have immunostimulatory properties, and recombinant antigens can be anchored to the cell surface to enhance the presentation to the immune system. Here we aimed at producing and anchoring ZIKV proteins in the P. pastoris surface as a vaccine approach. Expression cassettes were designed with epitopes of the Envelope and NS1 proteins. Immunofluorescence microscopy confirmed the anchoring of recombinant proteins. Yeasts' ability to stimulate immune cells was evaluated in vitro by incubation with lymphocytes and monocytes isolated from mouse spleen. P. pastoris expressing EnvNS1 epitopes promoted increased levels of IL-6, IL-10, and TNF-α cytokines and an increase in the number of CD4+, CD8+, and CD16+ lymphocytes, similarly to ZIKV. This profile is indicative of the activation of immunological cells and suggests an immunogenic potential of the proposed yeast vaccines against ZIKV, reinforcing the possibility of P. pastoris as adjuvant and carrier of antigens.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Epitopos , Camundongos , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales
9.
Expert Rev Vaccines ; 20(4): 415-423, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667341

RESUMO

INTRODUCTION: Pertussis, caused by Bordetella pertussis, remains a major public health problem, despite high vaccination coverage. Furthermore, the disease incidence has increased recently, especially in countries that have switched from whole-cell to acellular pertussis vaccines. AREAS COVERED: Here, we provide a state-of-the art summary of the reasons for the pertussis resurgence and discuss potential solutions using current vaccines and challenges for the development of novel vaccines. PubMed was searched for publications with the terms pertussis and vaccines. Many new vaccine candidates are proposed but most have not reached clinical development. Most of them induce strong systemic immune responses and protection in mice. However, since B. pertussis is a mucosal pathogen, albeit with systemic effects, local immunity may be crucial to prevent B. pertussis infection and transmission. Recent efforts have focused on vaccine candidates able to induce immunity in the nasal cavity, and one of them is currently in clinical development. EXPERT COMMENTARY: New pertussis vaccines are needed to durably control the disease and circulation of B. pertussis. A major challenge is to prove efficacy against disease in randomized controlled trials, while it is feasible to provide evidence for prevention of infection, since asymptomatic carriage of B. pertussis is wide spread.


Assuntos
Coqueluche , Animais , Bordetella pertussis/imunologia , Camundongos , Vacina contra Coqueluche , Vacinas Atenuadas , Coqueluche/prevenção & controle
10.
Methods Mol Biol ; 2183: 249-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959248

RESUMO

Vaccines are biological preparations to elicit a specific immune response in individuals against the targetted microorganisms. The use of vaccines has caused the near eradication of many critical diseases and has had an everlasting impact on public health at a relatively low cost. Most of the vaccines developed today are based on techniques which were developed a long time ago. In the beginning, vaccines were prepared from tissue fluids obtained from infected animals or people, but at present, the scenario has changed with the development of vaccines from live or killed whole microorganisms and toxins or using genetic engineering approaches. Considerable efforts have been made in vaccine development, but there are still many diseases that need attention, and new technologies are being developed in vaccinology to combat them. In this chapter, we discuss different approaches for vaccine development, including the properties and preparation of whole-cell vaccines.


Assuntos
Vacinas/biossíntese , Vacinas/isolamento & purificação , Vacinologia , Animais , História do Século XX , Humanos , Vacinas Conjugadas , Vacinologia/história , Vacinologia/métodos , Fluxo de Trabalho
11.
Cells ; 9(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322641

RESUMO

The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.


Assuntos
Vacinas Bacterianas/administração & dosagem , Infecções por Burkholderia/prevenção & controle , Burkholderia/imunologia , Animais , Vacinas Bacterianas/imunologia , Burkholderia/genética , Burkholderia/patogenicidade , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/microbiologia , Humanos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
12.
BMJ Open ; 10(6): e034714, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32518209

RESUMO

INTRODUCTION: Autologous cancer cell vaccines are promising personalised immunotherapeutic options for solid and haematological malignancies that uses the patient's own cells to arm an immune response. Evidence suggests that among patients receiving these vaccines, those who mount an immune response against their own tumour cells have better prognosis, and a myriad of preclinical studies have demonstrated the same. Recently, two autologous cell vaccines Vigil and OncoVAX have made it to phase III clinical trials. Here, we outline a protocol to be used for two separate systematic reviews using a parallel approach for inclusion criteria, data extraction and analysis for autologous cell vaccines in (1) solid and (2) haematological malignancies. We aim to review evidence from controlled and uncontrolled interventional studies of autologous cell vaccines administered to patients with cancer to determine their historical efficacy (with or without associated adjuvants or modifications) with clinical response rates and safety outcomes being of particular importance. METHODS AND ANALYSIS: We will search MEDLINE (OVID interface, including In-Process and Epub Ahead of Print), Embase (OVID interface) and the Cochrane Central Register of Controlled Trials (Wiley interface) for articles published from 1947 until 30 July 2018 (date search was performed). Studies will be screened first by title and abstract, then by full-text in duplicate. Interventional trials that report the use of an autologous cell vaccine to patients with cancer of any age will be included. The primary outcomes of interest in this review are clinical response (complete or overall/objective response) and safety outcomes (adverse events). Secondary outcomes include immune response, disease-free survival and overall survival. The risk of bias within studies will be assessed using the appropriate Cochrane Risk of Bias tool. If appropriate, a random effects meta-analysis will be performed to synthesise the data and report summary estimates of effect. Statistical heterogeneity will be assessed using the I2 statistic. ETHICS AND DISSEMINATION: Ethics approval is not required for this systematic review protocol as the review will solely use published literature. Results will be submitted to peer-reviewed journals for publication and presented to relevant stakeholders and scientific meetings. PROSPERO REGISTRATION NUMBER: CRD42019140187.


Assuntos
Vacinas Anticâncer , Neoplasias Hematológicas , Neoplasias , Humanos , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/uso terapêutico , Neoplasias Hematológicas/terapia , Metanálise como Assunto , Neoplasias/terapia , Revisões Sistemáticas como Assunto
13.
Adv Exp Med Biol ; 1183: 115-126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432399

RESUMO

Effective diphtheria, tetanus toxoids, whole-cell pertussis (wP) vaccines were used for massive immunization in the 1950s. The broad use of these vaccines significantly reduced the morbidity and mortality associated with pertussis. Because of reports on the induction of adverse reactions, less-reactogenic acellular vaccines (aP) were later developed and in many countries, especially the industrialized ones, the use of wP was changed to aP. For many years, the situation of pertussis seemed to be controlled with the use of these vaccines, however in the last decades the number of pertussis cases increased in several countries. The loss of the immunity conferred by the vaccines, which is faster in the individuals vaccinated with the acellular vaccines, and the evolution of the pathogen towards geno/phenotypes that escape more easily the immunity conferred by the vaccines were proposed as the main causes of the disease resurgence. According to their composition of few immunogens, the aP vaccines seem to be exerting a greater selection pressure on the circulating bacterial population causing the prevalence of bacterial isolates defective in the expression of vaccine antigens. Under this context, it is clear that new vaccines against pertussis should be developed. Several vaccine candidates are in preclinical development and few others have recently completed phaseI/phaseII trials. Vaccine candidate based on OMVs is a promising candidate since appeared overcoming the major weaknesses of current aP-vaccines. The most advanced development is the live attenuated-vaccine BPZE1 which has successfully completed a first-in-man clinical trial.


Assuntos
Bordetella pertussis/imunologia , Imunização , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Humanos , Imunização/tendências , Vacina contra Coqueluche/imunologia , Vacinação/tendências
14.
Vaccine ; 36(41): 6223-6230, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30119923

RESUMO

Mucosal vaccines against Helicobacter pylori consisting of either whole cell bacteria or recombinant antigens can induce immune protection against challenge in mice only when co-administrated with a strong mucosal adjuvant such as cholera toxin (CT) or Escherichia coli heat labile enterotoxin (LT). The strong enterotoxicity of these adjuvants however preclude their use in human vaccines. The recently developed multiple mutant CT (mmCT) is a strong, yet practically non-toxic novel mucosal adjuvant which here was admixed with a formalin-inactivated H. pylori whole cell vaccine (WCV) as a potential vaccine candidate against H. pylori infection. We report that intragastric immunizations with H. pylori WCV together with mmCT, similar to immunization with WCV together with CT, resulted in 50-125-fold reduction in colonization of H. pylori in the stomach of mice associated with rises in both serum IgG and intestinal-mucosal IgA anti-H. pylori antibody responses and strong T cell and IFNγ and IL-17A cytokine responses. Data presented in this study also supports that the proposed vaccine can be grown in a bioreactor and would be effective against infection caused by a multitude of pathogenic H. pylori strains isolated from patients from various continents. The results warrant immunization studies in humans to evaluate the safety, immunogenicity and efficacy of the proposed H. pylori WCV and mmCT.


Assuntos
Toxina da Cólera/metabolismo , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Toxina da Cólera/genética , Feminino , Infecções por Helicobacter/imunologia , Helicobacter pylori/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL
15.
Vaccine ; 36(36): 5460-5469, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29180031

RESUMO

Despite wide vaccination coverage with efficacious vaccines, pertussis is still not under control in any country. Two types of vaccines are available for the primary vaccination series, diphtheria/tetanus/whole-cell pertussis and diphtheria/tetanus/acellular pertussis vaccines, in addition to reduced antigen content vaccines recommended for booster vaccination. Using these vaccines, several strategies are being explored to counter the current pertussis problems, including repeated vaccination, cocoon vaccination and maternal immunization. With the exception of the latter, none have proven their effectiveness, and even maternal vaccination is not expected to ultimately control pertussis. Therefore, new pertussis vaccines are needed, and several candidates are in early pre-clinical development. They include whole-cell vaccines with low endotoxin content, outer membrane vesicles, new formulations, acellular vaccines with new adjuvants or additional antigens and live attenuated vaccines. The most advanced is the live attenuated nasal vaccine BPZE1. It provides strong protection in mice and non-human primates, is safe, even in immune compromised animals, and genetically stable after in vitro and in vivo passages. It also has interesting immunoregulatory properties without being immunosuppressive. It has successfully completed a first-in-man clinical trial, where it was found to be safe, able to transiently colonize the human respiratory tract and to induce immune responses in the colonized subjects. It is now undergoing further clinical development. As it is designed to reduce carriage and transmission of Bordetella pertussis, it may hopefully contribute to the ultimate control of pertussis.


Assuntos
Vacina contra Coqueluche/uso terapêutico , Vacinas Atenuadas/uso terapêutico , Coqueluche/prevenção & controle , Animais , Feminino , Humanos , Masculino , Vacinas Acelulares/uso terapêutico , Coqueluche/imunologia
16.
Jundishapur J Microbiol ; 9(7): e34153, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27679704

RESUMO

BACKGROUND: Whooping cough is caused by Bordetella pertussis, and it remains a public health concern. Whole-cell pertussis vaccines have been commonly employed for expanded immunization. There is no doubt of the efficacy of whole cell pertussis vaccine, but it is necessary to improve the vaccine to decrease its toxicity. OBJECTIVES: In this study, an inactivation process of dealing with pertussis bacteria is optimized in order to decrease the bacteria content in human doses of vaccines and reduce the vaccine's toxicity. MATERIALS AND METHODS: The bacterial suspensions of pertussis strains 509 and 134 were divided into 21 sample parts from F1 to F21 and inactivated under different conditions. The inactivated suspensions of both strains were tested for opacity, non-viability, agglutination, purity, and sterility; the same formulation samples that passed quality tests were then pooled together. The pool of inactivated suspensions were analyzed for sterility, agglutination, opacity, specific toxicity, and potency. RESULTS: The harvest of both bacterial strains showed purity. The opacity of various samples were lost under different treatment conditions by heat from 8% to 12%, formaldehyde 6% to 8%, glutaraldehyde 6% to 8%, and thimerosal 5% to 8%. Tests on suspensions after inactivation and on pooled suspensions showed inactivation conditions not degraded agglutinins of both strains. The samples of F2, F4, F8, F12, F15, and F17 passed the toxicity test. The potency (ED50) of these samples showed following order F17 > F12 > F8 > F15, F4 > F2, and F17 revealed higher potency compared to other formulations. CONCLUSIONS: It can be concluded that F17 showed desirable outcomes in the toxicity test and good immunogenicity with a low bacterial number content. Consequently, lower adverse effects and good immunogenicity are foreseeable for vaccine preparation with this method.

17.
J Infect ; 72 Suppl: S34-40, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27161992

RESUMO

Pertussis or whooping cough, mainly caused by the Gram-negative coccobacillus Bordetella pertussis, is a severe respiratory disease that can by life-threatening especially in young infants. It has recently made a spectacular come-back in high vaccination-coverage countries, such as the US, Australia and many European countries. Although a trend towards increased pertussis incidence was already visible before the switch from whole-cell to acellular vaccines, it was really since the introduction of the acellular vaccines that the number of cases reached record highs. Several hypotheses have been proposed to explain these observations. Unexpectedly fast waning of acellular vaccine-induced protection may be one of the major reasons. Furthermore, evidence from a recent non-human primate model suggests that acellular vaccines, although protective against pertussis disease, do not protect against B. pertussis infection, which may explain many of the current observations on the resurgence of pertussis. Optimized use of current vaccines has been explored, including cocoon vaccination of persons in close contact with newborn infants, neonatal vaccination and maternal immunization during pregnancy. All have their inherent limitations. New vaccines are therefore desperately needed, and current efforts have been geared towards the identification of novel antigens and adjuvants to prolong immunity and ameliorate protection. The most advanced vaccine candidate is live attenuated nasal BPZE1, a genetically modified B. pertussis derivative that has recently completed a first-in-man phase I trial and was shown to be safe in young male volunteers, able to transiently colonize the naso-pharynx and to induce antibody responses to B. pertussis antigens. This vaccine candidate is designed to protect against both pertussis disease and B. pertussis infection and may therefore be useful for long-term control of pertussis.


Assuntos
Bordetella pertussis/imunologia , Vacina contra Coqueluche , Coqueluche/epidemiologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Austrália/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Humanos , Imunização , Lactente , Recém-Nascido , Masculino , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/imunologia , Gravidez , Vacinas/administração & dosagem , Vacinas/classificação , Vacinas/imunologia , Vacinas Acelulares/imunologia , Coqueluche/imunologia , Coqueluche/microbiologia , Coqueluche/prevenção & controle
19.
Clin Microbiol Infect ; 22 Suppl 5: S96-S102, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341014

RESUMO

Pertussis is a severe respiratory disease that can be fatal in young infants. Its main aetiological agent is the Gram-negative micro-organism Bordetella pertussis. Vaccines against the disease have been in use since the 1950s, and global vaccination coverage has now reached more than 85%. Nevertheless, the disease has not been controlled in any country, and has even made a spectacular come-back in the industrialized world, where the first-generation whole-cell vaccines have been replaced by the more recent, less reactogenic, acellular vaccines. Several hypotheses have been proposed to explain these observations, including the fast waning of acellular vaccine-induced protection. However, recent mathematical modelling studies have indicated that asymptomatic transmission of B. pertussis may be the main reason for the current resurgence of pertussis. Recent studies in non-human primates have shown that neither whole-cell, nor acellular vaccines prevent infection and transmission of B. pertussis, in contrast to prior exposure. New vaccines that can be applied nasally to mimic natural infection without causing disease may therefore be useful for long-term control of pertussis. Several vaccine candidates have been proposed, the most advanced of which is the genetically attenuated B. pertussis strain BPZE1. This vaccine candidate has successfully completed a first-in-man phase I trial and was shown to be safe in young male volunteers, able to transiently colonize the nasopharynx and to induce antibody responses to B. pertussis antigens in all colonized individuals. Whether BPZE1 will indeed be useful to ultimately control pertussis obviously needs to be assessed by carefully conducted human efficacy trials.


Assuntos
Portador Sadio/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Vacina contra Coqueluche/imunologia , Coqueluche/prevenção & controle , Animais , Portador Sadio/epidemiologia , Portador Sadio/transmissão , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/efeitos adversos , Primatas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Coqueluche/epidemiologia , Coqueluche/transmissão
20.
Expert Rev Vaccines ; 14(8): 1065-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098640

RESUMO

Notifications of infant deaths, assumed to be related to the introduction of new pentavalent DTwP-Hib-HBV childhood vaccines, caused, during 2008-2010 in few Asian countries, temporary interruptions of the respective vaccination programs. The sudden appearance of fatal cases was due to increased awareness/publicity and improved safety monitoring/reporting in countries with relatively high background infant mortalities. WHO investigations could not establish any causal relationships and vaccinations were again resumed. Recently, questions were raised in one concerned country as to why not to change to less reactogenic acellular pertussis (aP)-containing vaccines that are available in private practice and are generally perceived as 'better'. For resource-poor countries, the financial impacts render such a switch impossible and would also not be supported by external funding. Furthermore, it would be a disservice to the children, as in recent years evidence of inferior long-term efficacy of aP vaccines has accumulated. This report summarizes current knowledge on comparative whole-cell pertussis (wP) and aP vaccine performance, outlines the new July 2014 WHO guidance on the choice of pertussis vaccines and presents recent data on outbreak protection, antibody waning, long-term protection, wP-priming, pathogen adaptation, transmission and herd immunity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Vacina contra Coqueluche/efeitos adversos , Vacina contra Coqueluche/imunologia , Coqueluche/epidemiologia , Coqueluche/prevenção & controle , Saúde Global , Guias como Assunto , Humanos , Vacinas Acelulares/efeitos adversos , Vacinas Acelulares/imunologia , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA