Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.994
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39096759

RESUMO

Among terrestrial ectotherms, hibernation is a common response to extreme cold temperatures and is associated with reduced physiological rates, including immunity. When winter wanes and temperatures increase, so too do vital rates of both ectothermic hosts and their parasites. Due to metabolic scaling, if parasite activity springs back faster than host immune functions then cold seasons and transitions between cold and warm seasons may represent periods of vulnerability for ectothermic hosts. Understanding host regulation of physiological rates at seasonal junctions is a first step toward identifying thermal mismatches between hosts and parasites. Here we show that immune gene expression is responsive to transitions into and out of the cold season in a winter-adapted amphibian, the wood frog (Lithobates sylvaticus), and that frogs experienced parasitism by at least two nematode species throughout the entirety of the cold season. In both splenic and skin tissues, we observed a decrease in immune gene expression going from fall to winter, observed no changes between winter and emergence from hibernation, and observed increases in immune gene expression after hibernation ended. At all timepoints, differentially expressed genes from spleens were more highly enriched for immune system processes than those from ventral skin, especially with respect to terms related to adaptive immune processes. Infection with nematode lungworms was also associated with upregulation of immune processes in the spleen. We suggest that rather than being a period of stagnation, during which physiological processes and infection potential cease, the cold season is immunologically dynamic, requiring coordinated regulation of many biological processes, and that the reemergence period may be an important time during which hosts invest in preparatory immunity.

2.
Int J Food Microbiol ; 424: 110842, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39098161

RESUMO

The study aimed to develop a synthetic microbial community capable of managing postharvest black spot disease in winter jujube. The research revealed that treatment with Debaryomyces nepalensis altered the surface microbial community, reducing the presence of harmful fungi such as Alternaria, Penicillium, Fusarium, and Botrytis, while boosting beneficial bacteria like Pantoea, Bacillus, Staphylococcus, and Pseudomonas, leading to a decreased decay rate in date fruits. A synthetic community was crafted, integrating D. nepalensis with seven other bacterial strains selected for their abundance, compatibility, culturability, and interactions. This community was refined through homo-pore damage experiments and safety assessments to a final formulation consisting of D. nepalensis and six other bacteria: Bacillus subtilis, Bacillus velezensis, Staphylococcus arlettae, Staphylococcus gallinarum, Pseudomonas sp., and Pseudomonas psychrotolerans. Fruit inoculation tests demonstrated that this synthetic community (6 + 1) significantly lowered the incidence and size of black spot lesions compared to single-strain treatments. By the 10th day of storage, the incidence was 69.23 % lower than the control and 52.94 % lower than the group treated solely with D. nepalensis. Mechanistic studies of the synthetic community's antibacterial effects showed that it can produce volatile compounds, proteases, and ß-1,3-glucanase to inhibit pathogen growth. Additionally, the community forms a biofilm to compete for nutrients and induce jujube resistance to disease.

3.
Plant Physiol Biochem ; 215: 108984, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098186

RESUMO

The postharvest quality of winter jujubes is prone to deterioration, including inevitable pericarp reddening and rapid nutrient loss from the flesh, significantly impacting its edible quality and commercial value. As a crucial metabolic pathway in plants, phenylpropane metabolism not only regulates plant stress resistance but also closely relates to various coloration effects. In this study, we investigated the effects of luteolin solutions on postharvest color changes and phenylpropanoid metabolism in winter jujube. The results indicated that compared to the control group, winter jujube fruit treated with 200 mg L-1 luteolin exhibited improved quality indexes, increased antioxidant capacity (capability of eliminating ABTS and DPPH radicals), and higher activities of antioxidant enzymes(superoxide dismutase (SOD), and catalase (CAT)). This led to a reduction in the oxidation of phenolic substances in winter jujube. Furthermore, luteolin treatment inhibited phenylpropanoid metabolism by suppressing the activities of 4-Coumarate: coenzyme A ligase (4CL), phenylalanine ammonilyase (PAL), and cinnamate 4 hydroxylase (C4H), as well as the expression of ZjUFGT, ZjDFT, and ZjPAL genes. Consequently, anthocyanin and quercetin synthesis were limited while the degradation rate of chlorophyll and carotenoid synthesis were slowed down after luteolin treatment. This resulted in delayed reddening of winter jujube following luteolin treatment. In conclusion, luteolin exhibits potential application prospects as a preservative for inhibiting reddening and browning in winter jujubes.

4.
New Phytol ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152704

RESUMO

Two functional responses largely guide woody plants' survival to winter conditions: cold hardiness and dormancy. Dormancy affects budbreak timing based on chill accumulation. Effects of warming on dormancy may appear time-shifted: fall and winter warming events decrease chill accumulation, delaying budbreak observed in spring. The same warming events also affect cold hardiness dynamics, having immediate implications. As cold deacclimation rates increase with dormancy progression, the same amount of warming has greater damage risk the later it occurs in the season, depending on return of low temperatures. Should frequency of erratic weather increase with climate change, more instances of risk are expected. However, understanding how plants fare through seasons now and in future climates still requires better knowledge of winter physiology.

5.
Transl Anim Sci ; 8: txae111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156965

RESUMO

The objective of this study was to evaluate growth and reproductive performance of heifers developed using 3 different winter systems in the midwestern U.S. Spring-born heifers (n = 1,156; 214 d of age; SD ±â€…17 d) were used in a 3-yr study to evaluate performance in winter development systems, which utilized cover crop (CC) and corn residue grazing. Heifers were assigned to 1 of 3 treatments: grazing corn residue with 0.77 kg/d dried distillers grains (CD) or 1.69 kg/d wheat midds (CW) supplementation followed by a grower ration in the drylot, or grazing late summer planted oat-brassica CC followed by corn residue grazing with 0.35 kg/d dried distillers grains supplementation (CC). Supplementation during the corn residue phase was targeted to result in a common body weight (BW) (276 kg; ~45% of mature BW) by the end of the winter development period. Grazing of corn residue (CD and CW) and CC began in early November. After 63 d, heifers assigned to CC were moved to corn residue; on day 77 heifers assigned to CD and CW began receiving a grower ration in the drylot. In mid-February (day 98), heifers were comingled and managed in a single group. Breeding season began in June and lasted for 29 d. The ADG of heifers assigned to CC when grazing CC (days 1 to 63) was greater (0.76 kg/d; P < 0.01) than those assigned to CD or CW (0.58 kg/d and 0.49 kg/d, respectively). Gain during the last 35 d of the winter period for heifers assigned to CC (0.36 kg/d) was less (P < 0.01) than those assigned to CW (0.49 kg/d) but not different from CD heifers (0.41 kg/d). Overall (days 1 to 98), winter ADG was greater (P < 0.05) for heifers assigned to CC (0.62 kg/d) than CD (0.53 kg/d) or CW (0.50 kg/d), which did not differ (P = 0.42). Percent of mature BW in May (27 d pre-breeding) was greater (P < 0.01) for heifers assigned to CC (52%) than for those on CD and CW (50%), which did not differ (P = 0.64). Pregnancy rates were affected by treatment (P < 0.03), with heifers assigned to CC (76%) being greater than CW (64%) and CD heifers being intermediate (70%). When accounting for the differences in cost and the value of open and bred heifers, the economic return tended to differ (P = 0.07) among treatments, with CC and CW not differing (P ≥ 0.20) from CD but return for CC being $73 greater than CW (P = 0.02). Utilizing oat-brassica CCs early in the winter followed by a slower rate of gain while grazing corn residue with distillers supplementation appears to be as effective for developing beef heifers in the midwestern U.S. as supplementing distillers grains.

6.
Environ Monit Assess ; 196(9): 826, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162856

RESUMO

Winter wheat, as one of the world's key staple crops, plays a crucial role in ensuring food security and shaping international food trade policies. However, there has been a relative scarcity of high-resolution, long time-series winter wheat maps over the past few decades. This study utilized Landsat and Sentinel-2 data to produce maps depicting winter wheat distribution in Google Earth Engine (GEE). We further analyzed the comprehensive spatial-temporal dynamics of winter wheat cultivation in Shandong Province, China. The gap filling and Savitzky-Golay filter method (GF-SG) was applied to address temporal discontinuities in the Landsat NDVI (Normalized Difference Vegetation Index) time series. Six features based on phenological characteristics were used to distinguish winter wheat from other land cover types. The resulting maps spanned from 2000 to 2022, featuring a 30-m resolution from 2000 to 2017 and an improved 10-m resolution from 2018 to 2022. The overall accuracy of these maps ranged from 80.5 to 93.3%, with Kappa coefficients ranging from 71.3 to 909% and F1 scores from 84.2 to 96.9%. Over the analyzed period, the area dedicated to winter wheat cultivation experienced a decline from 2000 to 2011. However, a notable shift occurred with an increase in winter wheat acreage observed from 2014 to 2017 and a subsequent rise from 2018 to 2022. This research highlights the viability of using satellite observation data for the long-term mapping and monitoring of winter wheat. The proposed methodology has long-term implications for extending this mapping and monitoring approach to other similar areas.


Assuntos
Monitoramento Ambiental , Estações do Ano , Análise Espaço-Temporal , Triticum , Triticum/crescimento & desenvolvimento , China , Monitoramento Ambiental/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Imagens de Satélites
8.
J Sci Food Agric ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120149

RESUMO

BACKGROUND: Global temperature is projected to rise continuously under climate change, negatively impacting the growth and yield of winter wheat. Optimizing traditional agricultural measures is necessary to mitigate potential winter wheat yield losses caused by future climate change. This study aims to explore the variations in winter wheat growth and yield on the Loess Plateau of China under future climate change, identify the key meteorological factors affecting winter wheat growth and yield, and analyze the differences in winter wheat yield and root characteristics under different fertilization depths. RESULTS: Meteorological data from 20 General Circulation Models were applied to drive the Decision Support System for Agrotechnology Transfer model, simulating the future growth characteristics of winter wheat under various fertilization depths. The Random Forest model was used to determine the relative importance of meteorological factors influencing winter wheat yield, root length density and leaf area index. The results showed that temperature and high emission concentration were primary factors influencing crop yield under future climate change. The temperature increase projected from 2021 to 2100 would be anticipated to shorten the phenology period of winter wheat by 2-16 days and reduce grain yield by 2.9-12.7% compared to the period from 1981 to 2020. Conversely, the root length density and root weight of winter wheat would increase by 1.2-10.9% and 0.2-24.1%, respectively, in the future, and excessive allocation of root system resources was identified as a key factor contributing to the reduction in winter wheat yield. Compared with the shallow fertilization treatment (N5), the deep fertilization treatments (N15 and N25) increased the proportion of roots in the deep soil layer (30-60 cm) by 2.7-10.2%. Because of the improvement in root structure, the decline in winter wheat yield under deep fertilization treatments in the future is expected to be reduced by 1.2% to 6.5%, whereas water use efficiency increases by 1.1% to 2.4% compared to the shallow fertilization treatment. CONCLUSION: The deep fertilization treatment can enhance the root structure of winter wheat and increase the proportion of roots in the deep soil layer, thereby effectively mitigating the decline in winter wheat yield under future climate change. Overall, optimizing fertilization depth effectively addresses the reduced winter wheat yield risks and agricultural production challenges under future climate change. © 2024 Society of Chemical Industry.

9.
J Fish Biol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109654

RESUMO

Winter flounder Pseudopleuronectes americanus (Walbaum 1792) are a coastal flatfish species of economic and cultural importance that have dwindled to <15, % of their historic abundance in the southern New England/Mid-Atlantic region of the United States, with evidence indicating near-extirpation of certain local populations. This species exhibits intricate behaviors in spawning and migration that contribute to population complexity and resilience. These behaviors encompass full or partial philopatry to natal estuaries, the generation of multiple pulses of larval delivery, and partial migration. The patterns of genetic diversity within and among estuaries and cohorts presented here carry important implications in understanding the susceptibility to demographic shocks, even if the full extent of genetic diversity within and among winter flounder stocks on the US East Coast remains unresolved. Our findings reveal connectivity between estuaries in Long Island, New York, suggesting the potential for genetic rescue of depleted subpopulations. Family reconstruction and relatedness analysis indicate that split cohorts and migration contingents are not the result of genetically distinct lineages. We found no evidence for genetic structure separating these groups, and in some instances, we were able to detect closely related individuals that belonged to different migratory contingents or cohorts. Characterizing the spatial and behavioral organization of this species at the population level is crucial for comprehending its potential for recovery, not only in terms of biomass but also in reinstating the complex population structure that supports resilience. The search for generality in winter flounder spawning and migration behavior remains elusive, but perhaps the lack of generalities within this species is what has allowed it to persist in the face of decades of environmental and anthropogenic stressors.

10.
Front Plant Sci ; 15: 1396929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135649

RESUMO

The uneven spatial and temporal distribution of light resources and water scarcity during the grain-filling stage pose significant challenges for sustainable crop production, particularly in the arid areas of the Loess Plateau in Northwest China. This study aims to investigate the combined effects of drought and shading stress on winter wheat growth and its physio-biochemical and antioxidative responses. Wheat plants were subjected to different drought levels- full irrigation (I100), 75% of full irrigation (I75), 50% of full irrigation (I50), and 25% of full irrigation (I25), and shading treatments - 12, 9, 6, 3 and 0 days (SD12, SD9, SD6, SD3, and CK, respectively) during the grain-filling stage. The effects of drought and shading treatments reduced yield in descending order, with the most significant reductions observed in the SD12 and I25 treatments. These treatments decreased grain yield, spikes per plant, 1000-grain weight, and spikelets per spike by 160.67%, 248.13%, 28.22%, and 179.55%, respectively, compared to the CK. Furthermore, MDA content and antioxidant enzyme activities exhibited an ascending trend with reduced irrigation and longer shading durations. The highest values were recorded in the I75 and SD12 treatments, which increased MDA, SOD, POD, and CAT activities by 65.22, 66.79, 65.07 and 58.38%, respectively, compared to the CK. The Pn, E, Gs, and iCO2 exhibited a decreasing trend (318.14, 521.09, 908.77, and 90.85%) with increasing shading duration and decreasing irrigation amount. Drought and shading treatments damage leaf chlorophyll fluorescence, decreasing yield and related physiological and biochemical attributes.

11.
J Electrocardiol ; 86: 153769, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126969

RESUMO

The Dressler-de Winter sign is an electrocardiogram (ECG) pattern characterized by upsloping ST-segment depression in leads V1-V6 followed by tall, hyperacute T waves, typically indicating an occlusion of the left anterior descending artery (LAD). We present a case involving an inferoposterior ST-segment elevation myocardial infarction (STEMI) with a variant of the de Winter sign, a concept of ST-segment continuum in the precordial leads. Despite initial ECG findings suggesting right coronary artery (RCA) or left circumflex artery (LCX) involvement, coronary angiography confirmed occlusion of the wrap-around LAD distal to the first septal (S1) and diagonal branch (D1) and revealed a left dominant system accompanied by a small non-dominant RCA. This case highlights the diagnostic complexity in accurately localizing the culprit artery in STEMI cases exhibiting the de Winter sign. Understanding such ECG variants is crucial for analyzing the mechanisms of acute ischemia and ensuring accurate assessment of the culprit vessel for effective revascularization.

12.
Sci Rep ; 14(1): 17886, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095440

RESUMO

The precise extraction of winter wheat planting structure holds significant importance for food security risk assessment, agricultural resource management, and governmental decision-making. This study proposed a method for extracting the winter wheat planting structure by taking into account the growth phenology of winter wheat. Utilizing the fitting effect index, the optimal Savitzky-Golay (S-G) filtering parameter combination was determined automatically to achieve automated filtering and reconstruction of NDVI time series data. The phenological phases of winter wheat growth was identified automatically using a threshold method, and subsequently, a model for extracting the winter wheat planting structure was constructed based on three key phenological stages, including seeding, heading, and harvesting, with the combination of hierarchical classification principles. A priori sample library was constructed using historical data on winter wheat distribution to verify the accuracy of the extracted results. The validation of fitting effect on different surfaces demonstrated that the optimal filtering parameters for S-G filtering could be obtained automatically by using the fitting effect index. The extracted winter wheat phenological phases showed good consistency with ground-based observational results and MOD12Q2 phenological products. Validation against statistical yearbook data and the proposed priori knowledge base exhibited high statistical accuracy and spatial precision, with an extracting accuracy of 94.92%, a spatial positioning accuracy of 93.26%, and a kappa coefficient of 0.9228. The results indicated that the proposed method for winter wheat planting structure extracting can identify winter wheat areas rapidly and significantly. Furthermore, this method does not require training samples or manual experience, and exhibits strong transferability.


Assuntos
Estações do Ano , Triticum , Triticum/crescimento & desenvolvimento , Agricultura/métodos
13.
Heliyon ; 10(14): e34390, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108870

RESUMO

High winter mortality of honey bees (Apis mellifera) has been observed in temperate regions over the past 30 years. Several biotic and abiotic stressors associated with winter colony losses have been identified, but the mechanisms and interactions underlying their effects remain unclear. We reviewed the effects of stressors on key overwintering biological traits, distinguishing between individual and colony traits. We found that disturbances at the level of individual traits can be amplified when transmitted to colony traits. By analyzing these cascading effects, we propose a concept of a feedback loop mechanism of winter mortality. We found that population size, social thermoregulation and honey reserve are integrative traits and can predict overwintering failure. Furthermore, we identified social thermoregulation as a good candidate for an early warning indicator. We therefore discuss existing tools for monitoring hive temperature to help mitigate the current high winter mortality of honey bees and support the sustainability of beekeeping.

14.
Plants (Basel) ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124154

RESUMO

Increased aboveground biomass is contingent on enhanced photosynthetically active radiation intercepted by the canopy (IPAR), improved radiation use efficiency (RUE), or both. We investigated whether and how optimized agronomic management practices promote IPAR and RUE. Four integrated agronomic management treatments, i.e., local traditional practice (LP), improved local traditional practice (ILP), high-yield agronomic management (HY), and improved high-yield agronomic management (IHY), were compared over two wheat (Triticum aestivum L.) growing seasons. The average grain yield obtained with IHY was 96% relative to that of HY and was 7% and 23% higher than that with ILP and LP, respectively. Both HY and IHY consistently supported large values of the leaf area index and IPAR fraction, thereby increasing total IPAR. Treatment HY showed increased pre-anthesis RUE, manifested as a higher specific leaf nitrogen content and whole-plant N nutrition index at anthesis. The highest pre-anthesis aboveground biomass was obtained with HY due to the highest pre-anthesis IPAR and RUE. Along with a higher canopy apparent photosynthetic rate, IHY produced higher post-anthesis aboveground biomass due to its higher post-anthesis IPAR and RUE. Treatment IHY had a slightly lower total IPAR but a similar total RUE and harvest index, thus producing a slightly lower grain yield relative to HY. These results demonstrate that the optimized agronomic management practice used under IHY effectively enhances radiation capture and improves radiation utilization. Additionally, the net profit for IHY was higher than that for HY, ILP, and LP by 8%, 11%, and 88%, respectively. Considering the high grain yield, high RUE and high economic benefits, we recommend IHY as the agronomic management practice in the target region, although further study of improvements in pre-anthesis RUE is required.

15.
Plants (Basel) ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124227

RESUMO

This study examines the impact of climate change on winter wheat production in Henan Province. The analysis, under the utilization of GLASS LAI data, focuses on shifts in the planting areas of winter wheat. In addition, a comprehensive assessment of the spatiotemporal trends in meteorological factors during the winter wheat growth period has also been conducted. The findings reveal a fluctuating increase in accumulated temperature across Henan Province, ranging from 3145 °C to 3424 °C and exhibiting a gradual rise from north to south. In particular, precipitation patterns from 1980 to 2019 showed limited significant trends, while notable abrupt changes were observed in 1983, 2004, 2009, and 2016. Geographically, southwestern Henan Province experiences greater precipitation than the northeast. Moreover, a fluctuating downward trend in sunshine hours has been observed, gradually decreasing from north to south. The study further highlights an increase in winter wheat planting frequency in the northwestern region of Luoyang and the northeastern part of Zhumadian, contrasted by a decrease in Zhengzhou and Kaifeng. Accumulated temperature is positively correlated with the expansion of winter wheat planting areas (R2 = 0.685), while sunshine hours exert a suppressive effect (R2 = 0.637). Among meteorological factors, accumulated temperature emerges as the most crucial determinant, followed by precipitation, with sunshine hours having a relatively minor influence. Yield demonstrates a positive association with accumulated temperature (R2 = 0.765) and a negative correlation with sunshine hours (R2 = -0.614). This finding is consistent with the impact of meteorological factors on winter wheat production. The results of this study enhance the understanding of how the underlying mechanisms of climate change impact crop yields.

16.
J Sci Food Agric ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113436

RESUMO

BACKGROUND: Water and nutrients are two main determinants of wheat yield, which are vital for maintaining high crop yields. In the present study, the effects of water and phosphate fertilization on wheat yield, photosynthetic parameters, water productivity and phosphate use efficiency were investigated. Five dryland wheat cultivars from the 1940s to the 2010s that are widely cultivated in Shaanxi Province, China, were used. Experiments were conducted from 2019 to 2022 using two irrigation levels (normal rainfall and no precipitation after the reviving stage) and two phosphorus application levels (0 and 100 kg ha-1). RESULTS: Compared with old cultivars ('Mazha'), the grain yield of modern cultivars ('Changhan 58') was 89.24% higher and was closely correlated with chlorophyll index, leaf area index, photosynthetic rate and tillers. With the replacement of cultivars, the phosphorus content, water potential and phosphatase activity of wheat leaves increased. Considering water-phosphorus interactions, the water use efficiency and phosphorus use efficiency of wheat showed a significant positive correlation. CONCLUSION: Our findings indicate that modern wheat cultivars are more responsive to phosphorus. Further analysis revealed that modern varieties have evolved two phosphorus absorption strategies in response to phosphorus deficiency - namely, the formation of a phosphorus supply source, which may result in larger numbers of green organs; and an increase in phosphorus sinks, which tended to activation and transport of plant phosphorus. Our results may thus contribute to water conservation, increased yields and the development of strategies for efficient phosphorus fertilization. © 2024 Society of Chemical Industry.

17.
Sci Rep ; 14(1): 18182, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107429

RESUMO

Ecosystems in winter cities are complex and fragile, experiencing significant changes due to climate variations and human construction activities. Previous studies on the assessment of overall ecosystem service value (ESV) and ecological risk index (ERI) in winter cities are scarce. In this study, we constructed ESV and ERI measurement models using land use data in 2000, 2010, and 2020 using the improved value per unit area factor method and the landscape pattern index method, respectively, to reveal their spatial and temporal change characteristics. Geographic detectors were used to explore the driving roles of natural and artificial factors on the changes of ESV and ERI. The combination in ESV and ERI can then provide a more quantitative and accurate basis for policy decisions, identify priority areas for urban ecological restoration, and reduce the risk to ecosystems. The results of the study show that the total ESV of Shenyang city decreased from 273.97 × 108 CNY to 270.38 × 108 CNY during 2000-2020. Although the decrease is not large, the ESV changes structurally with the advancement of urbanization. During the 20 years, the construction land with the lowest ecological service function continues to expand, increasing by 354 km2, the grassland decreased by 215.9 km2, and the arable land decreased by 196.6 km2. The ecological service function of the water area is the strongest, with an increase of 51.3 km2 in the water area, ensuring that there is no significant decline in ESV. The size of the ERI is Very high, High, and Medium value zones remained relatively stable, while the size of the Very Low-value zone decreased by 12.78% and the size of the Low-value zone increased by 13.21%. The interaction factors that contributed most to the changes in ESV and ERI were annual evapotranspiration (EVP)/ Normalized Difference Vegetation Index (NDVI) and Annual sunshine hours (SSD)/ Digital Elevation Model (DEM) , respectively. There was a spatial correlation between ESV and ERI. The areas with the highest ESV supply capacity and at the same time facing severe ecological risks to the landscape pattern are distributed in the northeastern hilly lands. This area should be prioritized to develop planning and control measures to prevent further erosion of forest lands and grasslands and reduce ecological risks. These results provide a theoretical basis for ensuring ecological security and sustainable development in winter cities.

18.
Environ Sci Technol ; 58(32): 14361-14371, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088841

RESUMO

The photolysis of particulate nitrate (pNO3-) has been suggested to be an important source of nitrous acid (HONO) in the troposphere. However, determining the photolysis rate constant of pNO3- (jpNO3-) suffers from high uncertainty. Prior laboratory measurements of jpNO3- using aerosol filters have been complicated by the "shadow effect"─a phenomenon of light extinction within aerosol layers that potentially skews these measurements. We developed a method to correct the shadow effect on the photolysis rate constant of pNO3- for HONO production (jpNO3- â†’ HONO) using aerosol filters with identical chemical compositions but different aerosol loadings. We applied the method to quantify jpNO3- â†’ HONO over the North China Plain (NCP) during the winter haze period. After correcting for the shadow effect, the normalized average jpNO3- â†’ HONO at 5 °C increased from 5.89 × 10-6 s-1 to 1.72 × 10-5 s-1. The jpNO3- â†’ HONO decreased with increasing pH and nitrate proportions in PM2.5 and had no correlation with nitrate concentrations. A parametrization for jpNO3- â†’ HONO was developed for model simulation of HONO production in NCP and similar environments.


Assuntos
Poluentes Atmosféricos , Atmosfera , Nitratos , Ácido Nitroso , Fotólise , Nitratos/química , Atmosfera/química , Ácido Nitroso/química , Poluentes Atmosféricos/química , Aerossóis
19.
J Sci Food Agric ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149861

RESUMO

BACKGROUND: Leaf area index (LAI) is an important indicator for assessing plant growth and development, and is also closely related to photosynthesis in plants. The realization of rapid accurate estimation of crop LAI plays an important role in guiding farmland production. In study, the UAV-RGB technology was used to estimate LAI based on 65 winter wheat varieties at different fertility periods, the wheat varieties including farm varieties, main cultivars, new lines, core germplasm and foreign varieties. Color indices (CIs) and texture features were extracted from RGB images to determine their quantitative link to LAI. RESULTS: The results revealed that among the extracted image features, LAI exhibited a significant positive correlation with CIs (r = 0.801), whereas there was a significant negative correlation with texture features (r = -0.783). Furthermore, the visible atmospheric resistance index, the green-red vegetation index, the modified green-red vegetation index in the CIs, and the mean in the texture features demonstrated a strong correlation with the LAI with r > 0.8. With reference to the model input variables, the backpropagation neural network (BPNN) model of LAI based on the CIs and texture features (R2 = 0.730, RMSE = 0.691, RPD = 1.927) outperformed other models constructed by individual variables. CONCLUSION: This study offers a theoretical basis and technical reference for precise monitor on winter wheat LAI based on consumer-level UAVs. The BPNN model, incorporating CIs and texture features, proved to be superior in estimating LAI, and offered a reliable method for monitoring the growth of winter wheat. © 2024 Society of Chemical Industry.

20.
Ecol Evol ; 14(7): e70042, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050662

RESUMO

Climate change is swiftly altering environmental winter conditions, leading to significant ecological impacts such as phenological shifts in many species. As a result, animals might face physiological mismatches due to longer or earlier activity periods and are at risk of being exposed to late spring freezes. Our study points for the first time to the complex physiological challenges that amphibians face as a result of changing thermal conditions due to winter climate change. We investigated the physiological responses to a period of warmer winter days and sudden spring freeze in the common toad (Bufo bufo) by acclimating them to 4°C or 8°C for 48 h or exposing them to 4°C or -2°C for 6 h, respectively. We assessed the daily energy demands, determined body condition and cold tolerance, explored the molecular responses to freezing through hepatic tissue transcriptome analysis, and measured blood glucose levels. Toads acclimated to higher temperatures showed a higher daily energy expenditure and a reduced cold tolerance suggesting faster depletion of energy stores and the loss of winter acclimation during warmer winters. Blood sugar levels were higher in frozen toads indicating the mobilization of cryoprotective glucose with freezing which was further supported by changed patterns in proteins related to glucose metabolism. Overall, our results emphasize that increased thermal variability incurs physiological costs that may reduce energy reserves and thus affect amphibian health and survival. This might pose a serious threat to breeding adults and may have subsequent effects at the population level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA