Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
Eur Respir J ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991708

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder caused by aberrant motile cilia function that results in defective ciliary airway clearance and subsequently to recurrent airway infections and bronchiectasis. QUESTION: How many functional multiciliated airway cells are sufficient to maintain ciliary airway clearance? METHODS: To answer this question we exploited the molecular defects of the X-linked recessive PCD variant caused by pathogenic variants in DNAAF6 (PIH1D3), characterized by immotile cilia in the affected males. We carefully analyzed the clinical phenotype, molecular defect (immunofluorescence and transmission-electron microscopy) and performed in vitro (particle tracking in air-liquid interface cultures) and in vivo (radiolabeled tracer studies) studies to assess ciliary clearance of respiratory cells from females with heterozygous and males with hemizygous pathogenic DNAAF6 variants. RESULTS: PCD males with hemizygous pathogenic DNAAF6 variants displayed exclusively immotile cilia, absence of ciliary clearance and severe PCD symptoms. Due to random or skewed X-chromosome inactivation in six females with heterozygous pathogenic DNAAF6 variants, 54.3%±10 (range 38%-70%) of multiciliated cells were defective. Nevertheless, in vitro and in vivo assessment of the ciliary airway clearance was normal or slightly abnormal. Consistently, heterozygous female individuals showed no or only mild respiratory symptoms. CONCLUSIONS: Our findings indicate that 30%-62% of functioning multiciliated respiratory cells are able to generate either normal or slightly reduced ciliary clearance. Because heterozygous females displayed either no or subtle respiratory symptoms, complete correction of 30% of cells by precision medicine might be able to improve ciliary airway clearance in PCD individuals as well as clinical symptoms.

2.
Clin Kidney J ; 17(6): sfae092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873575

RESUMO

X-linked proximal tubulopathies are rare diseases that predominantly affect men. Women are generally carriers and clinical or biochemical manifestations are usually absent or mild. We present the case of a young woman who presented with a full phenotype of Dent disease type 1 due to a de novo mutation in the CLCN5 gene and a skewed X-chromosome inactivation. Although cases of overt Dent disease type 2 and Lowe syndrome in women have been described in the literature, to our knowledge this is the first case of overt Dent disease type 1.

3.
Genome Biol ; 25(1): 144, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822397

RESUMO

BACKGROUND: Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines. RESULTS: XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes. CONCLUSIONS: We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome's role in regulating gene expression and sex differences in humans.


Assuntos
Cromossomos Humanos X , Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Inativação do Cromossomo X , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Cromossomos Humanos X/genética , Masculino , RNA Longo não Codificante/genética , Alelos , Regulação da Expressão Gênica , Metilação de DNA
4.
MedComm (2020) ; 5(6): e582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38827026

RESUMO

Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.

5.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38813842

RESUMO

This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.


Assuntos
Alelos , RNA Longo não Codificante , Receptores Odorantes , Inativação do Cromossomo X , Animais , Humanos , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
6.
Genome Biol ; 25(1): 134, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783307

RESUMO

The marsupial specific RSX lncRNA is the functional analogue of the eutherian specific XIST, which coordinates X chromosome inactivation. We characterized the RSX interactome in a marsupial representative (the opossum Monodelphis domestica), identifying 135 proteins, of which 54 had orthologues in the XIST interactome. Both interactomes were enriched for biological pathways related to RNA processing, regulation of translation, and epigenetic transcriptional silencing. This represents a remarkable example showcasing the functional coherence of independently evolved lncRNAs in distantly related mammalian lineages.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Monodelphis/genética , Monodelphis/metabolismo
7.
Cytogenet Genome Res ; : 1-10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754392

RESUMO

INTRODUCTION: X chromosome inactivation (XCI) is an essential mechanism for dosage compensation between females and males in mammals. In females, XCI is controlled by a complex, conserved locus termed the X inactivation center (Xic), in which the lncRNA Xist is the key regulator. However, little is known about the Xic in species with unusual sex chromosomes. The genus Tokudaia includes three rodent species endemic to Japan. Tokudaia osimensis and Tokudaia tokunoshimensis lost the Y chromosome (XO/XO), while Tokudaia muenninki (TMU) acquired a neo-X region by fusion of the X chromosome and an autosome (XX/XY). We compared the gene location and structure in the Xic among Tokudaia species. METHODS: Gene structure of nine genes in Xic was predicted, and the gene location and genome sequences of Xic were compared between mouse and Tokudaia species. The expression level of the gene was confirmed by transcripts per million calculation using RNA-seq data. RESULTS: Compared to mouse, the Xic gene order and location were conserved in Tokudaia species. However, remarkable structure changes were observed in lncRNA genes, Xist and Tsix, in the XO/XO species. In Xist, important functional repeats, B-, C-, D-, and E-repeats, were partially or completely lost due to deletions in these species. RNA-seq data showed that female-specific expression patterns of Xist and Tsix were confirmed in TMU, however, not in the XO/XO species. Additionally, three deletions and one inversion were confirmed in the intergenic region between Jpx and Ftx in the XO/XO species. CONCLUSION: Our findings indicate that even if the Xist and Tsix lncRNAs are expressed, they are incapable of producing a successful and lasting XCI in the XO/XO species. We hypothesized that the significant structure change in the intergenic region of Jpx-Ftx resulted in the inability to perform the XCI, and, as a result, a lack of Xist expression. Our results collectively suggest that structural changes in the Xic occurred in the ancestral lineage of XO/XO species, likely due to the loss of one X chromosome and the Y chromosome as a consequence of the degradation of the XCI system.

8.
Biochem Soc Trans ; 52(3): 1099-1107, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747697

RESUMO

The long non-coding RNA (lncRNA) Xist is crucially involved in a process called X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mammals to achieve X dosage compensation between the sexes. Because Xist RNA silences the X chromosome from which it is transcribed, the activation of Xist transcription marks the initiation of the XCI process and thus, mechanisms and players that activate this gene are of central importance to the XCI process. During female mouse embryogenesis, XCI occurs in two steps. At the 2-4 cell stages imprinted XCI (iXCI) silences exclusively the paternally inherited X chromosome (Xp). While extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo random XCI (rXCI) around implantation. Both iXCI and rXCI are dependent on Xist. Rlim, also known as Rnf12, is an X-linked E3 ubiquitin ligase that is involved in the transcriptional activation of Xist. However, while data on the crucial involvement of Rlim during iXCI appear clear, its role in rXCI has been controversial. This review discusses data leading to this disagreement and recent evidence for a regulatory switch of Xist transcription in epiblasts of implanting embryos, partially reconciling the roles of Rlim during Xist activation.


Assuntos
RNA Longo não Codificante , Ubiquitina-Proteína Ligases , Inativação do Cromossomo X , Animais , Feminino , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Cromossomo X/genética , Cromossomo X/metabolismo
9.
Genes (Basel) ; 15(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790223

RESUMO

Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation (XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal X chromosome is theorized to result in reduced disease severity; however, establishing such a correlation is complicated by known MECP2 genotype effects and an age-dependent increase in severity. To mitigate these confounding factors, we developed an age- and genotype-normalized measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural History Study. This model accurately reflected individual increase in severity with age and preserved group-level genotype specific differences in severity, allowing for the creation of a normalized clinical severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence on disease severity depends on MECP2 genotype with a correlation between XCI and severity observed only in individuals with MECP2 variants associated with increased clinical severity. This normalized measure of RTT severity provides the opportunity for future discovery of additional factors contributing to disease severity that may be masked by age and genotype effects.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Índice de Gravidade de Doença , Inativação do Cromossomo X , Síndrome de Rett/genética , Síndrome de Rett/patologia , Inativação do Cromossomo X/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Feminino , Criança , Cromossomos Humanos X/genética , Genótipo , Pré-Escolar , Adolescente , Adulto , Masculino , Alelos , Adulto Jovem
10.
Biol Sex Differ ; 15(1): 41, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750588

RESUMO

BACKGROUND: Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS: In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS: Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS: Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.


The immune system protects us from bacterial and viral infections and impacts the outcome of many diseases. Thus, understanding immunological processes is crucial to unravel pathogenic mechanisms and to develop new therapeutic treatment options. Sex is a biological variable affecting immunity and it is known that females and males differ in their immunological responses. Women mount stronger immune responses leading to more rapid control of infections and greater vaccine efficacy compared to men. However, this enhanced immune responsiveness is accompanied by female preponderance and susceptibility to autoimmune diseases like systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis (MS). MS sex ratio varies around 2:1 to 3:1 with a steadily increasing incidence in female MS patients making sex one of the top risk factors for developing MS. However, the underlying biological mechanisms including sex hormones as well as genetic and epigenetic factors and their complex interplay remain largely unknown. Here, we discovered the gene and its encoded protein CD99 to be differentially expressed between women and men with men showing increased expression on many immune cell subsets including T cells. Since T cells are key contributors to MS pathogenesis, we examined the role of CD99 on T cells of healthy individuals and MS patients. We were able to identify CD99-mediated T cell regulation, which might contribute to sex differences in MS susceptibility and incidence indicating the importance to include sex as a biological variable. Of note, these differences were not reproduced in mice showing the necessity of functional research in humans.


Assuntos
Antígeno 12E7 , Esclerose Múltipla , Caracteres Sexuais , Linfócitos T , Animais , Feminino , Masculino , Humanos , Antígeno 12E7/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Linfócitos T/metabolismo , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Células Jurkat , Baço/metabolismo , Baço/imunologia , Especificidade da Espécie , Camundongos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Knockout , Adulto
11.
Am J Med Genet A ; : e63628, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655688

RESUMO

The phenotypes associated with MED12 pathogenic variants are diverse. Male patients usually have missense variants, but the effects of base substitutions on mRNA splicing have not been investigated. Here, we report a Japanese brother with intellectual disability, characteristic facial appearance with blepharophimosis, cleft palate, Fallot tetralogy, vesicoureteral reflux, and deafness. A known missense pathogenic variant was detected in MED12, NM_005120.3:c.887G>A p.(Arg296Gln), and X-linked Ohdo syndrome was diagnosed in combination with their phenotype. mRNA splicing of MED12 was evaluated qualitatively and quantitatively using long-range PCR-based targeted RNA sequencing (reverse transcribed long amplicon sequencing), and it was shown that this missense variant simultaneously causes aberrant splicing of the 42-bp in-frame deletion in exon 7, r.847_888del, which accounts for approximately 30% of the mRNAs in both siblings. The X chromosome inactivation study showed that the X chromosome carrying the mutant allele was 100% inactivated in the carrier mothers. mRNA level analysis is essential for the accurate interpretation of the effects of variants. In this case, the MED12 protein function may be reduced by more than just an amino acid substitution, resulting in the patients with the most severe phenotype of MED12-related syndrome in males.

12.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627676

RESUMO

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Assuntos
Exoma , Inativação do Cromossomo X , Adulto , Humanos , Feminino , Transcriptoma , Sequenciamento do Exoma , Cromossomos Humanos X/genética
13.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659923

RESUMO

The mechanisms of X chromosome inactivation suggest fundamental epigenetic differences between the female and male X chromosomes. However, DNA methylation studies often exclude the X chromosomes. In addition, many previous studies relied on techniques that examine non-randomly selected subsets of positions such as array-based methods, rather than assessing the whole X chromosome. Consequently, our understanding of X chromosome DNA methylation lags behind that of autosomes. Here we addressed this gap of knowledge by studying X chromosome DNA methylation using 89 whole genome bisulfite sequencing (WGBS) maps from neurons and oligodendrocytes. Using this unbiased and comprehensive data, we show that DNA methylation of the female X chromosomes is globally reduced (hypomethylated) across the entire chromosome compared to the male X chromosomes and autosomes. On the other hand, the majority of X-linked promoters were more highly methylated (hypermethylated) in females compared to males, consistent with the role of DNA methylation in X chromosome inactivation and dosage compensation. Remarkably, hypermethylation of female X promoters was limited to a group of previously lowly methylated promoters. The other group of highly methylated promoters were both hyper- and hypo-methylated in females with no obvious association with gene expression. Therefore, X chromosome inactivation by DNA methylation was exclusive to a subset of promoters with distinctive epigenetic feature. Apart from this group of promoters, differentially methylated regions in the female and male X chromosomes were dominated by female hypomethylation. Our study furthers the understanding of X-chromosome dosage regulation by DNA methylation on the chromosomal level as well as on individual gene level.

14.
Front Cell Neurosci ; 18: 1339345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638299

RESUMO

Introduction: Protocadherin-19 (PCDH19)-Clustering Epilepsy (PCE) is a developmental and epileptic encephalopathy caused by loss-of-function variants of the PCDH19 gene on the X-chromosome. PCE affects females and mosaic males while male carriers are largely spared. Mosaic expression of the cell adhesion molecule PCDH19 due to random X-chromosome inactivation is thought to impair cell-cell interactions between mutant and wild type PCDH19-expressing cells to produce the disease. Progress has been made in understanding PCE using rodent models or patient induced pluripotent stem cells (iPSCs). However, rodents do not faithfully model key aspects of human brain development, and patient iPSC models are limited by issues with random X-chromosome inactivation. Methods: To overcome these challenges and model mosaic PCDH19 expression in vitro, we generated isogenic female human embryonic stem cells with either HA-FLAG-tagged PCDH19 (WT) or homozygous PCDH19 knockout (KO) using genome editing. We then mixed GFP-labeled WT and RFP-labeled KO cells and generated human cortical organoids (hCOs). Results: We found that PCDH19 is highly expressed in early (days 20-35) WT neural rosettes where it co-localizes with N-Cadherin in ventricular zone (VZ)-like regions. Mosaic PCE hCOs displayed abnormal cell sorting in the VZ with KO and WT cells completely segregated. This segregation remained robust when WT:KO cells were mixed at 2:1 or 1:2 ratios. PCE hCOs also exhibited altered expression of PCDH19 (in WT cells) and N-Cadherin, and abnormal deep layer neurogenesis. None of these abnormalities were observed in hCOs generated by mixing only WT or only KO (modeling male carrier) cells. Discussion: Our results using the mosaic PCE hCO model suggest that PCDH19 plays a critical role in human VZ radial glial organization and early cortical development. This model should offer a key platform for exploring mechanisms underlying PCE-related cortical hyperexcitability and testing of potential precision therapies.

15.
Stem Cell Res Ther ; 15(1): 116, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654389

RESUMO

Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.


Assuntos
Células-Tronco Embrionárias , Haploidia , Humanos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Animais , Diferenciação Celular
16.
Cell Mol Life Sci ; 81(1): 156, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551746

RESUMO

X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Humanos , Masculino , Animais , Coelhos , Feminino , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , Cromossomos Humanos X , Cromossomo X/genética , Éxons/genética
17.
Mol Genet Genomics ; 299(1): 32, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472449

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/ß-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.


Assuntos
Doenças Retinianas , Feminino , Humanos , Lactente , Análise Mutacional de DNA , Proteínas do Olho/genética , Vitreorretinopatias Exsudativas Familiares/genética , Heterozigoto , Mutação , Proteínas do Tecido Nervoso/genética , Linhagem , Fenótipo , Retina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
18.
BMC Med Genomics ; 17(1): 46, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303044

RESUMO

OBJECTIVE: To analyze the clinical phenotype and genetic characteristics of a female proband carrying a novel mutation in the DMD gene with non-random X-chromosome inactivation in a large pedigree with pseudohypertrophic muscular dystrophy. METHODS: Clinical information of the female proband, her monozygotic twin sister, and other family members were collected. Potential pathogenic variants were detected with Multiplex Ligation-dependent Probe Amplification (MLPA) and whole-exome sequencing (WES). Methylation-sensitive restriction enzyme (HhaI) was employed for X-chromosome inactivation analysis. RESULTS: The proband was a female over 5 years old, displayed clinical manifestations such as elevated creatine kinase (CK) levels and mild calf muscle hypertrophy. Her monozygotic twin sister exhibited normal CK levels and motor ability. Her uncle and cousin had a history of DMD. WES revealed that the proband carried a novel variant in the DMD (OMIM: 300,377) gene: NM_004006.3: c.3051_3053dup; NP_003997.2: p.Tyr1018*. In this pedigree, five out of six female members were carriers of this variant, while the cousin and uncle were hemizygous for this variant. X-chromosome inactivation analysis suggested non-random inactivation in the proband. CONCLUSION: The c.3051_3053dup (p.Tyr1018*) variant in the DMD gene is considered to be the pathogenic variant significantly associated with the clinical phenotype of the proband, her cousin, and her uncle within this family. Integrating genetic testing with clinical phenotype assessment can be a valuable tool for physicians in the diagnosis of progressive muscular dystrophies, such as Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD).


Assuntos
Distrofia Muscular de Duchenne , Humanos , Feminino , Pré-Escolar , Distrofia Muscular de Duchenne/genética , Testes Genéticos , Fenótipo , Mutação , Cromossomos
19.
Epigenomes ; 8(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390897

RESUMO

Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.

20.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181737

RESUMO

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Assuntos
Genes Ligados ao Cromossomo X , RNA Longo não Codificante , Cromossomo X , Animais , Feminino , Humanos , Masculino , Camundongos , Inativação Gênica , RNA Longo não Codificante/genética , Cromossomo X/genética , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA