Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Waste Manag ; 189: 421-426, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241560

RESUMO

The analysis of the presence and content of substances that are toxic to aquatic life in waste is essential for classification of waste with regard to hazard property (HP) 14 'ecotoxic'. For the determination of HP14 classified copper (Cu) and zinc (Zn) compounds in various municipal solid waste incineration bottom ashes (IBA) and one fly ash (FA) from Germany we applied X-ray absorption near-edge structure (XANES) spectroscopy in combination with linear combination fitting. The analysis showed that approx. 50-70% of Cu in the IBA are Cu(I) compounds and elemental Cu(0), but these compounds were not equally distributed in the different IBA. In contrast, the majority (approx. 50-70%) of Zn in all IBA is elemental zinc, which originates from brass or other alloys and galvanized metals with a large content of zinc in the waste. The FA contain higher mass fraction on Zn and other toxic elements, but similar Cu and Zn species. Additional performed selective extraction at a pH of 4 with an organic acid of some IBA showed that the ecotoxic Zn fraction is mainly elemental zinc and zinc oxide. In contrast, for the ecotoxic Cu fraction within the IBA no specific compound could be identified. Furthermore, the XANES analysis showed that the HP14 properties of especially Cu in IBA is overestimated with current best-practice guidelines for sample processing for the current substance-related approach with the 0.1% cut-off rule for each substance. However, it should be considered whether it would not be better from an environmental point of view to take the ecotoxicologically leachable copper and zinc as a reference value.

2.
J Synchrotron Radiat ; 31(Pt 5): 1276-1284, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088400

RESUMO

Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.

3.
Data Brief ; 55: 110634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035838

RESUMO

Here, we present As K-edge X-ray absorption spectroscopy (XAS) data for 28 arsenic minerals and compounds. These minerals and compounds were obtained from mineral dealers, museum collections, and chemical suppliers, and were positively identified by synchrotron-based powder X-ray diffraction (XRD). All samples were analyzed for both XRD and XAS at the Canadian Light Source synchrotron (Saskatoon, Canada). The As K-edge XAS data were collected in both transmission and fluorescence modes and cover the extended X-ray absorption fine structure (EXAFS) region. Raw XAS data in both modes are provided to support XAS analysis obtained for geological or environmental research. Furthermore, As K-edge EXAFS spectra, the k3 weighted oscillatory χ(k) functions, and the Fourier-transforms in χ(R) of these K-edge data are processed and presented graphically. Corresponding XRD data was collected to confirm phase identity. Two-dimensional powder diffraction images were collected against an area detector and integrated to produce line scans. The XRD data were either collected at a wavelength of 0.68866 Å (18 keV) or 0.3497 Å (35.45 keV). Raw, tabulated asc files are available, while the patterns are also presented graphically over a 0-40 °2Θ range or 0-26.5 °2Θ range, respectively. The intent of this dataset is to provide reference XAS spectra to researchers conducting environmental or geological research on As.

4.
ACS Nano ; 18(28): 18393-18404, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38956949

RESUMO

Sequential infiltration synthesis (SIS), also known as vapor phase infiltration (VPI), is a quickly expanding technique that allows growth of inorganic materials within polymers from vapor phase precursors. With an increasing materials library, which encompasses numerous organometallic precursors and polymer chemistries, and an expanding application space, the importance of understanding the mechanisms that govern SIS growth is ever increasing. In this work, we studied the growth of polycrystalline ZnO clusters and particles in three representative polymers: poly(methyl methacrylate), SU-8, and polymethacrolein using vapor phase diethyl zinc and water. Utilizing two atomic resolution methods, high-resolution scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy, we probed the evolution of ZnO nanocrystals size and crystallinity level inside the polymers with advancing cycles─from early nucleation and growth after a single cycle, through the formation of nanometric particles within the films, and to the coalescence of the particles upon polymer removal and thermal treatment. Through in situ Fourier transform infrared spectroscopy and microgravimetry, we highlight the important role of water molecules throughout the process and the polymers' hygroscopic level that leads to the observed differences in growth patterns between the polymers, in terms of particle size, dispersity, and the evolution of crystalline order. These insights expand our understanding of crystalline materials growth within polymers and enable rational design of hybrid materials and polymer-templated inorganic nanostructures.

5.
Chem Pharm Bull (Tokyo) ; 72(5): 480-486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763752

RESUMO

X-ray absorption near-edge structure (XANES) spectroscopy is a new method for the characterization of active pharmaceutical ingredients. XANES spectra show unique features depending on the electronic states of the X-ray absorbing elements and provide information about the chemical environment that affects the electronic states. In this study, six bisphosphonate hydrate crystals were used to investigate, for the first time, how the phosphorus K-edge XANES spectra are affected by the interatomic interactions and charged states of phosphonate moieties. Phosphorus K-edge XANES spectra showed several differences among the bisphosphonates. In particular, the chlorine atoms covalently bonded near the phosphonate and the number of electric charges of the phosphonate moieties seemed to have large effects on peak shape in XANES spectra. Unique shapes of the XANES spectra demonstrated that differences in interactions at the oxygen atoms of the phosphonate moieties could change the shapes of the XANES spectrum peaks to the extent that each material was distinguished based on the spectra. Since slight differences in interatomic interactions and charged states lead to variations in the spectra, XANES spectroscopy could be widely applied as the fingerprint method to evaluate active pharmaceutical ingredients.


Assuntos
Difosfonatos , Espectroscopia por Absorção de Raios X , Difosfonatos/química , Fósforo/química , Cristalização , Estrutura Molecular
6.
J Hazard Mater ; 472: 134379, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733779

RESUMO

Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL. The Cd immobilization efficiencies of three frass in alkaline solutions and soils were investigated through batch sorption and incubation experiments, and spectroscopic techniques were employed to elucidate the sorption mechanisms of Cd onto different frass at the molecular level. The results showed that MF proved to be an efficient sorbent for Cd in alkaline solutions (176.67-227.27 mg g-1). X-ray absorption near-edge structure (XANES) spectroscopy indicated that Cd immobilization in frass is primarily attributed to the association with organic matter (OM-Cd, 78-90%). And MF had more oxygen-containing functional groups than the other frass. In weakly alkaline soils, MF application (0.5-1.5%) significantly decreased Cd bioavailability (5.65-18.48%) and concurrently improved soil nutrients (2.21-56.79%). Redundancy analysis (RDA) unveiled that pH, CEC, and available P were important factors controlling Cd fractions. Path analysis demonstrated that MF application affected Cd bioavailability directly and indirectly by influencing soil chemical properties and nutrients. In summary, MF, the product of PBL-mediated conversion maize straw, demonstrated promise as an effective organic amendment for Cd immobilization and fertility improvement in alkaline soils.


Assuntos
Cádmio , Larva , Poluentes do Solo , Solo , Animais , Cádmio/química , Solo/química , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Zea mays/química , Adsorção
7.
Environ Sci Technol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340051

RESUMO

Here, isotopically labeled 68ZnO NPs (ZnO NPs) and 68ZnO NPs with a thin 68Zn3(PO4)2 shell (ZnO_Ph NPs) were foliarly applied (40 µg Zn) to pepper plants (Capsicum annuum) to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn3(PO4)2 shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.6 mV) enabled a leaf uptake of 2.31 ± 0.34 µg of Zn, which is 2.7 times higher than the 0.86 ± 0.18 µg of Zn observed for ZnO NPs (26 ± 8 nm; 14.6 ± 0.4 mV). Further, ZnO_Ph NPs led to higher Zn mobility and phloem loading, while Zn from ZnO NPs was stored in the epidermal tissues, possibly through cell wall immobilization as a storage strategy. These differences led to higher translocation of Zn from the ZnO_Ph NPs within all plant compartments. ZnO_Ph NPs were also more persistent as NPs in the exposed leaf and in the plant stem over time. As a result, the treatment of ZnO_Ph NPs induced significantly higher Zn transport to the fruit than ZnO NPs. As determined by spICP-TOFMS, Zn in the fruit was not in the NP form. These results suggest that the Zn3(PO4)2 shell on ZnO NPs can help promote the transport of Zn to pepper fruits when foliarly applied. This work provides insight into the role of Zn3(PO4)2 on the surface of ZnO NPs in foliar uptake and in planta biodistribution for improving Zn delivery to edible plant parts and ultimately improving the Zn content in food for human consumption.

8.
Waste Manag ; 175: 265-275, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232518

RESUMO

Microwave hydrothermal (MHT) conversion is emerging as a promising technology for the disposal and reutilization of biowastes. This study investigated the fundamental properties and phosphorus transformation mechanism of soybean straw during the MHT conversion process. The oxygen-containing functional groups in soybean straw were stripped, and a trend of dehydration was observed as the temperature increased during the MHT process. Cellulose was identified as the major component of the MHT solid products at high temperature. Glucose and glucuronic acid in the MHT liquid products were gradually converted to formic acid and acetic acid with increasing temperature and holding time. The characteristics of the MHT products directly affected the changes in P speciation and transformation. Most of the P was distributed in liquid products and the impact of holding time was not significant on P distribution at low MHT temperature. With the increase in temperature and holding time, P gradually transferred into the solid products. The proportion of organic phosphorus and soluble inorganic phosphorus in soybean straw was high, and it decreased noticeably after the MHT process. The increase in MHT temperature promoted the conversion of OP and AP into IP and NAIP respectively. P K-edge X-ray absorption near edge structure analysis reveals that Ca5(PO4)3(OH) was the major component of soybean straw and more Ca5(PO4)3(OH) was formed at lower MHT temperature. This study provides fundamental knowledge on the property changes of soybean straw and the transformation of phosphorus during MHT conversion process, which is essential for its disposal and further utilization.


Assuntos
Glycine max , Fósforo , Micro-Ondas , Temperatura , Ácido Acético
9.
Chem Pharm Bull (Tokyo) ; 71(9): 741-746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661380

RESUMO

Polymorphic crystals of ambroxol, forms I and II, and form A ambroxol hydrochloride crystals were characterized with bromine K-edge X-ray absorption near-edge structure (XANES) spectroscopy and single-crystal X-ray structure analysis. The XANES spectra had unique shapes depending on the crystal forms. Refined single-crystal structures revealed different interatomic interactions around bromine atoms, such as C-H…Br and N-H…Br hydrogen bonds, Br…O halogen bonds, and N-H…π interactions. Differences in these weak interactions could affect the electronic states of the bromines, resulting in differences in the XANES spectra. The results demonstrated that weak non-conventional interatomic interactions could alter the shape of XANES spectra. Hence, the spectra could be used for evaluating polymorphs of active pharmaceutical ingredients.


Assuntos
Ambroxol , Bromo , Raios X , Espectroscopia por Absorção de Raios X , Ácido Clorídrico
10.
Glob Chall ; 7(8): 2300036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37635705

RESUMO

Over recent decades, there has been a dramatic increase in the manufacture of engineered nanomaterials, which has inevitably led to their environmental release. Zinc oxide (ZnO) is among the more abundant nanomaterial manufactured due to its advantageous properties, used for piezoelectric, semiconducting, and antibacterial purposes. Plastic waste is ubiquitous and may break down or delaminate into smaller microplastics, leaving open the question of whether these small polymers may alter the fate of ZnO through adsorption within aquatic media (tap-water and seawater). Here, scanning electron microscopy analysis confirms the effective Zn nano/microstructures adsorption onto polystyrene surfaces after only 24-h incubation in the aquatic media. After pre-aging the nanomaterials for 7-days in different environmental media, nanoprobe X-ray absorption near-edge spectroscopy analysis reveals significant ZnO transformation toward Zn-sulfide and Zn-phosphate. The interaction between a commercial ZnO-based sunscreen with polystyrene and a cleanser consumer containing microbeads with ZnO nanomaterials is also studied, revealing the adsorption of transformed Zn-species in the microplastics surfaces, highlighting the environmental relevancy of this work. Understanding the structural and functional impacts of the microplastics/ZnO complexes, and how they evolve, will provide insights into their chemical nature, stability, transformations, and fate, which is key to predicting their bioreactivity in the environment.

11.
Cell Rep ; 42(7): 112750, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421623

RESUMO

The present study examines whether there is a mechanism beyond the current concept of post-translational modifications to regulate the function of a protein. A small gas molecule, hydrogen sulfide (H2S), was found to bind at active-site copper of Cu/Zn-SOD using a series of methods including radiolabeled binding assay, X-ray absorption near-edge structure (XANES), and crystallography. Such an H2S binding enhanced the electrostatic forces to guide the negatively charged substrate superoxide radicals to the catalytic copper ion, changed the geometry and energy of the frontier molecular orbitals of the active site, and subsequently facilitated the transfer of an electron from the superoxide radical to the catalytic copper ion and the breakage of the copper-His61 bridge. The physiological relevance of such an H2S effect was also examined in both in vitro and in vivo models where the cardioprotective effects of H2S were dependent on Cu/Zn-SOD.


Assuntos
Cobre , Sulfeto de Hidrogênio , Cobre/metabolismo , Superóxido Dismutase/metabolismo , Domínio Catalítico , Superóxidos , Zinco/metabolismo
12.
Small Methods ; 7(10): e2300310, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452269

RESUMO

For devices encountering long-term stability challenges, a precise evaluation of degradation is of paramount importance. However, methods for comprehensively elucidating the degradation mechanisms in devices, particularly those undergoing dynamic chemical and mechanical changes during operation, such as batteries, are limited. Here, a method is presented using operando computed tomography combined with X-ray absorption near-edge structure spectroscopy (CT-XANES) that can directly track the evolution of the 3D distribution of the local capacity loss in battery electrodes during (dis)charge cycles, thereby enabling a five-dimensional (the 3D spatial coordinates, time, and chemical state) analysis of the degradation. This paper demonstrates that the method can quantify the spatiotemporal dynamics of the local capacity degradation within an electrode during cycling, which has been truncated by existing bulk techniques, and correlate it with the overall electrode performance degradation. Furthermore, the method demonstrates its capability to uncover the correlation among observed local capacity degradation within electrodes, reaction history during past (dis)charge cycles, and electrode microstructure. The method thus provides critical insights into the identification of degradation factors that are not available through existing methods, and therefore, will contribute to the development of batteries with long-term stability.

13.
Environ Sci Technol ; 57(30): 11185-11194, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460108

RESUMO

In this study, Np(V) retention on Illite du Puy (IdP) was investigated since it is essential for understanding the migration behavior of Np in argillaceous environments. The presence of structural Fe(III) and Fe(II) in IdP was confirmed by Fe K-edge X-ray absorption near-edge structure (XANES) and 57Fe Mössbauer spectroscopy. In batch sorption experiments, a higher Np sorption affinity to IdP was found than to Wyoming smectite or iron-free synthetic montmorillonite. An increase of the relative Np(IV) ratio sorbed onto IdP with decreasing pH was observed by solvent extraction (up to (24 ± 2)% at pH 5, c0(Np) = 10-6 mol/L). Furthermore, up to (33 ± 5)% Np(IV) could be detected in IdP diffusion samples at pH 5. Respective Np M5-edge high-energy resolution (HR-) XANES spectra suggested the presence of Np(IV/V) mixtures and weakened axial bond covalency of the NpO2+ species sorbed onto IdP. Np L3-edge extended X-ray absorption fine structure (EXAFS) analysis showed that significant fractions of Np were coordinated to Fe─O entities at pH 9. This highlights the potential role of Fe(II/III) clay edge sites as a strong Np(V) surface complex partner and points to the partial reduction of sorbed Np(V) to Np(IV) via structural Fe(II).


Assuntos
Compostos Férricos , Minerais , Minerais/química , Bentonita/química , Compostos Ferrosos/química
14.
Sci Total Environ ; 891: 164513, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257614

RESUMO

The transformation of Hg(II) and Hg(0) in aqueous systems governs the speciation and biogeochemical cycling of Hg. However, with the increasing amount of microplastics in the aqueous environment, little is known about the different effects of microplastic particles and their leached DOM on the photoreduction of Hg(II) to Hg(0) after long-term photoaging. In this study, we found that aged microplastic particles significantly inhibited the photoreduction efficiency (6.40-15.64 %) of Hg(II) compared to the control without any microplastic (31.02 %) and pristine microplastic particles (9.95-34.10 %). This inhibition was due to the adsorption of Hg by the microplastic particles, which decreased the amount of available Hg(II) (Hg(II)RED) that could participate in the photoreduction reaction. The characteristics of aged microplastic particles also indicated rougher surfaces and more oxygen-containing functional groups after photoaging, which may enhance their adsorption capacity compared to pristine microplastic. Interestingly, the photoreduction efficiency of Hg(II) was 11.58-53.28 % higher in the presence of microplastic leach DOM compared to the control. With increasing age, the microplastic leach DOM obviously promotes the photoreduction of Hg(II). Free radical inhibition and electron paramagnetic resonance spectra demonstrated that O2- in microplastic leach DOM contributed to the photoreduction of Hg(II) under light irradiation. Moreover, X-ray absorption near edge structure analyses demonstrated that microplastic leach DOM produced Hg(I) as the primary photoproduct, accounting for 43.17 % of the total Hg in the photoreaction solution and likely reducing it to Hg(0). This study provides novel insights into forecasting the synthesized risks of microplastic aging in the biogeochemical cycle of Hg within aqueous environments.

15.
Int J Pharm ; 635: 122723, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36803929

RESUMO

Amorphous forms of disodium etidronate were prepared by three manufacturing methods, heat drying, freeze drying, and anti-solvent precipitation, and the effects of these methods on the physical properties of disodium etidronate amorphous forms were evaluated for the first time. Variable temperature X-ray powder diffraction and thermal analyses revealed that these amorphous forms had different physical properties such as glass transition point, water desorption, and crystallization temperatures. These differences can be explained by the molecular mobility and water content in amorphous forms. The differences in the structural characteristics related to the differences in these physical properties could not be detected clearly by the spectroscopic methods like Raman spectroscopy and X-ray absorption near-edge spectroscopy. Dynamic vapor sorption analyses demonstrated that all amorphous forms were hydrated to form I, a tetrahydrated form, at above 50% relative humidity, and the transition to form I was irreversible. These amorphous forms require strict humidity control to avoid crystallization. Among the three amorphous forms of disodium etidronate, the amorphous form prepared by heat drying was the most suitable for manufacturing the solid formulation, considering the low water content and low molecular mobility.


Assuntos
Ácido Etidrônico , Cristalização , Ácido Etidrônico/química , Liofilização/métodos , Umidade , Temperatura , Água/química , Difração de Raios X , Análise Espectral Raman
16.
Environ Res ; 216(Pt 1): 114431, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167113

RESUMO

Cr(VI) is a toxic, teratogenic, and carcinogenic heavy metal element in soil that poses major ecological and human health risks. In this study, microcosm tests combined with X-ray absorption near-edge spectra (XANES) and 16Sr DNA amplification techniques were used to explore the effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Ginkgo biloba leaves had a favorable remediation effect on soil varying in Cr(VI) contamination levels, and the optimal effect was observed when 5% Ginkgo biloba leaves were added. The occurrence state of Cr(VI) in soil before and after the addition of Ginkgo biloba leaves was analyzed by XANES, which revealed that Cr(VI) was fully converted to the more biologically innocuous Cr(III), and the hydroxyl-containing quercetin in Ginkgo biloba leaves was one of the primary components mediating this reduction reaction. The Cr(VI) content was significantly lower in non-sterilized soil than in sterilized soil, suggesting that soil microorganisms play a key role in the remediation process. The addition of Ginkgo biloba leaves decreased the α-diversity and altered the ß-diversity of the soil bacterial community. Actinobacteria was the dominant phylum in the soil remediated by Ginkgo biloba leaves; four genera of Cr(VI)-reducing bacteria were also enriched, including Agrococcus, Klebsiella, Streptomyces, and Microbacterium. Functional gene abundances predicted by PICRUST indicated that the expression of glutathione synthesis genes was substantially up-regulated, which might be the main metabolic pathway underlying the mitigation of Cr(VI) toxicity in soil by Cr(VI)-reducing bacteria. In sum, Ginkgo biloba leaves can effectively remove soil Cr(VI) and reduce Cr(VI) to Cr(III) via quercetin in soil, which also functions as a carbon source to drive the production of glutathione via Cr(VI)-reducing bacteria and mitigate Cr(VI) toxicity. The findings of this study elucidate the chemical and microbial mechanisms of Cr(VI) removal in soil by Ginkgo biloba leaves and provide insights that could be used to enhance the remediation of Cr(VI)-contaminated soil.


Assuntos
Ginkgo biloba , Poluentes do Solo , Humanos , Ginkgo biloba/química , Solo/química , Quercetina , Cromo/análise , Glutationa , Poluentes do Solo/análise
17.
Sci Total Environ ; 864: 161009, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549526

RESUMO

Mining is an important component of the Brazilian economy. However, it may also contribute to environmental problems such as the pollution of soils with zinc and other potentially toxic metals. Our objective was to evaluate changes in the chemical speciation and mobility of Zn in a soil amended with phosphate. Soil samples were collected from a deactivated mining area in the state of Minas Gerais, Brazil, and amended with NH4H2PO4 saturated with deionized water to 70 % of maximum water retention and incubated at 25 ± 2 °C in open containers for 60 days. The soil was chemically and mineralogically characterized, and sequential extraction, desorption kinetics, and speciation were carried out using synchrotron bulk-sample and micro-X-ray Absorption Near-Edge Structure (XANES/µ-XANES) spectroscopy at the Zn K-edge, and X-ray fluorescence microprobe analysis (µ-XRF). The combination of µ-XRF and µ-XANES techniques made it possible to identify Zn hotspots in the main species formed after phosphate remediation. The best fit combination for bulk XANES and µ-XANES was observed in Zn-montmorillonite, Zn-kerolite, Zn-ferrihydrite, and gahnite. In the course of phosphate treatment, gahnite, Zn layered double hydroxides (Zn-LDH), Zn3(PO4), and ZnO were identified by bulk XANES, while Zn-ferrihydrite, Zn-montmorillonite, and scholzite were identified by µ-XANES. Zinc in the phosphate-amended soil had the strongest partial correlations (r' > 0.05) with Ni, Co, Fe, Cr, Mn, Si, P, Cd, Pb, and Cd, while the unamended soil showed the strongest correlation with Cu, Pb, Fe, and Si. The application of NH4H2PO4 altered Zn speciation and favored an increase in Zn desorption. The most available Zn contents after phosphate amendment were correlated with the release of exchangeable Zn fractions, associated with carbonate and organic matter.

18.
Chem Pharm Bull (Tokyo) ; 70(10): 731-734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184456

RESUMO

Sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was evaluated for its ability to detect non-conventional C-H▪▪▪S hydrogen bonds in crystals of the sulfur-containing penam antibiotics ampicillin and amoxicillin. The XANES spectra of the nearly isomorphous crystals of ampicillin trihydrate and amoxicillin trihydrate were very similar, whereas that of ampicillin anhydrate displayed unique features. Single-crystal X-ray structure analyses revealed that the C-H▪▪▪S hydrogen bond geometries and the chemical types of the hydrogen donors differed between the isomorphous trihydrate crystals and ampicillin anhydrate crystal. These observations demonstrate that the shapes of the sulfur K-edge XANES spectra are dependent on the nature of the C-H▪▪▪S hydrogen bonds. Sulfur K-edge XANES spectroscopy shows promise for use in the detection and analysis of non-covalent interactions, including hydrogen bonds to sulfur atoms, within active pharmaceutical ingredients.


Assuntos
Amoxicilina , Enxofre , Ampicilina , Antibacterianos , Hidrogênio , Ligação de Hidrogênio , Preparações Farmacêuticas , Enxofre/química , Espectroscopia por Absorção de Raios X/métodos , Raios X
19.
Beilstein J Nanotechnol ; 13: 975-985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161250

RESUMO

In this study, we present theoretical X-ray absorption near-edge structure (XANES) spectra at the K-edge of oxygen in zirconia containing Ni dopant atoms and O vacancies at varying concentrations. Specifically, our model system consist of a supercell composed of a zirconia (ZrO2) matrix containing two nickel dopants (2Ni), which substitute two Zr atoms at a finite separation. We found the 2Ni atoms to be most stable in a ferromagnetic configuration in the absence of oxygen vacancies. In this system, each Ni atom is surrounded by two shells of O with tetrahedral geometry, in a similar way as in bulk cubic zirconia. The oxygen K-edge XANES spectrum of this configuration shows a pre-edge peak, which is attributable to dipole transitions from O 1s to O 2p states that are hybridized with unoccupied Ni 3d states. The intensity of this pre-edge peak, however, reduces upon the introduction of a single vacancy in the 2Ni-doped zirconia matrix. The corresponding ground state remains ferromagnetic, while one of the nickel atoms adopts a trigonal bipyramidal geometry, and the other one remains in a tetrahedral geometry. Furthermore, the introduction of two vacancies in the 2Ni-doped zirconia results in the two Ni atoms having distorted octahedral and trigonal bipyramidal geometries and being coupled antiferromagnetically in the ground state. Additionally, the oxygen K-edge XANES spectrum shows a further decrease in the intensity of the pre-edge peak, compared to the case of a single vacancy. Thus, the changes in the intensity of the pre-edge peak evidence a major structural change in the local environment around nickel atoms and, by extension, in the zirconia matrix. This change is due to the structural disorder induced by the 2Ni dopants and the O vacancies. Furthermore, the analysis of the XANES signatures shows that the oxidation state of nickel atoms changes with the introduction of oxygen vacancies. Our study therefore shows a possibility to control the oxidation state and magnetic order in a typical diluted magnetic oxide. Such a finding may be crucial for spintronics-related applications.

20.
Data Brief ; 45: 108576, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36164295

RESUMO

We report Mo K- and LIII-edge X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data collected for 15 molybdenum minerals and compounds sourced from museum collections, mineral dealers, and chemical suppliers. The samples were finely ground and analyzed at the Canadian Light Source synchrotron (Saskatoon, Canada). The LIII-edge XAS data were collected in fluorescence and total electron yield mode, while the K-edge XAS data were collected in transmission and fluorescence modes. Molybdenum LIII-edge spectra cover the X-ray absorption near edge structure (XANES) region and Mo K-edge spectra cover the extended X-ray absorption fine structure (EXAFS) region. Tabulated XAS data are provided to support analysis of XAS data obtained for geological or environmental research. Furthermore, Mo K-edge EXAFS and LIII-edge XANES spectra, the k3 weighted oscillatory χ(k) functions, and the Fourier-transforms in χ(R) of these K-edge data are presented graphically. Corresponding XRD data were collected as two-dimensional images against an area detector and integrated to form line scans. The data were collected at a wavelength of 0.68866 Å (18 keV) and is tabulated and presented graphically over a 0-40 °2Θ range. This dataset is intended to be used as reference material for a variety of rare and common Mo phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA