Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Adv Sci (Weinh) ; : e2404348, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099343

RESUMO

Effective photoinduced charge transfer makes molecular bimetallic assemblies attractive for applications as active light-induced proton reduction systems. Developing competitive base metal dyads is mandatory for a more sustainable future. However, the electron transfer mechanisms from the photosensitizer to the proton reduction catalyst in base metal dyads remain so far unexplored. A Fe─Co dyad that exhibits photocatalytic H2 production activity is studied using femtosecond X-ray emission spectroscopy, complemented by ultrafast optical spectroscopy and theoretical time-dependent DFT calculations, to understand the electronic and structural dynamics after photoexcitation and during the subsequent charge transfer process from the FeII photosensitizer to the cobaloxime catalyst. This novel approach enables the simultaneous measurement of the transient X-ray emission at the iron and cobalt K-edges in a two-color experiment. With this methodology, the excited state dynamics are correlated to the electron transfer processes, and evidence of the Fe→Co electron transfer as an initial step of proton reduction activity is unraveled.

2.
Proc Natl Acad Sci U S A ; 121(36): e2318527121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190355

RESUMO

Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.


Assuntos
Domínio Catalítico , Magnésio , Simulação de Dinâmica Molecular , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Magnésio/metabolismo , Magnésio/química , Lasers , Conformação Proteica , Elétrons , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação
3.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39182203

RESUMO

Xray free-electron lasers (XFELs) enable experiments that would have been impractical or impossible at conventional X-ray laser facilities. Indeed, more XFEL facilities are being built and planned, with their aim to deliver larger pulse energies and higher peak brilliance. While seeking to increase the pulse power, it is quintessential to consider the maximum pulse fluence that a grazing-incidence FEL mirror can withstand. To address this issue, several studies were conducted on grazing-incidence damage by soft X-ray FEL pulses at the European XFEL facility. Boron carbide (B4C) coatings on polished silicon substrate were investigated using 1 keV photon energy, similar to the X-ray mirrors currently installed at the soft X-ray beamlines (SASE3). The purpose of this study is to compare the damage threshold of B4C and Si to determine the advantages, tolerance and limits of using B4C coatings.

4.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39078692

RESUMO

A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump-probe measurements and in investigations of propagation effects and other nonlinear phenomena.

5.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921926

RESUMO

Femtosecond high-intensity laser pulses at intensities surpassing 1014 W/cm2 can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nanometer-scale spatial resolution and picosecond-scale temporal resolution. In this study, we show that single XFEL pulses can elucidate structural changes on surfaces induced by laser-generated plasmas using grazing-incidence small-angle X-ray scattering (GISAXS). Using aluminium-coated multilayer samples we distinguish between sub-picosecond (ps) surface morphology dynamics and subsequent multi-ps subsurface density dynamics with nanometer-depth sensitivity. The observed subsurface density dynamics serve to validate advanced simulation models representing matter under extreme conditions. Our findings promise to open new avenues for laser material-nanoprocessing and high-energy-density science.

6.
ACS Nano ; 18(24): 15576-15589, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38810115

RESUMO

Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) creates opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the nonequilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable "shape envelope" among nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles' shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.

7.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792184

RESUMO

The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.

8.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
9.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473498

RESUMO

The uniformity and consistency of X-ray mirror film materials prepared by experimental methods are difficult to guarantee completely. These factors directly affect the service life of free electron laser devices in addition to its own optical properties. Therefore, the quality of the film material, especially the density, has a critical effect on its application. Boron carbide film and monocrystalline silicon substrate were suitable examples to explore their influence of density on the damage threshold based on Monte Carlo and heat-conduction methods. Through simulation results, it was found that the change in film density could affect the energy deposition depth and damage threshold. When the film density was 2.48 g/cm3, it had relatively high damage threshold in all energy ranges. And then the specific incident parameter for practical application was investigated. It was found that the damage mechanism of the B4C/Si was the melting of the interface. And the damage threshold was also higher with the film density of 2.48 g/cm3. Therefore, it was recommended to maintain the density at this value as far as possible when preparing the film, and to ensure the uniformity and consistency of the film material.

10.
Adv Exp Med Biol ; 3234: 141-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507205

RESUMO

The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.


Assuntos
Elétrons , Proteínas , Cristalografia por Raios X , Proteínas/química , Raios X , Lasers
11.
Photoacoustics ; 35: 100587, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312809

RESUMO

The X-ray free-electron laser (XFEL) has remarkably advanced X-ray imaging technology and enabled important scientific achievements. The XFEL's extremely high power, short pulse width, low emittance, and high coherence make possible such diverse imaging techniques as absorption/emission spectroscopy, diffraction imaging, and scattering imaging. Here, we demonstrate a novel XFEL-based imaging modality that uses the X-ray induced acoustic (XA) effect, which we call X-ray free-electron laser induced acoustic microscopy (XFELAM). Initially, we verified the XA effect by detecting XA signals from various materials, then we validated the experimental results with simulation outcomes. Next, in resolution experiments, we successfully imaged a patterned tungsten target with drilled various-sized circles at a spatial resolution of 7.8 ± 5.1 µm, which is the first micron-scale resolution achieved by XA imaging. Our results suggest that the novel XFELAM can expand the usability of XFEL in various areas of fundamental scientific research.

12.
Proc Natl Acad Sci U S A ; 120(49): e2203241120, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015839

RESUMO

The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.


Assuntos
Bacillaceae , Bacillus , Culex , Praguicidas , Animais , Bacillaceae/química , Bacillaceae/metabolismo , Controle de Mosquitos , Larva/metabolismo
13.
Structure ; 31(11): 1328-1334, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797620

RESUMO

Three-dimensional electron diffraction (3D ED) is a measurement and analysis technique in transmission electron microscopy that is used for determining atomic structures from small crystals. Diverse targets such as proteins, polypeptides, and organic compounds, whose crystals exist in aqueous solutions and organic solvents, or as dried powders, can be studied with 3D ED. We have been involved in the development of this technique, which can now rapidly process a large number of data collected through AI control, enabling efficient structure determination. Here, we introduce this method and describe our recent results. These include the structures and pathogenic mechanisms of wild-type and mutant polypeptides associated with the debilitating disease amyotrophic lateral sclerosis (ALS), the double helical structure of nanographene promoting nanofiber formation, and the structural properties of an organic semiconductor containing disordered regions. We also discuss the limitations and prospects of 3D ED compared to microcrystallography with X-ray free electron lasers.


Assuntos
Elétrons , Proteínas , Cristalografia/métodos , Cristalografia por Raios X , Proteínas/química , Microscopia Eletrônica de Transmissão , Peptídeos
14.
J Synchrotron Radiat ; 30(Pt 6): 1038-1047, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738032

RESUMO

Self-seeded hard X-ray pulses at PAL-XFEL were used to commission a resonant X-ray emission spectroscopy experiment with a von Hamos spectrometer. The self-seeded beam, generated through forward Bragg diffraction of the [202] peak in a 100 µm-thick diamond crystal, exhibited an average bandwidth of 0.54 eV at 11.223 keV. A coordinated scanning scheme of electron bunch energy, diamond crystal angle and silicon monochromator allowed us to map the Ir Lß2 X-ray emission lines of IrO2 powder across the Ir L3-absorption edge, from 11.212 to 11.242 keV with an energy step of 0.3 eV. This work provides a reference for hard X-ray emission spectroscopy experiments utilizing self-seeded pulses with a narrow bandwidth, eventually applicable for pump-probe studies in solid-state and diluted systems.

15.
Curr Opin Struct Biol ; 82: 102661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536065

RESUMO

Relevant events during protein function such as ligand binding/release and interaction with substrates or with light are often accompanied by out-of-equilibrium structural dynamics. Time-resolved experimental techniques have been developed to follow protein structural changes as they happen in real time after a given reaction-triggering event. Time-resolved X-ray solution scattering is a promising approach that bears structural sensitivity with temporal resolution in the femto-to-millisecond time range, depending on the X-ray source characteristics and the triggering method. Here we present the basic principles of the technique together with a description of the most relevant results recently published and a discussion on the computational methods currently developed to achieve a structural interpretation of the time-resolved X-ray solution scattering experimental data.


Assuntos
Proteínas , Raios X , Difração de Raios X , Espalhamento a Baixo Ângulo , Proteínas/química
16.
J Synchrotron Radiat ; 30(Pt 5): 861-875, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615636

RESUMO

Free-electron-laser-based beamlines utilize fully coherent laser pulses with extremely narrow bandwidth allowing direct use of X-rays without monochromators. This could be very beneficial for all users of current and future fourth-generation diffraction-limited synchrotron light sources (DL-SLSs) who need narrowband full-coherence high-brightness X-ray pulses. Based on our previous finding, i.e. that separating the two stages of echo-enabled harmonic generation (EEHG) with a few extra bending-magnet sections provides an effective way to increase the momentum compaction of chicane 1, one can simultaneously achieve adequate prebunching at extremely high harmonics as well as keep the energy modulation to the ideal minimum. This could open the door for cascaded EEHG, toward fully coherent tender and hard X-ray wavelengths. Built on our compact design of a twin-pulse seeding electron beam with an adjustable delay and timing jitter at the level of a few femtoseconds, a cascaded EEHG can be implemented, which includes two EEHG beamlines, where the radiation pulse generated by the first beamline with harmonic h1 could be used as the input seed laser pulse to the second beamline with harmonic h2. Hence, the second radiator could potentially reach very high harmonics [h = h1(20)h2(25-100)] from 500 to 2000, corresponding to tender and hard X-ray wavelengths. It is demonstrated that the cascaded EEHG scheme is compatible with almost any current or planned fourth-generation DL-SLS, with significant benefits for space-limited storage rings in particular. The main advantage is that this scheme requires almost no change of the storage-ring lattice and is fully compatible with other beamlines. Current proposals for rings with much longer straight sections would add self-amplified spontaneous emission as another viable option for storage-ring-based free-electron lasers.

17.
Adv Sci (Weinh) ; 10(21): e2206880, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196414

RESUMO

Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.

18.
J Synchrotron Radiat ; 30(Pt 2): 284-300, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891842

RESUMO

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot by shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, an imaging detector capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst is employed, and allows a photon-shot-noise-limited sensitivity to be approached. The setup and its capabilities are reviewed as well as the online and offline analysis tools provided to users.

19.
J Synchrotron Radiat ; 30(Pt 1): 1-10, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601921

RESUMO

Modern X-ray free-electron laser (XFEL) sources can deliver photon pulses with millijoule pulse energies and megahertz repetition rate. As shown by the simulations in this work, for particular cases the dynamical heat load effects for Bragg reflectors could cause problems at these facilities. These problems would be underestimated if only quasi-static thermoelastic simulations are considered. Nevertheless, for the sake of simplicity the quasi-static approach is a common choice for estimating heat load effects. To emphasize the relevance of dynamical thermoelastic effects, the response to the partial absorption of an X-ray pulse, as provided by a saturated X-ray free-electron laser oscillator (XFELO) in a single crystal diamond with a thickness of 100 µm and lateral dimensions in the millimetre range, is discussed in this work. The outcome of the dynamic thermoelastic simulations indicates a clear dominance regarding the strain value reached, which is present for consecutive X-ray matter interactions with megahertz repetition rate.

20.
IUCrJ ; 10(Pt 1): 103-117, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598506

RESUMO

Serial femtosecond crystallography for small-unit-cell systems has so far seen very limited application despite obvious scientific possibilities. This is because reliable data reduction has not been available for these challenging systems. In particular, important intensity corrections such as the partiality correction critically rely on accurate determination of the crystal orientation, which is complicated by the low number of diffraction spots for small-unit-cell crystals. A data reduction pipeline capable of fully automated handling of all steps of data reduction from spot harvesting to merged structure factors has been developed. The pipeline utilizes sparse indexing based on known unit-cell parameters, seed-skewness integration, intensity corrections including an overlap-based combined Ewald sphere width and partiality correction, and a dynamically adjusted post-refinement routine. Using the pipeline, data measured on the compound K4[Pt2(P2O5H2)4]·2H2O have been successfully reduced and used to solve the structure to an R1 factor of ∼9.1%. It is expected that the pipeline will open up the field of small-unit-cell serial femtosecond crystallography experiments and allow investigations into, for example, excited states and reaction intermediate chemistry.


Assuntos
Cristalografia , Coleta de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA