Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 3): 527-539, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597746

RESUMO

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.

2.
J Synchrotron Radiat ; 31(Pt 1): 65-76, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933847

RESUMO

Recent technical developments and the performance of the X-ray photon correlation spectroscopy (XPCS) method over the ultra-small-angle range with the Extremely Brilliant Source (EBS) at the ESRF are described. With higher monochromatic coherent photon flux (∼1012 photons s-1) provided by the EBS and the availability of a fast pixel array detector (EIGER 500K detector operating at 23000 frames s-1), XPCS has become more competitive for probing faster dynamics in relatively dilute suspensions. One of the goals of the present development is to increase the user-friendliness of the method. This is achieved by means of a Python-based graphical user interface that enables online visualization and analysis of the processed data. The improved performance of XPCS on the Time-Resolved Ultra-Small-Angle X-ray Scattering instrument (ID02 beamline) is demonstrated using dilute model colloidal suspensions in several different applications.

3.
ACS Nano ; 17(17): 17394-17404, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578990

RESUMO

We have investigated the heating mechanism in industrially relevant, multi-block copolymers filled with Fe nanoparticles and subjected to an oscillatory magnetic field that enables polymer healing in a contactless manner. While this procedure aims to extend the lifetime of a wide range of thermoplastic polymers, repeated or prolonged stimulus healing is likely to modify their structure, mechanics, and ability to heat, which must therefore be characterized in depth. In particular, our work sheds light on the physical origin of the secondary heating mechanism detected in soft systems subjected to magnetic hyperthermia and triggered by copolymer chain dissociation. In spite of earlier observations, the origin of this additional heating remained unclear. By using both static and dynamic X-ray scattering methods (small-angle X-ray scattering and X-ray photon correlation spectroscopy, respectively), we demonstrate that beyond magnetic hysteresis losses, the enormous drop of viscosity at the polymer melting temperature enables motion of nanoparticles that generates additional heat through friction. Additionally, we show that applying induction heating for a few minutes is found to magnetize the nanoparticles, which causes them to align in dipolar chains and leads to nonmonotonic translational dynamics. By extrapolating these observations to rotational dynamics and the corresponding amount of heat generated through friction, we not only clarify the origin of the secondary heating mechanism but also rationalize the presence of a possible temperature maximum observed during induction heating.

4.
J Synchrotron Radiat ; 30(Pt 1): 11-23, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601922

RESUMO

With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns. Speckle contrast is often used as a measure of the degree of coherence of the incident beam or the fluctuations of the illuminated sample as determined from X-ray diffraction patterns formed by elastic scattering, rather than from fluorescence patterns as addressed here. Commonly used approaches to estimate speckle contrast were found to suffer when applied to XFEL-generated fluorescence patterns due to low photon counts and a significant variation of the excitation pulse energy from shot to shot. A new method to reliably estimate speckle contrast under such conditions, using a weighting scheme, is introduced. The method is demonstrated by comparing the speckle contrast of fluorescence observed with pulses of 3 fs to 15 fs duration.

5.
J Synchrotron Radiat ; 30(Pt 1): 242-250, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601943

RESUMO

The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.


Assuntos
Fótons , Radiografia , Raios X
6.
Proc Natl Acad Sci U S A ; 120(2): e2213182120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608290

RESUMO

The X-ray-induced, nonthermal fluidization of the prototypical SiO2 glass is investigated by X-ray photon correlation spectroscopy in the small-angle scattering range. This process is initiated by the absorption of X-rays and leads to overall atomic displacements which reach at least few nanometers at temperatures well below the glass transition. At absorbed doses of ∼5 GGy typical of many modern X-ray-based experiments, the atomic displacements display a hyperdiffusive behavior and are distributed according to a heavy-tailed, Lévy stable distribution. This is attributed to the stochastic generation of X-ray-induced point defects which give rise to a dynamically fluctuating potential landscape, thus providing a microscopic picture of the fluidization process.


Assuntos
Vidro , Dióxido de Silício , Dióxido de Silício/química , Raios X , Vidro/química
7.
J Synchrotron Radiat ; 29(Pt 6): 1429-1435, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345751

RESUMO

Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.


Assuntos
Comovirus , Comovirus/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Capsídeo
8.
J Appl Crystallogr ; 55(Pt 4): 751-757, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974741

RESUMO

Machine learning methods are used for an automated classification of experimental two-time X-ray photon correlation maps from an arrested liquid-liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn-Hilliard-type simulations of liquid-liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto-encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high-brilliance synchrotron and X-ray free-electron laser sources, facilitating fast comparison with phase field models of phase separation.

9.
J Colloid Interface Sci ; 621: 352-359, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35468558

RESUMO

Stimuli-responsive self-assembly of (an) isotropic colloids has resulted in a plethora of self-assembled structures with potential applications in fabricating smart materials. A lack of detailed understanding of the interplay between these self-assembled structures and the resulting dynamics has often impeded the exploitation of their full potential. Herein, we have unveiled the relationship between the field-driven self-assembled structures and the corresponding collective dynamics at the nearest neighbor length scale using X-ray photon correlation spectroscopy and magnetic colloidal ellipsoids. We demonstrate that the effective long-time collective diffusion coefficient, Deff(q), scales with the inverse of the scattered intensity for various stimuli-responsive self-assembled phases. At high-volume fraction, the system approaches a kinetically arrested state. The anisotropic slowdown of Deff(q) hints towards the formation of an oriented glass. Our approach opens new avenues for exploring the stimuli-responsive dynamics of strongly interacting colloidal systems with diverse shapes and properties.


Assuntos
Coloides , Magnetismo , Coloides/química
10.
J Appl Crystallogr ; 55(Pt 1): 98-111, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35145357

RESUMO

The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions. While the scattering vector (of magnitude q) range covered is the same as before, 0.001 ≤ q ≤ 50 nm-1 for an X-ray wavelength of 1 Å, the EBS permits relaxation of the collimation conditions, thereby obtaining a higher flux throughput and lower background. In particular, a coherent photon flux in excess of 1012 photons s-1 can be routinely obtained, allowing dynamic studies of relatively dilute samples. The enhanced beam properties are complemented by advanced pixel-array detectors and high-throughput data reduction pipelines. All these developments together open new opportunities for structural, dynamic and kinetic investigations of out-of-equilibrium soft matter and biophysical systems.

11.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614439

RESUMO

Linking the physics of the relaxation behavior of viscoelastic fluids as they form arrested gel states to the underlying chemical changes is essential for developing predictive controls on the properties of the suspensions. In this study, 3 wt.% laponite suspensions are studied as model systems to probe the influence of salt-induced relaxation behavior arising from the assembly of laponite nanodisks. X-ray Photon Correlation Spectroscopy (XPCS) measurements show that laponite suspensions prepared in the presence of 5 mM concentrations of CaCl2, MgCl2 and CsCl salts accelerate the formation of arrested gel states, with CaCl2 having a significant impact followed by CsCl and MgCl2 salts. The competing effects of ion size and charge on relaxation behavior are noted. For example, the relaxation times of laponite suspensions in the presence of Mg2+ ions are slower compared to Cs+ ions despite the higher charge, suggesting that cation size dominates in this scenario. The faster relaxation behavior of laponite suspensions in the presence of Ca2+ ions compared to Cs+ ions shows that a higher charge dominates the size of the ion. The trends in relaxation behavior are consistent with the cluster formation behavior of laponite suspensions and the electrostatic interactions predicted from MD simulations. Charge balance is achieved by the intercalation of the cations at the negatively charged surfaces of laponite suspensions. These studies show that the arrested gel state of laponite suspensions is accelerated in the presence of salts, with ion sizes and charges having a competing effect on relaxation behavior.

12.
J Synchrotron Radiat ; 28(Pt 6): 1948-1953, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738950

RESUMO

The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 1012-1013 photons s-1 and a degree of coherence of up to 10% at 7.1 keV. The normalized degree of coherence and the coherent flux of this instrument were experimentally determined using the separability of a ptychographic reconstruction into multiple mutually incoherent modes and thus the Coherence in the name CoSAXS was verified. How the beamline can be used both for coherent imaging and XPCS measurements, which both heavily rely on the degree of coherence of the beam, was demonstrated. These results are the first experimental quantification of coherence properties in a SAXS instrument at a fourth-generation synchrotron light source.

13.
IUCrJ ; 8(Pt 5): 775-783, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584738

RESUMO

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.

14.
Osteoarthritis Cartilage ; 29(9): 1351-1361, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052396

RESUMO

OBJECTIVE: Tissues have complex structures, comprised of solid and fluid phases. Improved understanding of interactions between joint fluid and extracellular matrix (ECM) is required in models of cartilage mechanics. X-ray photon correlation spectroscopy (XPCS) directly measures nanometer-scale dynamics and can provide insight into biofluid-biosolid interactions in cartilage. This study applies XPCS to evaluate dynamic interactions between intact cartilage and biofluids. DESIGN: Cartilage biopsies were collected from bovine femoral condyles. During XPCS measurements, cartilage samples were exposed to different fluids: deionized water, PBS, synovial fluid, or sonicated synovial fluid. ECM-biofluid interactions were also assessed at different length scales and different depths from the cartilage surface. RESULTS: Using XPCS, cartilage ECM mobility was detected at length scales from 50 to 207 nm. As length scale decreased, time scale for autocorrelation decay decreased, suggesting smaller ECM components are more mobile. ECM dynamics were slowed by dehydrating the sample, demonstrating XPCS assesses matrix mobility in hydrated environments. At all length scales, the matrix was more mobile in deionized water and slowest in synovial fluid. Using the 207 nm length scale assessment, ECM dynamics in synovial fluid were fastest at the cartilage surface and progressively slowed as depth into the sample increased, demonstrating XPCS can assess spatial distribution of ECM dynamics. Finally, ECM mobility increased for degraded synovial fluid. CONCLUSIONS: This study demonstrates the potential of XPCS to provide unique insights into nanometer-scale cartilage ECM mobility in a spatially resolved manner and illustrates the importance of biosolid-biofluid interactions in dictating ECM dynamics.


Assuntos
Cartilagem Articular/anatomia & histologia , Cartilagem Articular/fisiologia , Matriz Extracelular , Líquido Sinovial , Animais , Bovinos , Análise Espectral
15.
J Phys Condens Matter ; 33(16)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33725689

RESUMO

The stress relaxation dynamics of metallic glass Pd40Ni40P20was studied in both supercooled liquid and glassy states. Time-temperature superposition was found in the metastable liquid, implying an invariant shape of the distribution of times involved in the relaxation. Once in the glass state, the distribution of relaxation times broadens as temperature and fictive temperature decrease, eventually leading to a decoupling of the relaxation in two processes. While the slow one keeps a viscous behavior, the fast one shows an anelastic nature and a time scale similar to that of the collective atomic motion measured by x-ray photon correlation spectroscopy (XPCS). These results suggest that the atomic dynamics of metallic glasses, as determined by XPCS at low temperatures in the glass state, can be related to the rearrangements of particles responsible of the macroscopically reversible anelastic behavior.

16.
ACS Appl Mater Interfaces ; 13(12): 14267-14274, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33724788

RESUMO

X-ray photon correlation spectroscopy (XPCS) microrheology and conventional bulk rheology were performed on silica nanoparticle dispersions associated with battery electrolyte applications to probe the properties of these specific complex materials and to explore the utility of XPCS microrheology in characterizing nanoparticle dispersions. Sterically stabilized shear-thickening electrolytes were synthesized by grafting poly(methyl methacrylate) chains onto silica nanoparticles. Coated silica dispersions containing 5-30 wt % nanoparticles dispersed in propylene carbonate were studied. In general, both XPCS microrheology and conventional rheology showed that coated silica dispersions were more viscous at higher concentrations, as expected. The complex viscosity of coated silica dispersions showed shear-thinning behavior over the frequency range probed by XPCS measurements. However, measurements using conventional mechanical rheometry yielded a shear viscosity with weak shear-thickening behavior for dispersions with the highest concentration of 30% particles. Our results indicate that there is a critical concentration needed for shear-thickening behavior, as well as appropriate particle size and surface polymer chain length, for this class of nanoparticle-based electrolytes. The results of this study can provide insights for comparing XPCS microrheology and bulk rheology for related complex fluids and whether XPCS microrheology can capture expected macroscopic rheological properties by probing small-scale particle dynamics.

17.
J Synchrotron Radiat ; 28(Pt 2): 490-498, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650561

RESUMO

An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8 kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20 µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.


Assuntos
Proteínas , Síncrotrons , Raios X
18.
J Synchrotron Radiat ; 28(Pt 1): 259-265, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399576

RESUMO

The performance of the new 52 kHz frame rate Rigaku XSPA-500k detector was characterized on beamline 8-ID-I at the Advanced Photon Source at Argonne for X-ray photon correlation spectroscopy (XPCS) applications. Due to the large data flow produced by this detector (0.2 PB of data per 24 h of continuous operation), a workflow system was deployed that uses the Advanced Photon Source data-management (DM) system and high-performance software to rapidly reduce area-detector data to multi-tau and two-time correlation functions in near real time, providing human-in-the-loop feedback to experimenters. The utility and performance of the workflow system are demonstrated via its application to a variety of small-angle XPCS measurements acquired from different detectors in different XPCS measurement modalities. The XSPA-500k detector, the software and the DM workflow system allow for the efficient acquisition and reduction of up to ∼109 area-detector data frames per day, facilitating the application of XPCS to measuring samples with weak scattering and fast dynamics.

19.
J Synchrotron Radiat ; 27(Pt 5): 1247-1252, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876600

RESUMO

Probing the microscopic slow structural relaxation in oxide glasses by X-ray photon correlation spectroscopy (XPCS) revealed faster than expected dynamics induced by the X-ray illumination. The fast beam-induced dynamics mask true slow structural relaxation in glasses and challenges application of XPCS to probe the atomic dynamics in oxide glasses. Here an approach that allows estimation of the true relaxation time of the sample in the presence of beam-induced dynamics is presented. The method requires two measurements either with different X-ray beam intensities or at different temperatures. Using numerical simulations it is shown that the slowest estimated true relaxation time is limited by the accuracy of the measured relaxation times of the sample. By analyzing the reported microscopic dynamics in SiO2, GeO2 and B2O3 glasses, it is concluded that the beam-induced dynamics show rich behavior depending on the sample.

20.
Clin Genet ; 98(3): 251-260, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557569

RESUMO

Nucleotide excision repair associated diseases comprise overlapping phenotypes and a wide range of outcomes. The early stages still remain under-investigated and underdiagnosed, even although an early recognition of the first symptoms is of utmost importance for appropriate care and genetic counseling. We systematically collected clinical and molecular data from the literature and from newly diagnosed NER patients with neurological impairment, presenting clinical symptoms before the age of 12 months, including foetal cases. One hundred and eighty-five patients were included, 13 with specific symptoms during foetal life. Arthrogryposis, microcephaly, cataracts, and skin anomalies are the most frequently reported signs in early subtypes. Non ERCC6/CSB or ERCC8/CSA genes are overrepresented compared to later onset cohorts: 19% patients of this cohort presented variants in ERCC1, ERCC2/XPD, ERCC3/XPB or ERCC5/XPG. ERCC5/XPG is even the most frequently involved gene in foetal cases (10/13 cases, [4/7 families]). In this cohort, the mutated gene, the age of onset, the type of disease, severe global developmental delay, IUGR and skin anomalies were associated with earlier death. This large survey focuses on specific symptoms that should attract the attention of clinicians towards early-onset NER diagnosis in foetal and neonatal period, without waiting for the completeness of classical criteria.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Doenças do Sistema Nervoso/genética , Fatores de Transcrição/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Idade de Início , Pré-Escolar , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/genética , Síndrome de Cockayne/fisiopatologia , Reparo do DNA/genética , Diagnóstico Precoce , Feminino , Feto , Aconselhamento Genético/tendências , Predisposição Genética para Doença/genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/fisiopatologia , Prognóstico , Xeroderma Pigmentoso/diagnóstico , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA