Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Ann Bot ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052329

RESUMO

BACKGROUND AND AIMS: Pit pairs and their filter-like partition, i.e. pit membranes, play important roles as water pathways, barriers and regulators in the water-conducting system of angiosperms. In Fraxinus species, the intervessel and vessel-parenchyma pit membranes in sapwood are normally encrusted during winter. Although these encrustations inevitably influence the performance of pits, their properties and functions remain unclear. This study aimed to reveal the morphological and chemical characteristics of encrustations in F. mandshurica in order to deepen understanding of the seasonal encrustation of pit membranes. METHODS: Seasonal and positional variations in the presence and morphology of encrustations were examined by field-emission scanning electron microscopy (FE-SEM). Cryo-FE-SEM for freeze-fixed greenwood samples was conducted to clarify whether encrustations were present in living trees. Chemical components were examined by histochemical staining using light and electron microscopies, immunofluorescence labelling and ultraviolet microspectroscopy. KEY RESULTS: Encrustations began to deposit in fall before leaf senescence and disappeared in spring before bud flushing. They infiltrated within the pit membranes, which suggested that they severely limit the permeation of pits. The encrustations differed in morphology among positions: they entirely filled the pit chambers in latewood, while they covered the pit membranes in earlywood. The encrustations were similarly observed in the samples that were freeze-fixed immediately after collection, indicating that they are present in living trees. The encrustations contained polysaccharides, including xyloglucan and homogalacturonan, and phenolic compounds, possibly including flavonoids and coumarins. These chemical components were also detected in droplets found in the latewood vessels with the encrustations, suggesting that the materials constituting encrustations were supplied through the vessel lumens. CONCLUSIONS: Encrustations undoubtedly cover the pit membranes in living F. mandshurica trees in winter and their morphology and chemical composition indicate that they are impermeable, have positional differences in function and are characterised by elaborate deposition/removal processes.

2.
J Med Life ; 17(3): 305-308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39044927

RESUMO

Second-generation tricyclic H1 antihistamine loratadine (LTD) has a high permeability, low water solubility, and an oral absorption rate dependent on the rate at which it dissolves in the gastrointestinal tract. One approach suggested for improving the drug's solubility and rate of dissolution is natural solid dispersion (NSD). The present study evaluated the use of hydrophilic natural polymers, sodium alginate (SA), hyaluronic acid (HA), and xyloglucan (XG), in natural solid dispersion to enhance LTD solubility and dissolution rate. A total of 12 formulations comprising varied drug-to-polymer ratios were produced and analyzed for percentage yield, water solubility, and in vitro dissolution rate. The solubility of LTD was improved in all formulations. Excellent results were achieved with NSD1 (LTD: SA 1:0.25), with a high yield (99%), superior solubility (0.187) compared to pure loratadine (0.0021), and a speedy dissolution rate (98%) within 30 minutes. These studies suggest natural polymers like SA, HA, and XG can considerably increase LTD solubility. When introduced into NSD, these polymers effectively augment LTD dissolving rates, presenting attractive prospects for better bioavailability and therapeutic efficacy.


Assuntos
Loratadina , Polímeros , Solubilidade , Loratadina/química , Loratadina/farmacologia , Polímeros/química
3.
Dev Cell ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38971156

RESUMO

Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.

4.
J Exp Bot ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980746

RESUMO

Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together the current knowledge about the organisation and metabolism of the rice cell wall, and addresses gaps and missing information connected to the cell wall of rice and the enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans and glucuronoarabinoxylans, are well-understood in rice and other grasses/grains. Conversely, there are still open questions and missing links when it comes down to xyloglucans, glucomannans, pectin, lignin and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterise their activity and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. With this review, we demonstrate the current state and demarcate the research areas with potential for further investigations.

5.
Plant Biol (Stuttg) ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967306

RESUMO

Seed water imbibition is critical to seedling establishment in tropical forests. The seeds of the neotropical tree Hymenaea courbaril have no oil reserves and have been used as a model to study storage cell wall polysaccharide (xyloglucan - XyG) mobilization. We studied pathways of water imbibition in Hymenaea seeds. To understand seed features, we performed carbohydrate analysis and scanning electron microscopy. We found that the seed coat comprises a palisade of lignified cells, below which are several cell layers with cell walls rich in pectin. The cotyledons are composed mainly of storage XyG. From a single point of scarification on the seed surface, we followed water imbibition pathways in the entire seed using fluorescent dye and NMRi spectroscopy. We constructed composites of cellulose with Hymenaea pectin or XyG. In vitro experiments demonstrated cell wall polymer capacity to imbibe water, with XyG imbibition much slower than the pectin-rich layer of the seed coat. We found that water rapidly crosses the lignified layer and reaches the pectin-rich palisade layer so that water rapidly surrounds the whole seed. Water travels very slowly in cotyledons (most of the seed mass) because it is imbibed in the XyG-rich storage walls. However, there are channels among the cotyledon cells through which water travels rapidly, so the primary cell walls containing pectins will retain water around each storage cell. The different seed tissue dynamic interactions between water and wall polysaccharides (pectins and XyG) are essential to determining water distribution and preparing the seed for germination.

6.
Carbohydr Polym ; 339: 122243, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823912

RESUMO

Pilling is a form of textile mechanical damage, forming fibrous bobbles on the surface of garments, resulting in premature disposal of clothing by consumers. However, our understanding on how the structural properties of the cellulosic matrix compliment the three-dimensional shape of cotton pills remains limited. This knowledge gap has hindered the development of effective 'pillase' technologies over the past 20 years due to challenges in balancing depilling efficacy with fabric integrity preservation. Therefore, the main focus here was characterising the role of cellulose and the hemicellulose components in cotton textiles to elucidate subtle differences between the chemistry of pills and fibre regions involved in structural integrity. State-of-the-art bioimaging using carbohydrate binding modules, monoclonal antibodies, and Leica SP8 and a Nikon A1R confocal microscopes, revealed the biophysical structure of cotton pills for the first time. Identifying regions of increased crystalline cellulose in the base of anchor fibres and weaker amorphous cellulose at dislocations in their centres, enhancing our understanding of current enzyme specificity. Surprisingly, pills contained a 7-fold increase in the concentration of xyloglucan compared to the main textile. Therefore, xyloglucan offers a previously undescribed target for overcoming this benefit-to-risk paradigm, suggesting a role for xyloglucanase enzymes in future pillase systems.


Assuntos
Celulose , Fibra de Algodão , Glucanos , Xilanos , Celulose/química , Fibra de Algodão/análise , Xilanos/química , Xilanos/metabolismo , Glucanos/química , Cristalização , Têxteis , Polissacarídeos/química
7.
J Biosci Bioeng ; 138(3): 196-205, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871579

RESUMO

Xyloglucan in plant cell walls has complex side-chain structures; Aspergillus oryzae produces various enzymes to degrade and assimilate xyloglucan. In this study, we identified and characterized α-1,2-l-fucosidase (AfcA) which is involved in xyloglucan degradation in A. oryzae. AfcA expression was induced in the presence of xyloglucan oligosaccharides. AfcA showed specific activity toward α-(1→2)-linked l-fucopyranosyl residues attached to the side chains of xyloglucan oligosaccharides and milk oligosaccharides, but not toward α-(1→3)-, α-(1→4)-, and α-(1→6)-linked l-fucopyranosyl residues. As fucopyranosyl residues in the side chains of xyloglucan oligosaccharides prevent the degradation of xyloglucan oligosaccharides by isoprimeverose-producing oligoxyloglucan hydrolase and ß-galactosidase, the cooperative action of AfcA, isoprimeverose-producing oligoxyloglucan hydrolase, and ß-galactosidase play a key role in degrading fucosylated xyloglucan in A. oryzae.


Assuntos
Aspergillus oryzae , Glucanos , Xilanos , alfa-L-Fucosidase , Xilanos/metabolismo , Xilanos/química , Glucanos/metabolismo , Glucanos/química , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , Oligossacarídeos/metabolismo , Oligossacarídeos/química , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Especificidade por Substrato , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Parede Celular/metabolismo , Dissacarídeos
8.
Heliyon ; 10(9): e29787, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707313

RESUMO

Strawberries are a nutrient dense food rich in vitamins, minerals, non-nutrient antioxidant phenolics, and fibers. Strawberry fiber bioactive structures are not well characterized and limited information is available about the interaction between strawberry fiber and phenolics. Therefore, we analyzed commercial strawberry pomace in order to provide a detailed carbohydrate structural characterization, and to associate structures with functions. The pomace fraction, which remained after strawberry commercial juice extraction, contained mostly insoluble (49.1 % vs. 5.6 % soluble dietary fiber) dietary fiber, with pectin, xyloglucan, xylan, ß-glucan and glucomannan polysaccharides; glucose, fructose, xylose, arabinose, galactose, fucose and galacturonic acid free carbohydrates; protein (15.6 %), fat (8.34 %), and pelargonidin 3-glucoside (562 µg/g). Oligosaccharides from fucogalacto-xyloglucan, methyl-esterified rhamnogalacturonan I with branched arabinogalacto-side chains, rhamnogalacturonan II, homogalacturonan and ß-glucan were detected by MALDI-TOF MS, NMR and glycosyl-linkage analysis. Previous reports suggest that these oligosaccharide and polysaccharide structures have prebiotic, bacterial pathogen anti-adhesion, and cholesterol-lowering activity, while anthocyanins are well-known antioxidants. A strawberry pomace microwave acid-extracted (10 min, 80 °C) fraction had high molar mass (2376 kDa) and viscosity (3.75 dL/g), with an extended rod shape. A random coil shape, that was reported previously to bind to phenolic compounds, was observed for other strawberry microwave-extracted fractions. These strawberry fiber structural details suggest that they can thicken foods, while the polysaccharide and polyphenol interaction indicates great potential as a multiple-function bioactive food ingredient important for gut and metabolic health.

9.
Plant Physiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753299

RESUMO

The transcriptional regulation of aluminum (Al) tolerance in plants is largely unknown, although Al toxicity restricts agricultural yields in acidic soils.. Here, we identified a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factor that participates in Al tolerance in Arabidopsis (Arabidopsis thaliana). Al substantially induced the transcript and protein levels of ANAC070, and loss-of-function anan070 mutants showed remarkably increased Al sensitivity, implying a beneficial role of ANAC070 in plant tolerance to Al toxicity. Further investigation revealed that more Al accumulated in the roots of anac070 mutants, especially in root cell walls, accompanied by a higher hemicellulose and xyloglucan level, implying a possible interaction between ANAC070 and genes that encode proteins responsible for the modification of xyloglucan, including xyloglucan endo-transglycosylases/hydrolase (XTH) or ANAC017. Yeast one hybrid analysis revealed a potential interaction between ANAC070 and ANAC017, but not for other XTHs. Furthermore, dual-luciferase reporter assay, RT-qPCR, and GUS analysis revealed that ANAC070 could directly repress the transcript levels of ANAC017, and knockout of ANAC017 in the anac070 mutant partially restored its Al sensitivity phenotype, indicating that ANAC070 contributes to Al tolerance mechanisms other than suppression of ANAC017 expression. Further analysis revealed that the core transcription factor SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) and its target genes, which control Al tolerance in Arabidopsis, may also be involved in ANAC070-regulated Al tolerance. In summary, we identified a transcription factor, ANAC070, that represses the ANAC017-XTH31 module to regulate Al tolerance in Arabidopsis.

10.
Gels ; 10(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786251

RESUMO

The development of fully biobased hydrogels obtained by simple routes and in the absence of toxic or environmentally harmful reagents is a major challenge in meeting new societal demands. In this work, we discuss the development of hydrogels made from cellulose nanocrystals (CNCs) and xyloglucan (XG), two non-toxic, renewable, and biobased components. We present three strategies to fine-tune the functional properties. The first one consists in varying the XG/CNC ratio that leads to the modulation of the mechanical properties of hydrogels as well as a better comprehension of the gel mechanism formation. The second relies on tuning the XG chains' interaction by enzymatic modification to achieve thermoresponsive systems. Finally, the third one is based on the increase in the hydrogel solid content by osmotic concentration. The high-solid-content gels were found to have very high mechanical properties and self-healing properties that can be used for molding materials. Overall, these approaches are a case study of potential modifications and properties offered by biobased nanocolloidal hydrogels.

11.
Plant Signal Behav ; 19(1): 2360296, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38808631

RESUMO

Rainfall, wind and touch, as mechanical forces, were mimicked on 6-week-old soil-grown tomato and potato under controlled conditions. Expression level changes of xyloglucan endotransglucosylase/hydrolase genes (XTHs) of tomato (Solanum lycopersicum L. cv. Micro Tom; SlXTHs) and potato (Solanum tuberosum L. cv. Desirée; StXTHs) were analyzed in response to these mechanical forces. Transcription intensity of every SlXTHs of tomato was altered in response to rainfall, while the expression intensity of 72% and 64% of SlXTHs was modified by wind and touch, respectively. Ninety-one percent of StXTHs (32 out of 35) in potato responded to the rainfall, while 49% and 66% of the StXTHs were responsive to the wind and touch treatments, respectively. As previously demonstrated, all StXTHs were responsive to ultrasound treatment, and all were sensitive to one or more of the environmental mechanical factors examined in the current study. To our best knowledge, this is the first study to demonstrate that these ubiquitous mechanical environmental cues, such as rainfall, wind and touch, influence the transcription of most XTHs examined in both species.


Assuntos
Regulação da Expressão Gênica de Plantas , Chuva , Solanum lycopersicum , Solanum tuberosum , Vento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Tato/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
12.
J Pharm Sci ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796155

RESUMO

The objective of this study was to investigate the mechanisms underlying drug release from a controlled colonic release (CCR) tablet formulation based on a xyloglucan polysaccharide matrix and identify the factors that control the rate of release for the purpose of fundamentally substantiating the concept and demonstrating its robustness for colonic drug delivery. Previous work demonstrated in vitro limited release of 5-aminosalicylic acid (5-ASA) and caffeine from these tablets in small intestinal environment and significant acceleration of release by xyloglucanase, an enzyme of the colonic microbiome. Targeted colonic drug delivery was verified in an animal study in vivo. In the present work, interaction of the xyloglucan matrix tablets with aqueous dissolution media containing xyloglucanase was found to lead to the spontaneous formation of a hydrated highly viscous gummy layer at the surface of the matrix which had a reduced drug content compared to the underlying regions and persisted with a nearly constant thickness that was inversely correlated to the enzyme concentration throughout the duration of the release process. Enzymatic hydrolysis of xyloglucan was determined to take place at the surface of the matrix leading to matrix erosion and a relation for the rate of enzymatic reaction as a function of bulk enzyme concentration and the concentration of dissolved xyloglucan in the gummy layer was derived. A mathematical model was developed encompassing aqueous medium ingress, matrix metamorphosis due to xyloglucan dissolution and matrix swelling, enzymatic hydrolysis of the polysaccharide and concomitant drug release due to matrix erosion and simultaneous drug diffusion. The model was fitted to data of reducing sugar equivalents in the medium reflecting matrix erosion and released drug amount. Enzymatic reaction parameters and reasonable values of medium ingress velocity, xyloglucan dissolution rate constant and drug diffusion coefficient were deduced that provided an adequate approximation of the data. Erosion was shown to be the overwhelmingly dominant drug release mechanism while the role of diffusion marginally increased at low enzyme concentration and high drug solubility. Changing enzyme concentration had a rather weak effect on matrix erosion and drug release rate as demonstrated by model simulations supported by experimental data, while xyloglucan dissolution was slow and had a stronger effect on the rate of the process. Therefore, reproducible colonic drug delivery not critically influenced by inter- and intra-individual variation of microbial enzyme activity may be projected.

13.
Int J Biol Macromol ; 270(Pt 2): 132522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768922

RESUMO

The current study goal was to improve mucoadhesive potential and ocular pharmacokinetics of nanoparticles of thiolated xyloglucan (TXGN) containing moxifloxacin (MXF). Thiolation of xyloglucan (XGN) was achieved with esterification with 3-mercaptopropionic acid. TXGN was characterized by NMR and FTIR analysis. The nanoparticles of TXGN were prepared using ionic-gelation method and evaluate the antibacterial properties. TXGN and nanoparticles were determined to possess 0.06 and 0.08 mmol of thiol groups/mg of polymer by Ellman's method. The ex-vivo bioadhesion time of TXGN and nanoparticles was higher than XGN in a comparative assessment of their mucoadhesive properties. The creation of a disulfide link between mucus and TXGN is responsible for the enhanced mucoadhesive properties of TXGN (1-fold) and nanoparticles (2-fold) over XGN. Improved MXF penetration in nanoparticulate formulation (80 %) based on TXGN was demonstrated in an ex-vivo permeation research utilizing rabbit cornea. Dissolution study showed 95 % release of MXF from nanoparticles. SEM images of nanoparticles showed spherical shape and cell viability assay showed nontoxic behavior when tested on RPE cell line. Antibacterial analysis revealed a zone of inhibition of 31.5 ± 0.5 mm for MXF, while NXM3 exhibited an expanded zone of 35.5 ± 0.4 mm (p < 0.001). In conclusion, thiolation of XGN improves its bioadhesion, permeation, ocular-retention and pharmacokinetics of MXF.


Assuntos
Glucanos , Moxifloxacina , Nanopartículas , Xilanos , Xilanos/química , Glucanos/química , Moxifloxacina/química , Moxifloxacina/farmacocinética , Moxifloxacina/farmacologia , Animais , Coelhos , Nanopartículas/química , Portadores de Fármacos/química , Antibacterianos/farmacocinética , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Compostos de Sulfidrila/química , Córnea/metabolismo , Córnea/efeitos dos fármacos , Humanos , Sistemas de Liberação de Medicamentos , Permeabilidade , Linhagem Celular , Administração Oftálmica , Adesividade , Adesivos/química
14.
J Hazard Mater ; 470: 134172, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569340

RESUMO

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Assuntos
Boehmeria , Cádmio , Parede Celular , Vacúolos , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Boehmeria/metabolismo , Boehmeria/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Xilanos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
15.
Life Sci Space Res (Amst) ; 41: 110-118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670637

RESUMO

Over the course of more than a decade, space biology investigations have consistently indicated that cell wall remodeling occurs in a variety of spaceflight-grown plants. Here, we describe a mass spectrometric method to study the fundamental composition of xyloglucan, the most abundant hemicellulose in dicot cell walls, in space-grown plants. Four representative Arabidopsis root samples, from a previously conducted spaceflight experiment - Advanced Plant EXperiment - 04 (APEX-04), were used to investigate changes in xyloglucan oligosaccharides abundances in spaceflight-grown plants compared to ground controls. In situ localized enzymatic digestions and surface sampling mass spectrometry analysis provided spatial resolution of the changes in xyloglucan oligosaccharides abundances. Overall, the results showed that oligosaccharide XXLG/XLXG and XXFG branching patterns were more abundant in the lateral roots of spaceflight-grown plants, while XXXG, XLFG, and XLFG/XLFG were more abundant in the lateral roots of ground control plants. In the primary roots, XXFG had a higher abundance in ground controls than in spaceflight plants. This methodology of analyzing the basic components of the cell wall in this paper highlights two important findings. First, that are differences in the composition of xyloglucan oligosaccharides in spaceflight root cell walls compared to ground controls and, second, most of these differences are observed in the lateral roots. Thus, the methodology described in this paper provides insights into spaceflight cell wall modifications for future investigations.


Assuntos
Arabidopsis , Parede Celular , Glucanos , Oligossacarídeos , Raízes de Plantas , Voo Espacial , Xilanos , Arabidopsis/metabolismo , Parede Celular/metabolismo , Glucanos/análise , Glucanos/metabolismo , Xilanos/análise , Xilanos/metabolismo , Raízes de Plantas/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Espectrometria de Massas
16.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558078

RESUMO

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Assuntos
Parede Celular , Chenopodiaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Xilema , Tolerância ao Sal/genética , Xilema/fisiologia , Xilema/genética , Xilema/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho Celular , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Genes de Plantas , Diferenciação Celular/genética , Lignina/metabolismo
17.
Int J Biol Macromol ; 269(Pt 2): 131771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688792

RESUMO

Xyloglucan (XG), as a natural biopolymer, possesses a sound biocompatibility and an impressive biodegradability, which are usually featured with abundant hydroxyl groups available for the bioconjugation with a bioactive moiety, suggesting a promising or unique value possibly applied in the field of biomedicine. In this study, XG was extracted from Tamarind seeds and subjected to four regioselective oxidation methods to introduce carboxyl groups onto the XG molecules for a bioconjugation with collagen. Galactose oxidase and reducing end aldehyde group oxidation mainly resulted in a low carboxylate content at ∼0.34 mmol/g, whereas the primary and secondary hydroxyl group oxidations would lead to a high carboxyl content at ∼0.84 mmol/g. The number-average molar mass (Mn) and weight-average molar mass (Mw) of XG were 8.8 × 105 g/mol and 1.1 × 106 g/mol, respectively. The oxidized XGs were then subjected to a further biofunctionalization with the collagen through EDC/NHS coupling, which exhibited a degree of conjugation rate, ranged from 50 % to 72 %. The collagen-conjugated at the C6 position of XGs exhibited the highest cell viability recorded at 168 % in promoting cell growth and proliferation after 72 h of culture, surpassing that of pure collagen recorded at 138 %, which may indeed suggest a promising value in a biomedical application.


Assuntos
Colágeno , Glucanos , Oxirredução , Xilanos , Ácidos Carboxílicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Glucanos/química , Tamarindus/química , Xilanos/química , Animais , Camundongos , Células NIH 3T3
18.
Enzyme Microb Technol ; 178: 110441, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38574421

RESUMO

Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.


Assuntos
Citrus , Biologia Computacional , Proteínas Fúngicas , Glucanos , Glicosídeo Hidrolases , Penicillium , Xilanos , Penicillium/enzimologia , Penicillium/genética , Citrus/microbiologia , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Xilanos/metabolismo , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato , Sequência de Aminoácidos , Estabilidade Enzimática , Temperatura , Hidrólise
19.
Curr Biol ; 34(10): 2094-2106.e6, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677280

RESUMO

Xyloglucan is believed to play a significant role in cell wall mechanics of dicot plants. Surprisingly, Arabidopsis plants defective in xyloglucan biosynthesis exhibit nearly normal growth and development. We investigated a mutant line, cslc-Δ5, lacking activity in all five Arabidopsis cellulose synthase like-C (CSLC) genes responsible for xyloglucan backbone biosynthesis. We observed that this xyloglucan-deficient line exhibited reduced cellulose crystallinity and increased pectin levels, suggesting the existence of feedback mechanisms that regulate wall composition to compensate for the absence of xyloglucan. These alterations in cell wall composition in the xyloglucan-absent plants were further linked to a decrease in cell wall elastic modulus and rupture stress, as observed through atomic force microscopy (AFM) and extensometer-based techniques. This raised questions about how plants with such modified cell wall properties can maintain normal growth. Our investigation revealed two key factors contributing to this phenomenon. First, measurements of turgor pressure, a primary driver of plant growth, revealed that cslc-Δ5 plants have reduced turgor, preventing the compromised walls from bursting while still allowing growth to occur. Second, we discovered the conservation of elastic asymmetry (ratio of axial to transverse wall elasticity) in the mutant, suggesting an additional mechanism contributing to the maintenance of normal growth. This novel feedback mechanism between cell wall composition and mechanical properties, coupled with turgor pressure regulation, plays a central role in the control of plant growth and is critical for seedling establishment in a mechanically challenging environment by affecting shoot emergence and root penetration.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Glucanos , Plântula , Xilanos , Parede Celular/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Celulose/metabolismo
20.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592929

RESUMO

Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA