Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
J Prosthodont ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228088

RESUMO

PURPOSE: This study aimed to evaluate the impact of artificial aging on the fracture toughness and hardness of three-dimensional (3D)-printed and computer-aided design and computer-aided manufacturing (CAD-CAM) milled 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP). MATERIALS AND METHODS: Forty bar-shaped specimens (45 × 4 × 3 mm) were prepared using two manufacturing technologies: 3D printing (LithaCon 3Y 210, Lithoz GmbH, Vienna, Austria; n = 20) and milling (Initial Zirconia ST, GC, Japan; n = 20) of 3Y-TZP. The chevron-notch beam method was used to assess the fracture toughness according to ISO 24370. Specimens from each 3Y-TZP group were divided into two subgroups (n = 10) based on the artificial aging process (autoclaving): nonaged and aged. Nonaged specimens were stored at room temperature, while aged specimens underwent autoclave aging at 134°C under 2 bar-pressure for 5 h. Subsequently, the specimens were immersed in absolute 99% ethanol using an ultrasonic cleaner for 5 min. Each specimen was preloaded by subjecting it to a 4-point loading test, with a force of up to 200 N applied for three cycles. Further 4-point loading was conducted at a rate of 0.5 mm/min under controlled temperature and humidity conditions until fracture occurred. The maximum force (Fmax) was recorded and the chevron notch was examined at 30 × magnification under an optical microscope for measurements before the fracture toughness (KIc) was calculated. Microhardness testing was also performed to measure the Vickers hardness number (VHN). A scanning electron microscope (SEM) coupled with an energy dispersive X-ray unit (EDX) was used to examine surface topography and chemical composition. X-ray diffraction (XRD) was conducted to identify crystalline structure. Data were statistically analyzed using two-way ANOVA and Student's t-test with a significance level of 0.05. RESULTS: The nonaged 3D-printed 3Y-TZP group exhibited a significantly higher fracture toughness value (6.07 MPa m1/2) than the milled 3Y-TZP groups (p < 0.001). After autoclave aging, the 3D-printed 3Y-TZP group maintained significantly higher fracture toughness (p < 0.001) compared to the milled 3Y-TZP group. However, no significant differences in hardness values (p = 0.096) were observed between the aged and nonaged groups within each manufacturing process (3D-printed and milled) independently. CONCLUSION: The findings revealed that the new 3D-printed 3Y-TZP produced by the lithography-based ceramic manufacturing (LCM) technology exhibited superior fracture toughness after autoclave aging compared to the milled 3Y-TZP. While no significant differences in hardness were observed between the aged groups, the 3D-printed material demonstrated greater resistance to fracture, indicating enhanced mechanical stability.

2.
J Esthet Restor Dent ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963682

RESUMO

OBJECTIVE: To evaluate the effect of the deterioration of computer aided design/computer aided manufacturing (CAD/CAM) burs during zirconia milling, on surface roughness, contact angle, and fibroblast viability. MATERIALS AND METHODS: Ceramic blocks were milled and 75 ceramic disks (8 × 1.5 mm) made and allocated into three groups (n = 25): G1-brand new 2L and 1L burs, G2-2L bur at the end of lifetime and brand new 1L bur and G3-both burs at the end of their lifetimes. Roughness (Ra, Rq, and Rz) was evaluated using a 3D optical profilometer, the contact angle by the sessile drop method and the cell viability of the mouse NIH/3T3 fibroblast, using the Alamar Blue assay at intervals of 24, 48, and 72 h (ISO 10993-5). Data were analyzed by one-way ANOVA and Kruskal-Wallis tests (p ≤ 0.05). RESULTS: Roughness increased as the burs deteriorated and G3 (0.27 ± 0.04) presented a higher value for Ra (p < 0.001). The highest contact angle was observed in G3 (86.2 ± 2.66) when compared with G1 (63.7 ± 12.49) and G2 (75.3 ± 6.36) (p < 0.001). Alamar Blue indicated an increase in cell proliferation, with no significant differences among the groups at 24 and 72 h (p > 0.05). CONCLUSIONS: The deterioration of the burs increased the surface roughness and decreased the wettability, but did not interfere in cell viability and proliferation. CLINICAL SIGNIFICANCE: The use of custom zirconia abutments represents an effective strategy for single crowns restorations. Our findings suggest that these abutments can be efficiently milled using CAD/CAM burs within their recommended lifetime.

3.
Dent Mater J ; 43(4): 582-590, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38960667

RESUMO

The purpose of this study was to evaluate the effect of the atmospheric pressure plasma treatment as a surface treatment method on the contact angle and shear bond strength (SBS) of zirconia ceramics and the failure mode between the self-adhesive resin luting agent and zirconia. The zirconia specimens were divided into eight groups based on the surface treatment method: alumina blasting, air plasma, argon plasma (AP), Katana cleaner, ozonated water, ozonated water+AP, Katana cleaner+AP, and tap water+AP. The contact angles, SBS, and fracture modes were tested. AP treatment significantly reduced the contact angle (p<0.0001). The combination of AP and other cleaning methods showed a higher bond strength and more mixed fractures. Our findings indicate that using atmospheric pressure plasma with argon gas, combined with other cleaning methods, results in a stronger bond than when using alumina blasting alone.


Assuntos
Argônio , Colagem Dentária , Teste de Materiais , Gases em Plasma , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Zircônio , Zircônio/química , Gases em Plasma/química , Colagem Dentária/métodos , Cimentos de Resina/química , Argônio/química , Análise do Estresse Dentário , Óxido de Alumínio/química
4.
Heliyon ; 10(12): e32493, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975209

RESUMO

This in vitro study was to evaluate the effect of different non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. In this study, The Y-TZP specimens were divided into 4 groups according to the surface treatment methods as follows: Control (no surface treatment), Sb (Sandblasting), AP(argon NTP), and CP(20 % oxygen and 80 % argon combination NTP). Y-TZP specimens were randomly selected from each group to observe and test the following indexes: scanning electron microscope to observe the surface morphology; atomic force microscope to detect the surface roughness; contact angle detector to detect the surface contact angle; energy spectrometer to analyze the surface elements. Then, resin cement (Rely X-U200) was bonded to human isolated teeth with Y-TZP specimens to measure SBS. The results showed that for the SE test, the NTP group was significantly higher than the control group (p < 0.05). The results of the SBS test showed that the SBS values of the NTP group were significantly higher than those of the other groups, regardless of the plasma treatment (p < 0.05). However, there was no significant difference between groups AP and CP in a test of SBS (p > 0.05). This study shows that non-thermal atmospheric pressure plasma can improve the shear bond strength of Y-TZP by increasing the surface energy. The addition of oxygen ratio to argon is more favorable to increase the shear bond strength and is worth further investigation.

5.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063771

RESUMO

Measuring the flexural strength of restorative materials such as zirconia is crucial for providing proper indications for clinical applications and predicting performance. Great variations in specimen preparation for flexural strength measurements exist among laboratories. The aim was to evaluate how the processing method, surface treatment, and test method of the specimens affect the flexural strength of zirconia. Zirconia specimens (VITA YZ HT) (n = 270) were processed using CAD/CAM or were conventionally milled with three different surface treatments (machined, ground, polished) and were measured with three-point bending (non-chamfered/chamfered) or biaxial flexural strength test. Weibull statistics were conducted. The mean flexural strength values ranged from 612 MPa (conventional, machined, three-point bending non-chamfered) to 1143 MPa (CAD/CAM, polished, biaxial flexural strength). The highest reliability is achieved when specimens are prepared using thoroughly controllable processing with CAD/CAM and subsequently polished. Higher strength values are achieved with the biaxial flexural strength test method because the stress concentration in relation to the effective volume is smaller. Polishing reduces surface microcracks and therefore increases the strength values.

6.
Materials (Basel) ; 17(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063809

RESUMO

The aim of the study was to compare the hardness, coefficient of friction, and wear experienced by four different ceramic samples: 3Y-TZP zirconium oxide ceramics-Zi-Ceramill Zi (Amman Girrbach), 5Y-PSZ transparent zirconium oxide ceramics-Zol-Ceramill Zolid (Amman Girrbach), Sak-feldspathic ceramics-Sakura Interaction (Elephant), and Glaze (Amman Girrbach). The Vickers hardness of the samples was measured. Friction tests ball-on-disc were performed between the discs of four ceramics and a zirconia ceramic ball, then a premolar tooth as a counter-sample. The mass loss and the friction coefficients of the ceramic samples were determined. The tooth counter-samples were 3D scanned, and enamel attrition depths and mass were measured. The following hardness values (HV1) were obtained: 1454 ± 46 HV1 for Zi, 1439 ± 62 HV1 for Zol, 491 ± 16 HV1 for Sak, 593 ± 16 HV1 for Glaze, and 372 ± 41 HV1 for enamel. The mass losses of the teeth in contact with ceramics were 0.1 mg for Zi, 0.1 mg for Zol, 5.5 mg for Sak, and 4 mg for Glaze. Conventional and transparent zirconium oxide ceramics are four times harder than enamel and three times harder than veneering ceramics. Zirconia ceramics exhibit lower wear and a more homogenous, smoother surface than the other ceramics. Tooth tissues are subject to greater attrition in contact with veneering ceramics than with polished zirconium oxide ceramics.

7.
Dent Mater J ; 43(5): 693-700, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39085143

RESUMO

This study evaluated fracture resistance of monolithic fixed dental prostheses (FDPs) fabricated using different placement strategies of various connector designs in multilayered zirconia disc. Monolithic FDPs were placed in translucent and dentin layers of multilayered zirconia disc and fabricated with V-shaped and U-shaped connector designs gained by sharp and blunt millings. The FDPs were cemented on abutment models made of polymer material, underwent thermal cycles, and loaded to fracture using the universal testing machine. Fracture loads and modes were analyzed using two-way ANOVA, Tukey's post hoc test, and Fisher exact test (p≤0.05). The chosen placement strategy and connector designs gained by different milling procedures in computer-aided design/computer-aided manufacturing technology affect fracture resistance of monolithic FDPs made of multilayered zirconia materials. Placing the connector in translucent layer rather than dentin layer of multilayered zirconia disc and using sharp milling significantly reduces fracture resistance of monolithic multilayered zirconia FDPs.


Assuntos
Desenho Assistido por Computador , Falha de Restauração Dentária , Análise do Estresse Dentário , Teste de Materiais , Zircônio , Zircônio/química , Técnicas In Vitro , Prótese Parcial Fixa , Dente Suporte , Materiais Dentários/química , Planejamento de Prótese Dentária , Propriedades de Superfície , Planejamento de Dentadura
8.
Dent Mater ; 40(9): 1464-1476, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945742

RESUMO

OBJECTIVES: To assess the effects of different aging protocols on chemical, physical, and mechanical properties of an experimental ATZ composite compared to a zirconia. METHODS: Disc-shaped specimens were obtained through uniaxial pressing of commercial powders (Tosoh), ATZ comprised of 80%ZrO2/20%Al2O3 (TZ-3YS20AB) and 3Y-TZP (3Y-SBE). The specimens of each material were divided into different groups according to the aging protocol: immediate, autoclave aging and hydrothermal reactor aging. The aging protocols were performed at 134 ºC for 20 h at 2.2 bar. Crystalline evaluations were performed using X-Ray Diffraction. The nanoindentation tests measured the elastic modulus (Em) and hardness (H). Biaxial flexural strength was performed, and Weibull statistics were used to determine the characteristic strength and Weibull modulus. The probability of survival was also determined. The Em and H data were analyzed by one-way ANOVA and Tukey test. RESULTS: Diffractograms revealed the presence of monoclinic phase in both materials after aging. The hydrothermal reactor decreased the Em for ATZ compared to its immediate condition; and the H for both ATZ and 3Y-TZP regarding their immediate and autoclave aging conditions, respectively. The aging protocols significantly increased the characteristic strength for ATZ, while decreased for 3Y-TZP. No difference regarding Weibull modulus was observed, except for 3Y-TZP aged in reactor. For missions of up to 500 MPa, both materials presented a high probability of survival (>99 %) irrespective of aging condition. SIGNIFICANCE: The synthesized ATZ composite exhibited greater physical and microstructural stability compared to 3Y-TZP, supporting potential application of the experimental material for long-span reconstructive applications.


Assuntos
Óxido de Alumínio , Resistência à Flexão , Teste de Materiais , Difração de Raios X , Zircônio , Zircônio/química , Óxido de Alumínio/química , Módulo de Elasticidade , Dureza , Propriedades de Superfície , Materiais Dentários/química , Ítrio/química , Análise do Estresse Dentário , Temperatura Alta
9.
Int J Oral Maxillofac Implants ; 0(0): 1-22, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820085

RESUMO

PURPOSE: Compare Neodent Zi® zirconia implants' insertion torque (IT) and removal torque (RT) with Neodent Alvim® titanium. Measure the maximum torque supported by the zirconia implant until its fracture (MT) and the maximum torque sustained by the assembler of this implant (MTA) until its fracture. MATERIAL AND METHODS: In this in-vitro study twenty four implants were used. Two groups of implants with the same macrogeometry and from the same manufacturer were compared, Zirconia (n=12) and Titanium (n=12). Implant bed preparations were completed in bovine ribs following a standardized drilling protocol. Then, the insertion torque (IT), removal torque (RT), maximum torque to fracture (MT) and maximum torque to fracture of the assembler (MTA) were completed using a calibrated torque meter. Data was presented using descriptive statistics including means, standard deviations (SD), medians, and quartiles. The Shapiro-Wilk test was used to verify data normality and the Wilcoxon test was used to evaluate differences between groups. Statistical significance was established as p < 0.05. RESULTS: Zirconia implants showed: IT 89.33 ± 31.18 Ncm and RT 84.89 ± 32.92 Ncm. Titanium implants showed: IT 77.58 ± 28.96 Ncm and RT 76.75 ± 31.29 Ncm without significant differences (p>0.05). In relation to fracture under rotational force, the zirconia implants fractured at 106.17 ± 22.54 Ncm, and the implant assembly fractured at 84.00 ±13.14 Ncm. CONCLUSION: Neodent Zi® implants showed stability but lower fracture torque than Alvim® titanium. As the fracture values of the assembler were significantly lower than the fracture values of the zirconia implants, it can be stated that, as recommended by the manufacturer, they act as a safety measure during installation.

10.
Photobiomodul Photomed Laser Surg ; 42(5): 343-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579157

RESUMO

Objective: This in vitro study evaluates the shear bond strength (SBS) of yttria-stabilized tetragonal zirconia (Y-TZP) and resin cement after different surface treatments. Materials and methods: Forty-eight ceramic cubes were divided into four groups (n = 12): G1 (control) sandblasting with Al2O3; G2-sandblasting with silica-coated Al2O3 (Rocatec); G3-Rocatec + CO2 laser; and G4-CO2 laser + Rocatec. A metallic primer was applied to the pretreated ceramic. A rubber ring was adapted on the central area, and then, the resin cement was inserted into the matrix and photoactivated. The samples were evaluated regarding surface roughness (Ra), SBS, failure type, and qualitatively with scanning electron microscopy (SEM). The data were analyzed by one-way analysis of variance followed by Tukey's test (p < 0.05). Results: The mean values of Ra (µm) were as follows: G1-4.52a, G2-4.24a,b, G3-4.10a,b, and G4-2.90b and the mean values of SBS (MPa) were as follows: G1-7.84a , G2-4.41b , G3-4.61b and G4-6.14a,b. SEM analyses showed superficial irregularities for all groups, being more prominent for G1. The presence of silica deposits was observed for G2, G3, and G4, but in the last two groups there were some linear areas, promoted by the fusion of silica, due to the thermomechanical action of the CO2 laser. Conclusions: The surface treatment with CO2 laser + Rocatec, using one MDP-based cement, can be an alternative protocol for the adhesion cementation of Y-TZP ceramic since it was as effective as the conventional pretreatment with aluminum oxide sandblasting.


Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Cimentos de Resina/química , Cerâmica/química , Colagem Dentária/métodos , Lasers de Gás , Técnicas In Vitro , Dióxido de Silício/química , Óxido de Alumínio/química
11.
Dent Mater J ; 43(2): 164-171, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38296512

RESUMO

This study investigated the effects of low-temperature degradation (LTD) on the L*, a*, and b* values of highly translucent zirconia crowns. Four types of zirconia disks with different yttria contents (IPS e.max ZirCAD LT, IPS e.max ZirCAD MT, IPS e.max ZirCAD MT Multi, IPS e.max ZirCAD Prime, Ivoclar) and two shades (A2 and BL) were used. A crown was manufactured using four types of zirconia and LTD treated. Color measurements were performed, and the color difference (ΔE00) before and after LTD was calculated. The microstructure was determined through X-ray fluorescence and X-ray diffractometry. Highly translucent zirconia crowns showed greater changes in the a* and b* values than in the L* value after LTD, regardless of the shade. The Multi2 crowns exhibited a discernible color change due to the LTD treatment. The X-ray fluorescence results did not reveal any apparent change in the microstructure between sintering programs for all zirconia specimens.


Assuntos
Coroas , Ítrio , Zircônio , Temperatura , Zircônio/química , Teste de Materiais , Cerâmica/química , Cor , Propriedades de Superfície
12.
Materials (Basel) ; 17(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38204115

RESUMO

The rehabilitation of free-end situations is a frequent indication in prosthetic dentistry. Cantilever fixed dental prostheses (cFDPs) made of 1st and 2nd generation zirconia are one treatment option. Due to a unique gradient technology, combinations of different zirconium dioxide generations are thus feasible in one restoration. However, data about these materials are rare. The purpose of this study was therefore to investigate the fracture resistance and fracture modes of tooth-supported cFDPs fabricated from different zirconia materials (gradient technology) and different framework thicknesses. A total of 40 cFDPs were fabricated using the CAD/CAM approach and belonged to five test groups. The different groups differed in the yttria content, the proportion of the tetragonal/cubic phases, or in wall thickness (0.7 mm or 1 mm). After completion, the cFDPs were subjected to thermal cycling and chewing simulation (1.2 × 106 load cycles, 108 N load). Afterwards, cFDPs were statically loaded until fracture in a universal testing machine. A non-parametric ANOVA was compiled to determine the possible effects of group membership on fracture resistance. In addition, post-hoc Tukey tests were used for bivariate comparisons. The mean fracture loads under axial load application ranged from 288 to 577 N. ANOVA detected a significant impact of the used material on the fracture resistances (p < 0.001). Therefore, the use of cFDPs fabricated by gradient technology zirconia may not be unreservedly recommended for clinical use, whereas cFPDs made from 3Y-TZP exhibit fracture resistance above possible masticatory loads in the posterior region.

13.
J Prosthodont Res ; 68(3): 474-481, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38171769

RESUMO

PURPOSE: The aim of this study was to establish and assess the validity of in silico models of biaxial flexural strength (BFS) tests to reflect in vitro physical properties obtained from two commercially available computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic blocks and one CAD/CAM resin composite block. METHODS: In vitro three-point bending and BFS tests were conducted for three CAD/CAM materials (n = 10): Katana Zirconia ST10 (raw material: super-translucent multilayered zirconia, ST10; Kuraray Noritake Dental, Niigata, Japan), Katana Zirconia HT10 (raw material: highly translucent multilayered zirconia, HT10; Kuraray Noritake Dental), and Katana Avencia N (AN; Kuraray Noritake Dental). Densities, flexural moduli, and fracture strains were obtained from the in vitro three-point bending test and used as an input for an in silico nonlinear finite element analysis. The maximum principal stress (MPS) distribution was obtained from an in silico BFS analysis. RESULTS: The elastic moduli of AN, HT10, and ST10 were 6.513, 40.039, and 32.600 GPa, respectively. The in silico fracture pattern of ST10 observed after the in silico evaluation was similar to the fracture pattern observed after the in vitro testing. The MPS was registered in the center of the tensile surface for all three specimens. The projections of the supporting balls were in the form of a triple asymmetry. CONCLUSIONS: The in silico approach established in this study provided an acceptable reflection of in vitro physical properties, and will be useful to assess biaxial flexural properties of CAD/CAM materials without wastage of materials.


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Análise de Elementos Finitos , Resistência à Flexão , Teste de Materiais , Zircônio , Materiais Dentários , Resinas Compostas , Dinâmica não Linear , Análise do Estresse Dentário , Cerâmica , Módulo de Elasticidade , Estresse Mecânico
14.
Int Orthod ; 22(1): 100822, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37992472

RESUMO

PURPOSE: The objective of this study was to compare the shear bond strengths of orthodontic brackets bonded to translucent dental zirconia samples which are anatomically accurate and treated with various surface treatments. METHODS: This in vitro study included 156 samples from 3 brands of high-translucent zirconia split into a control group and 4 surface treatment groups: 9.6% hydrofluoric acid etching, 50-micron aluminium oxide particle air abrasion, and 30-micron tribochemical silica coating (TBS) particle air abrasion with and without silane application. After surface treatment, all groups were primed with a 10-MDP primer and bonded to metal orthodontic brackets. Shear bond strength (SBS) was tested and results were compared between all groups. Data analysis consisted of a balanced two-factor factorial ANOVA, a Shapiro-Wilks test, and a non-parametric permutation test. The significance level was set at 0.05. RESULTS: Among all surface treatments, aluminium oxide particle abrasion produced significantly higher SBS (P≤0.002). Lava™ Plus zirconia samples had significantly higher SBS than Cercon® samples (P<0.0001). TBS surface treatment produced significantly higher SBS on Lava™ Plus samples than it did on the other zirconia brands (P=0.032). CONCLUSIONS: This study indicated that mechanical abrasion using aluminium oxide in combination with a 10-MDP primer creates a higher SBS to high-translucent zirconia than the bond created by tribochemical silica coating. Also, there was no significant difference in ARI regardless of zirconia brand or surface preparation.


Assuntos
Colagem Dentária , Metacrilatos , Braquetes Ortodônticos , Zircônio , Humanos , Cimentos de Resina/química , Abrasão Dental por Ar , Propriedades de Superfície , Resistência ao Cisalhamento , Dióxido de Silício/química , Óxido de Alumínio/química , Teste de Materiais , Análise do Estresse Dentário
15.
Dent Mater ; 40(2): 198-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951752

RESUMO

OBJECTIVES: To investigate the 5-year intraoral evolution and kinetics of low-temperature degradation (LTD) of second-generation monolithic prostheses made of 3% molar yttrium-doped tetragonal zirconia polycrystal (3Y-TZP) and the influence of masticatory mechanical stresses and glaze layer on this evolution. METHODS: A total of 101 posterior tooth elements were included in this prospective clinical study, which comprised ex vivo LTD monitoring (at baseline, 6 months, 1 year, 2 years, 3 years, and 5 years) using Raman spectroscopy (n = 2640 monoclinic phase measurement points per evaluation time) and scanning electron microscopy (SEM). Four types of areas (1-2 mm2 surface, six on molars, and four on premolars) were analysed on each element surface: occlusal, axial, glazed, or unglazed. Raman mapping, high-resolution SEM, and focused ion beam-SEM were performed on selected samples. RESULTS: The dental prostheses developed a tetragonal-to-monoclinic transformation at the extreme surface of the material after six months in a buccal environment, and this process increased significantly over time. Over the five years of monitoring, the transformation developed nonuniformly with the presence of localised clusters of monoclinic grains. Tribological stresses generate grain pull-out from these clusters, which may raise questions regarding the release of 3Y-TZP nanoparticles into the body. The prosthesis fracture rate was 4.5% after 5 years. SIGNIFICANCE: LTD developed in vivo on the surfaces of 3Y-TZP dental prostheses and progressed slowly but significantly over time, up to 5 years investigation. However, the effects of aging on the failure rate recorded and of zirconia nanoparticles released into the body require further investigation.


Assuntos
Prótese Dentária , Zircônio , Temperatura , Estudos Prospectivos , Propriedades de Superfície , Zircônio/química , Ítrio/química , Teste de Materiais , Materiais Dentários/química , Cerâmica/química
16.
Materials (Basel) ; 16(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138835

RESUMO

The aim of this study was to investigate the low-temperature degradation (LTD) kinetics of tetragonal zirconia with 3 mol% yttria (3Y-TZP) dental ceramic using two degradation methods: hydrothermal degradation and immersed degradation. To study transformation kinetics, we prepared 3Y-TZP powders. We pressed these powders uniaxially into a stainless mold at 100 MPa. We then sintered the compacted bodies at intervals of 50 °C between 1300 °C and 1550 °C and immersed the specimens at various temperatures from 60 °C to 80 °C in 4% acetic acid or from 110 °C to 140 °C for the hydrothermal method. We used a scanning electron microscope (SEM) to confirm crystalline grain size and used X-ray diffraction to analyze the zirconia phase. As the sintering temperature increased, the calculated crystalline grain size also increased. We confirmed this change with the SEM image. The higher sintering temperatures were associated with more phase transformation. According to the Mehl-Avrami-Johnson equation, the activation energies achieved using the hydrothermal method were 101 kJ/mol, 95 kJ/mol, and 86 kJ/mol at sintering temperatures of 1450 °C, 1500 °C, and 1550 °C, respectively. In addition, the activation energies of the specimens immersed in 4% acetic acid were 60 kJ/mol, 55 kJ/mol, 48 kJ/mol, and 35 kJ/mol, with sintered temperatures of 1400 °C, 1450 °C, 1500 °C, and 1550 °C, respectively. The results showed that a lower sintering temperature would restrain the phase transformation of zirconia because of the smaller crystalline grain size. As a result, the rate of LTD decreased.

17.
Materials (Basel) ; 16(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895765

RESUMO

The aim of this paper is to investigate the mechanism of an electric current-assisted superplastic deformation on 3Y-TZP in an oxygen-lean atmosphere. The experiments were performed with different electric currents in the range of 0~5 A. The results show that the flow stress of 3Y-TZP during the deformation was significantly decreased by the combination of Joule heating and the applied current effect. The microstructures of the deformed specimens were all equiaxed grains without an obvious preferential grain growth. The stress exponent n = 2.05~2.61 suggested that the dominant deformation of 3Y-YZP with/without the electric current was grain boundary sliding at 1400 °C. The activation energy of the deformation which decreased from 465 kJ mol-1 to 315 kJ mol-1 by the electric current indicated that the lattice diffusion of Zr cation during the deformation was enhanced. And the deformation rate of 3Y-TZP with the electric current may be controlled by the grain boundary diffusion of Zr cation.

18.
Dent Mater J ; 42(6): 800-805, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37793824

RESUMO

This study aimed to investigate the effect of low-temperature degradation (LTD) on the mechanical properties of additive-manufactured zirconia. In addition, the mechanical properties of additive-manufactured were compared with those before aging under similar experimental conditions. This study prepared stereolithography apparatus fabricated zirconia specimens with flexural strength, modulus of elasticity, Vickers hardness, and fracture toughness. The specimen position data were set as parallel (0°), diagonal (45°), and perpendicular (90°) to the direction of the building. The LTD condition was 5 h under 134ºC and 0.2 MPa in an autoclave. It was found that the 0° direction differed significantly from all other conditions before and after aging, and the highest flexural strength was obtained when the additive specimen was manufactured perpendicular to the building direction. However, the results indicate that there is a negligible effect of aging on the mechanical properties of additive-manufactured zirconia.


Assuntos
Temperatura Baixa , Zircônio , Temperatura , Teste de Materiais , Propriedades de Superfície , Cerâmica , Ítrio
19.
J Prosthodont ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776103

RESUMO

PURPOSE: The purpose of this study was to compare the dimensional accuracy, translucency, and biaxial flexural strength of milled zirconia (MZ) versus 3D-printed zirconia (PZ) discs. MATERIALS & METHODS: A circular disc measuring 14.0 mm in diameter and 1.20 mm in thickness was designed using computer-aided design (CAD) software. The resulting standard tessellation language (STL) file was used both as a control and to fabricate 36 zirconia (3Y-TZP) disc specimens (n = 36): 18 were milled (group MZ) and 18 were 3D-printed (group PZ). The diameter and thickness of each disc were measured using a digital caliper. Translucency was evaluated using a calibrated dental colorimeter. The flexural strength was determined using the piston-on-three-ball biaxial flexure test. All measurements were done by one blinded examiner. The statistical significance level was set to α = 0.05. RESULTS: The MZ discs had significantly more accurate dimensions than the PZ discs in both diameter and thickness when compared to the control CAD software-designed disc. The MZ discs exhibited significantly higher translucency (translucency parameter (TP) = 16.95 ±0.36 vs. 9.24 ±1.98) and biaxial flexural strength (996.16 ±137.37 MPa vs. 845.75 ±266.16 MPa) than the PZ discs. Finally, MZ possessed a significantly higher Weibull modulus relative to PZ. CONCLUSIONS: The results showed that the milled specimens achieved better dimensional accuracy and were more translucent, stronger, and less prone to failure than printed specimens.

20.
Materials (Basel) ; 16(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570123

RESUMO

The surface of zirconia-based dental ceramic restorations require preparation prior to adhesive cementation. The purpose of this study was to assess the influence of airborne-particle abrasion with different sizes of alumina particles (50 µm, 110 µm, or 250 µm) on the mechanical strength of zirconia-based ceramics' frameworks and on the extent of phase transformations. A fracture resistance test was performed. The central surface of the frameworks was subjected to a load [N]. The identification and quantitative determination of the crystalline phase present in the zirconia specimens was assessed using X-ray diffraction. The Kruskal-Wallis one-way analysis of variance was used to establish significance (α = 0.05). The fracture resistance of zirconia-based frameworks significantly increases with an increase in the size of alumina particles used for air abrasion: 715.5 N for 250 µm alumina particles, 661.1 N for 110 µm, 608.7 N for 50 µm and the lowest for the untreated specimens (364.2 N). The X-ray diffraction analysis showed an increase in the monoclinic phase content after air abrasion: 50 µm alumina particles-26%, 110 µm-40%, 250 µm-56%, and no treatment-none. Air abrasion of the zirconia-based dental ceramics' surface with alumina particles increases the fracture resistance of zirconia copings and the monoclinic phase volume. This increase is strongly related to the alumina particle size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA