Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35011517

RESUMO

The human immunodeficiency virus type-1 Reverse Transcriptase (HIV-1 RT) plays a pivotal role in essential viral replication and is the main target for antiviral therapy. The anti-HIV-1 RT drugs address resistance-associated mutations. This research focused on isolating the potential specific DNA aptamers against K103N/Y181C double mutant HIV-1 RT. Five DNA aptamers showed low IC50 values against both the KY-mutant HIV-1 RT and wildtype (WT) HIV-1 RT. The kinetic binding affinity forms surface plasmon resonance of both KY-mutant and WT HIV-1 RTs in the range of 0.06-2 µM and 0.15-2 µM, respectively. Among these aptamers, the KY44 aptamer was chosen to study the interaction of HIV-1 RTs-DNA aptamer complex by NMR experiments. The NMR results indicate that the aptamer could interact with both WT and KY-mutant HIV-1 RT at the NNRTI drug binding pocket by inducing a chemical shift at methionine residues. Furthermore, KY44 could inhibit pseudo-HIV particle infection in HEK293 cells with nearly 80% inhibition and showed low cytotoxicity on HEK293 cells. These together indicated that the KY44 aptamer could be a potential inhibitor of both WT and KY-mutant HIV-RT.


Assuntos
Fármacos Anti-HIV , Aptâmeros de Nucleotídeos , Transcriptase Reversa do HIV , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Inibidores da Transcriptase Reversa , Substituição de Aminoácidos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Células HEK293 , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Humanos , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia
2.
Bioorg Med Chem ; 30: 115927, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352387

RESUMO

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are widely used in combination therapies against HIV-1. However, emergent and transmitted drug resistance compromise their efficacy in the clinical setting. Y181C is selected in patients receiving nevirapine, etravirine and rilpivirine, and together with K103N is the most prevalent NNRTI-associated mutation in HIV-infected patients. Herein, we report on the design, synthesis and biological evaluation of a novel series of indolylarylsulfones bearing acrylamide or ethylene sulfonamide reactive groups as warheads to inactivate Cys181-containing HIV-1 RT via a Michael addition reaction. Compounds I-7 and I-9 demonstrated higher selectivity towards the Y181C mutant than against the wild-type RT, in nucleotide incorporation inhibition assays. The larger size of the NNRTI binding pocket in the mutant enzyme facilitates a better fit for the active compounds, while stacking interactions with Phe227 and Pro236 contribute to inhibitor binding. Mass spectrometry data were consistent with the covalent modification of the RT, although off-target reactivity constitutes a major limitation for further development of the described inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Indóis/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Sulfonas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Indóis/síntese química , Indóis/química , Estrutura Molecular , Mutação , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química
3.
Curr Pharm Des ; 22(46): 6982-6987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27875973

RESUMO

Earlier we reported the identification of diarylpyrimidine-quinolone hybrids as a new class of HIV-1 NNRTIs. A few of these hybrids displayed moderate inhibitory activity against wt HIV-1 replication at submicromolar level, however, all of them lacked inhibitory activity against the double mutant virus (K103N/Y181C), which is the most prevalent NNRTI resistant-associated double mutant observed in the clinic. In the present study, we designed and synthesized a new series of diarylpyrimidine-quinolone hybrids featuring a halogen group at C-6' position of quinolone ring. The biological results indicated that most of these hybrids could inhibit wt HIV-1 replication at nanomolar level ranging from 0.088 to 0.0096 µM. The most promising hybrid 5c displayed a significant EC50 value of 0.0096 µM against HIV-1 IIIB and of 0.98 µM against K103N/Y181C. Further docking studies revealed that these hybrids could be well located in the hydrophobic NNIBP of HIV-1 RT despite the bulky and polar properties of a quinolone 3-carboxylic acid scaffold in the molecules. These promising results suggested a high potential to further develop these hybrids as next-generation NNRTIs with improved antiviral efficacy and resistance profile.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Pirimidinas/farmacologia , Quinolonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Quinolonas/química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
Viruses ; 8(10)2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27669286

RESUMO

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for human immunodeficiency type 1 virus (HIV-1) infections. However, their effectiveness can be hampered by the emergence of resistant mutations. To aid in designing effective NNRTIs against the resistant mutants, it is important to understand the resistance mechanism of the mutations. Here, we investigate the mechanism of the two most prevalent NNRTI-associated mutations with K103N or Y181C substitution. Virus and reverse transcriptase (RT) with K103N/Y188F, K103A, or K103E substitutions and with Y181F, Y188F, or Y181F/Y188F substitutions were employed to study the resistance mechanism of the K103N and Y181C mutants, respectively. Results showed that the virus and RT with K103N/Y188F substitutions displayed similar resistance levels to the virus and RT with K103N substitution versus NNRTIs. Virus and RT containing Y181F, Y188F, or Y181F/Y188F substitution exhibited either enhanced or similar susceptibility to NNRTIs compared with the wild type (WT) virus. These results suggest that the hydrogen bond between N103 and Y188 may not play an important role in the resistance of the K103N variant to NNRTIs. Furthermore, the results from the studies with the Y181 or Y188 variant provide the direct evidence that aromatic π-π stacking plays a crucial role in the binding of NNRTIs to RT.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Inibidores da Transcriptase Reversa/farmacologia , Substituição de Aminoácidos , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/genética , Humanos , Testes de Sensibilidade Microbiana , Proteínas Mutantes/genética , Ligação Proteica
5.
AIDS Res Ther ; 11: 36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25926857

RESUMO

OBJECTIVE: We built a cohort study of HIV patients taking long-term first-line Antiretroviral Therapy in 2003. In this assay, we focused on the development of primary drug resistance mutations against Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI), K103N, Y181C and G190A. METHOD: The cohort study was built in Henan province, China. We used Single Genome Amplification (SGA) to analyze the frequency of K103N, Y181C and G190A in serial plasma samples of three individual patients. We also performed standard genotype HIV drug resistance assay in 204 patients of this cohort study to analyze the frequency of these mutations. RESULT: In the SGA sequences, the K103N decreased and vanished, while the frequency of Y181C and G190A increased in individual patient receiving long-term Antiretroviral Therapy (ART). In the sequences of standard genotype HIV drug resistance assay, the frequency of K103N, Y181C and G190A had the similar pattern with that in SGA sequences. Among these patients, the viral suppression were still sufficient after receiving ART for 72 months, and 78.6% (160/204) patients could have their CD4 count over than 200cells/ul. CONCLUSION: In some patients, first-line ART had the possibility to provide sufficient treatment effect for over than 72 months, but in long-term treatment, the dominant NNRTI drug resistance mutation K103N could reduced, while the proportion of variants with mutation Y181C or G190A may increased. This result was not similar with that in vitro study, which state that variant with K103N or Y181C had an equal viral fitness with wild type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA