Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging Cell ; : e14281, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044358

RESUMO

Over a lifetime, hematopoietic stem and progenitor cells (HSPCs) are forced to repeatedly proliferate to maintain hematopoiesis, increasing their susceptibility to DNA damaging replication stress. However, the proteins that mitigate this stress, protect HSPC replication, and prevent aging-driven dysregulation are unknown. We report two evolutionarily conserved, ubiquitously expressed chromatin remodeling enzymes with similar DNA replication fork reversal biochemical functions, Zranb3 and Smarcal1, have surprisingly specialized roles in distinct HSPC populations. While both proteins actively mitigate replication stress and prevent DNA damage and breaks during lifelong hematopoiesis, the loss of either resulted in distinct biochemical and biological consequences. Notably, defective long-term HSC function, revealed with bone marrow transplantation, caused hematopoiesis abnormalities in young mice lacking Zranb3. Aging significantly worsened these hematopoiesis defects in Zranb3-deficient mice, including accelerating the onset of myeloid-biased hematopoietic dysregulation to early in life. Such Zranb3-deficient HSPC abnormalities with age were driven by accumulated DNA damage and replication stress. Conversely, Smarcal1 loss primarily negatively affected progenitor cell functions that were exacerbated with aging, resulting in a lymphoid bias. Simultaneous loss of both Zranb3 and Smarcal1 compounded HSPC defects. Additionally, HSPC DNA replication fork dynamics had unanticipated HSPC type and age plasticity that depended on the stress and Zranb3 and/or Smarcal1. Our data reveal both Zranb3 and Smarcal1 have essential HSPC cell intrinsic functions in lifelong hematopoiesis that protect HSPCs from replication stress and DNA damage in unexpected, unique ways.

2.
Semin Cell Dev Biol ; 113: 27-37, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33967572

RESUMO

DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Humanos
3.
Curr Opin Chem Biol ; 54: 10-18, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734537

RESUMO

Stereotyped as a nexus of dNTP synthesis, the dual-subunit enzyme - ribonucleotide reductase (RNR) - is coming into view as a paradigm of oligomerization and moonlighting behavior. In the present issue of 'omics', we discuss what makes the larger subunit of this enzyme (RNR-α) so interesting, highlighting its emerging cellular interactome based on its unique oligomeric dynamism that dictates its compartment-specific occupations. Linking the history of the field with the multivariable nature of this exceedingly sophisticated enzyme, we further discuss implications of new data pertaining to DNA-damage response, S-phase checkpoints, and ultimately tumor suppression. We hereby hope to provide ideas for those interested in these fields and exemplify conceptual frameworks and tools that are useful to study RNR's broader roles in biology.


Assuntos
Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Animais , Dano ao DNA , DNA Helicases/química , DNA Helicases/metabolismo , Desoxiadenosinas/metabolismo , Humanos , Modelos Moleculares , Mapas de Interação de Proteínas , Estrutura Quaternária de Proteína
4.
Cell Chem Biol ; 27(1): 122-133.e5, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31836351

RESUMO

Ribonucleotide reductase (RNR) is an essential enzyme in DNA biogenesis and a target of several chemotherapeutics. Here, we investigate how anti-leukemic drugs (e.g., clofarabine [ClF]) that target one of the two subunits of RNR, RNR-α, affect non-canonical RNR-α functions. We discovered that these clinically approved RNR-inhibiting dATP-analogs inhibit growth by also targeting ZRANB3-a recently identified DNA synthesis promoter and nuclear-localized interactor of RNR-α. Remarkably, in early time points following drug treatment, ZRANB3 targeting accounted for most of the drug-induced DNA synthesis suppression and multiple cell types featuring ZRANB3 knockout/knockdown were resistant to these drugs. In addition, ZRANB3 plays a major role in regulating tumor invasion and H-rasG12V-promoted transformation in a manner dependent on the recently discovered interactome of RNR-α involving select cytosolic-/nuclear-localized protein players. The H-rasG12V-promoted transformation-which we show requires ZRANB3-supported DNA synthesis-was efficiently suppressed by ClF. Such overlooked mechanisms of action of approved drugs and a previously unappreciated example of non-oncogene addiction, which is suppressed by RNR-α, may advance cancer interventions.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Clofarabina/farmacologia , DNA Helicases/antagonistas & inibidores , Ribonucleotídeo Redutases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA Helicases/deficiência , DNA Helicases/metabolismo , DNA de Neoplasias/antagonistas & inibidores , DNA de Neoplasias/biossíntese , Células HeLa , Humanos , Ribonucleotídeo Redutases/metabolismo
5.
Cancers (Basel) ; 10(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30060597

RESUMO

The tumor suppressor p53 is a transcriptional factor broadly mutated in cancer. Most inactivating and gain of function mutations disrupt the sequence-specific DNA binding domain, which activates target genes. This is perhaps the main reason why most research has focused on the relevance of such transcriptional activity for the prevention or elimination of cancer cells. Notwithstanding, transcriptional regulation may not be the only mechanism underlying its role in tumor suppression and therapeutic responses. In the past, a direct role of p53 in DNA repair transactions that include the regulation of homologous recombination has been suggested. More recently, the localization of p53 at replication forks has been demonstrated and the effect of p53 on nascent DNA elongation has been explored. While some data sets indicate that the regulation of ongoing replication forks by p53 may be mediated by p53 targets such as MDM2 (murine double minute 2) and polymerase (POL) eta other evidences demonstrate that p53 is capable of controlling DNA replication by directly interacting with the replisome and altering its composition. In addition to discussing such findings, this review will also analyze the impact that p53-mediated control of ongoing DNA replication has on treatment responses and tumor suppressor abilities of this important anti-oncogene.

6.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29290468

RESUMO

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Assuntos
DNA Helicases/genética , Replicação do DNA , Homeostase do Telômero , Animais , Linhagem Celular , Células Cultivadas , DNA Helicases/metabolismo , Glicosídeo Hidrolases/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , RecQ Helicases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
7.
Mol Cell ; 68(2): 414-430.e8, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053959

RESUMO

To ensure the completion of DNA replication and maintenance of genome integrity, DNA repair factors protect stalled replication forks upon replication stress. Previous studies have identified a critical role for the tumor suppressors BRCA1 and BRCA2 in preventing the degradation of nascent DNA by the MRE11 nuclease after replication stress. Here we show that depletion of SMARCAL1, a SNF2-family DNA translocase that remodels stalled forks, restores replication fork stability and reduces the formation of replication stress-induced DNA breaks and chromosomal aberrations in BRCA1/2-deficient cells. In addition to SMARCAL1, other SNF2-family fork remodelers, including ZRANB3 and HLTF, cause nascent DNA degradation and genomic instability in BRCA1/2-deficient cells upon replication stress. Our observations indicate that nascent DNA degradation in BRCA1/2-deficient cells occurs as a consequence of MRE11-dependent nucleolytic processing of reversed forks generated by fork remodelers. These studies provide mechanistic insights into the processes that cause genome instability in BRCA1/2-deficient cells.


Assuntos
Proteína BRCA2/deficiência , Quebras de DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Humanos , Proteína Homóloga a MRE11 , Fatores de Transcrição/genética
8.
Mol Cell ; 67(5): 882-890.e5, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886337

RESUMO

DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Neoplasias/enzimologia , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Origem de Replicação , Animais , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA de Neoplasias/genética , DNA de Neoplasias/ultraestrutura , Células HCT116 , Células HEK293 , Humanos , Cinética , Camundongos , Mutação , Neoplasias/genética , Neoplasias/ultraestrutura , Antígeno Nuclear de Célula em Proliferação/genética , Interferência de RNA , Transfecção , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
9.
Mol Cell ; 67(3): 374-386.e5, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28735897

RESUMO

RAD51 promotes homology-directed repair (HDR), replication fork reversal, and stalled fork protection. Defects in these functions cause genomic instability and tumorigenesis but also generate hypersensitivity to cancer therapeutics. Here we describe the identification of RADX as an RPA-like, single-strand DNA binding protein. RADX is recruited to replication forks, where it prevents fork collapse by regulating RAD51. When RADX is inactivated, excessive RAD51 activity slows replication elongation and causes double-strand breaks. In cancer cells lacking BRCA2, RADX deletion restores fork protection without restoring HDR. Furthermore, RADX inactivation confers chemotherapy and PARP inhibitor resistance to cancer cells with reduced BRCA2/RAD51 pathway function. By antagonizing RAD51 at forks, RADX allows cells to maintain a high capacity for HDR while ensuring that replication functions of RAD51 are properly regulated. Thus, RADX is essential to achieve the proper balance of RAD51 activity to maintain genome stability.


Assuntos
DNA de Neoplasias/biossíntese , Resistencia a Medicamentos Antineoplásicos , Instabilidade Genômica , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/metabolismo , Origem de Replicação , Células A549 , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Neoplasias/química , DNA de Neoplasias/genética , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Interferência de RNA , Rad51 Recombinase/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA