Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Development ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101673

RESUMO

The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. While vascular endothelial growth factor a (VEGF-A) drives DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B, Akt, in zebrafish by generating a quadruple mutant (aktΔ/Δ), where expression and activity of all akt genes-akt 1, 2, 3a, and 3b are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to reestablish normal arterial specification in aktΔ/Δ. The Akt-loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.

2.
Int J Nanomedicine ; 19: 7731-7750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099787

RESUMO

Purpose: Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods: To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1ß, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/ß-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results: The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion: In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.


Assuntos
Inflamação , Lignina , Nanopartículas , Peixe-Zebra , Animais , Lignina/química , Lignina/farmacologia , Nanopartículas/química , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Modelos Animais de Doenças , Citocinas/metabolismo , Citocinas/genética , Embrião não Mamífero/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
3.
Pharmaceutics ; 16(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39065658

RESUMO

The lack of effective delivery systems has slowed the development of mitochondrial gene therapy. Delivery systems based on cell-penetrating peptides (CPPs) like the WRAP (tryptophan and arginine-rich peptide) family conjugated with a mitochondrial targeting sequence (MTS) have emerged as adequate carriers to mediate gene expression into the mitochondria. In this work, we performed the PEGylation of WRAP/pDNA nanocomplexes and compared them with previously analyzed nanocomplexes such as (KH)9/pDNA and CpMTP/pDNA. All nanocomplexes exhibited nearly homogeneous sizes between 100 and 350 nm in different environments. The developed complexes were biocompatible and hemocompatible to both human astrocytes and lung smooth muscle cells, ensuring in vivo safety. The nanocomplexes displayed mitochondria targeting ability, as through transfection they preferentially accumulate into the mitochondria of astrocytes and muscle cells to the detriment of cytosol and lysosomes. Moreover, the transfection of these cells with MTS-CPP/pDNA complexes produced significant levels of mitochondrial protein ND1, highlighting their efficient role as gene delivery carriers toward mitochondria. The positive obtained data pave the way for in vivo research. Using confocal microscopy, the cellular internalization capacity of these nanocomplexes in the zebrafish embryo model was assessed. The peptide-based nanocomplexes were easily internalized into zebrafish embryos, do not cause harmful or toxic effects, and do not affect zebrafish's normal development and growth. These promising results indicate that MTS-CPP complexes are stable nanosystems capable of internalizing in vivo models and do not present associated toxicity. This work, even at an early stage, offers good prospects for continued in vivo zebrafish research to evaluate the performance of nanocomplexes for mitochondrial gene therapy.

4.
Curr Med Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39039668

RESUMO

INTRODUCTION: Actinic keratoses (AKs) are humans' most common keratinocyte-derived precancerous lesions. They can be observed predominantly in fair-skinned individuals on sun-exposed surfaces. Another name for AKs is solar keratosis. The primary risk factor for AKs is cumulative UV exposure from sunlight and/or tanning salons. AKs may present on a patient as a few detectable lesions. Clinically, they present as scaly erythema lesions with various pigmentations. Surgery treatment is the only approach that can definitively resolve the illness. METHOD: The research aims to demonstrate the effectiveness of treating relapsing AKs through the use of factors present during organogenesis extracted from zebrafish caviar conveyed through a cryopass therapy device (cryolaser phoresis). These factors are peptides present during specific phases of organogenesis and have shown the capacity to reverse cancer and neurodegeneration processes through gene, transcriptional, translational, and post-translational regulation. RESULT: We found that 90% of patients responded. The percentage of responding patients was 100% among females and 80% among men. CONCLUSION: Our results confirm previous findings about the effectiveness of stem cell differentiation stage factors (SCDFs) in cancer and open new ways to integrate treatment.

5.
Toxicol Mech Methods ; : 1-11, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888055

RESUMO

Benzoic acid, the most basic aromatic carboxylic acid, is produced industrially and used in cosmetic, hygiene, and pharmaceutical items as a flavoring ingredient and/or preservative. The significance of sodium benzoate, a metabolite of cinnamon, used as a food preservative and FDA-approved medication to treat urea cycle abnormalities in humans, has been shown to raise the levels of neurotrophic factors. Valproic acid (VPA), a commonly used anti-epileptic and mood-stabilizing medication, causes behavioral and intellectual problems and is a commonly used agent to induce animal model for autism. Aim of this study is to determine the effects of benzoic acid synthesized from Cinnamomum Cassia by green chemistry method on gene expressions related to autism development in case of VPA toxicity. Zebrafish embryos were exposed to low and high doses of benzoic acid for 72 h post-fertilization. Locomotor activities were determined. Acetylcholinesterase (AchE), lipid peroxidation, nitric oxide (NO), sialic acid (SA), glutathione (GSH)-S-transferase, catalase (CAT), and superoxide dismutase (SOD) activities were determined spectrophotometrically. eif4b, adsl, and shank3a expressions were determined by RT-PCR as autism-related genes. Although high-dose benzoic acid inhibited locomotor activity, benzoic acid at both doses ameliorated VPA-induced disruption in oxidant-antioxidant balance and inflammation in zebrafish embryos and was effective in improving the impaired expression of autism-related genes.

6.
Ecotoxicol Environ Saf ; 280: 116529, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843745

RESUMO

The contamination of water by arsenic (As) has emerged as a significant environmental concern due to its well-documented toxicity. Environmentally relevant concentrations of As have been reported to pose a considerable threat to fish. However, previous studies mainly focused on the impacts of As at environmentally relevant concentrations on adult fish, and limited information is available regarding its impacts on fish at early life stage. In this study, zebrafish embryos were employed to evaluate the environmental risks following exposure to different concentrations (0, 25, 50, 75 and 150 µg/L) of pentavalent arsenate (AsV) for 120 hours post fertilization. Our findings indicated that concentrations ≤ 150 µg/L AsV did not exert significant effects on survival or aberration; however, it conspicuously inhibited heart rate of zebrafish larvae. Furthermore, exposure to AsV significantly disrupted mRNA transcription of genes associated with cardiac development, and elongated the distance between the sinus venosus and bulbus arteriosus at 75 µg/L and 150 µg/L treatments. Additionally, AsV exposure enhanced superoxide dismutase (SOD) activity at 50, 75 and 150 µg/L treatments, and increased mRNA transcriptional levels of Cu/ZnSOD and MnSOD at 75 and 150 µg/L treatments. Concurrently, AsV suppressed metallothionein1 (MT1) and MT2 mRNA transcriptions while elevating heat shock protein70 mRNA transcription levels in zebrafish larvae resulting in elevated malondialdehyde (MDA) levels. These findings provide novel insights into the toxic effects exerted by low concentrations of AsV on fish at early life stage, thereby contributing to an exploration into the environmental risks associated with environmentally relevant concentrations.


Assuntos
Arseniatos , Embrião não Mamífero , Coração , Estresse Oxidativo , Poluentes Químicos da Água , Peixe-Zebra , Animais , Arseniatos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Metalotioneína/metabolismo , Metalotioneína/genética , Larva/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Relação Dose-Resposta a Droga
7.
Toxics ; 12(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38922107

RESUMO

Esketamine is a widely used intravenous general anesthetic. However, its safety, particularly its effects on the heart, is not fully understood. In this study, we investigated the effects of esketamine exposure on zebrafish embryonic heart development. Zebrafish embryos were exposed to esketamine at concentrations of 1, 10, and 100 mg/L from 48 h post-fertilization (hpf) to 72 hpf. We found that after exposure, zebrafish embryos had an increased hatching rate, decreased heart rate, stroke volume, and cardiac output. When we exposed transgenic zebrafish of the Tg(cmlc2:EGFP) strain to esketamine, we observed ventricular dilation and thickening of atrial walls in developing embryos. Additionally, we further discovered the abnormal expression of genes associated with cardiac development, including nkx2.5, gata4, tbx5, and myh6, calcium signaling pathways, namely ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a3, slc8a4a, and cacna1aa, as well as an increase in acetylcholine concentration. In conclusion, our findings suggest that esketamine may impair zebrafish larvae's cardiac development and function by affecting acetylcholine concentration, resulting in weakened cardiac neural regulation and subsequent effects on cardiac function. The insights garnered from this research advocate for a comprehensive safety assessment of esketamine in clinical applications.

8.
Antimicrob Agents Chemother ; 68(7): e0056124, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899926

RESUMO

Staphylococcus aureus is a pathogenic bacterium responsible for a broad spectrum of infections, including cutaneous, respiratory, osteoarticular, and systemic infections. It poses a significant clinical challenge due to its ability to develop antibiotic resistance. This resistance limits therapeutic options, increases the risk of severe complications, and underscores the urgent need for new strategies to address this threat, including the investigation of treatments complementary to antibiotics. The evaluation of novel antimicrobial agents often employs animal models, with the zebrafish embryo model being particularly interesting for studying host-pathogen interactions, establishing itself as a crucial tool in this field. For the first time, this study presents a zebrafish embryo model for the in vivo assessment of bacteriophage efficacy against S. aureus infection. A localized infection was induced by microinjecting either methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus (MSSA). Subsequent treatments involved administering either bacteriophage, vancomycin (the reference antibiotic for MRSA), or a combination of both via the same route to explore potential synergistic effects. Our findings indicate that the bacteriophage was as effective as vancomycin in enhancing survival rates, whether used alone or in combination. Moreover, bacteriophage treatment appears to be even more effective in reducing the bacterial load in S. aureus-infected embryos post-treatment than the antibiotic. Our study validates the use of the zebrafish embryo model and highlights its potential as a valuable tool in assessing bacteriophage efficacy treatments in vivo.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Terapia por Fagos , Infecções Estafilocócicas , Vancomicina , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/virologia , Terapia por Fagos/métodos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Embrião não Mamífero/microbiologia , Testes de Sensibilidade Microbiana
9.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731859

RESUMO

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Assuntos
Ácido Fólico , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Peixe-Zebra , Animais , Compostos Heterocíclicos com 3 Anéis/farmacologia , Ácido Fólico/metabolismo , Oxazinas/farmacologia , Piridonas/farmacologia , Piperazinas/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Neurogênese/efeitos dos fármacos , Feminino
10.
Drug Chem Toxicol ; : 1-12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738628

RESUMO

Bio-sourced insect repellents are becoming more popular due to their safer applications. Known for its strong fly-repellent property, Cis, trans-para-menthane-3,8-diol (PMD) is the main component of the lemon eucalyptus essential oil and is synthesized from citronellal. In April 2005, US Centers for Disease Control approved two fly repellents that do not contain N,N-diethyl-meta-toluamide (DEET), including PMD. Due to the intentional and pervasive human exposure caused by DEET as insect repellent, concerns have been raised about its toxicological profile and potential harm to people. We hypothesized PMD would have a different toxicological profile than DEET. We synthesized PMD from Eucalyptus citriodora using green chemistry methods and analyzed its structures by 1H-NMR,13C-NMR, and GC/MS spectral methods. We used MTS assay to determine the percentage inhibition of PMD and DEET on keratinocyte (human epidermal keratinocyte [HaCaT]) cells. The xCelligence system was used and followed at real time. Effects of PMD and DEET on zebrafish embryo development were monitored and levels of lipid peroxidation, glutathione-S-transferase (GST), superoxide dismutase (SOD), and acetylcholinesterase (AchE) were evaluated at 72 h post-fertilization using spectrophotometric methods. Our results showed that while DEET inhibited human keratinocyte cell growth, while imporved cell viability and proliferation was exposed in PMD exposed group. In zebrafish embryos, PMD was less toxic in terms of development, oxidant-antioxidant status, and AChE activities than DEET. Based on these results we suggest an efficient method using green chemistry for the synthesis of PMD, which is found to be less toxic in zebrafish embryos and human keratinocyte cells.

11.
Electromagn Biol Med ; 43(3): 156-163, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38734994

RESUMO

Biological effects of radio frequency electromagnetic radiation (RF-EMR) in the range of 900-1800 MHz emerging from the mobile phone were investigated and were found to influence the locomotor pattern when exposure was initiated from 1 hour post fertilization (hpf) in zebrafish embryos (ZE), Danio rerio. Mobile phones and other wireless devices offer tremendous advantages. However, on the flipside they are leading to an increased electromagnetic energy in the environment, an excess of which could be termed as electromagnetic pollution. Herein, we tried to understand the effects of RF-EMR emerging from the mobile phone, on the development and behavior of ZE, exposed to RF-EMR (specific absorption rate of 1.13 W/kg and 1800 MHz frequency) 1 hr daily, for 5 days. To understand if there could be any developmental stage-specific vulnerability to RF-EMR, the exposure was initiated at three different time points: 1hpf, 6hpf and 24hpf of ZE development. Observations revealed no significant changes in the survival rate, morphology, oxidative stress or cortisol levels. However, statistically significant variations were observed in the batch where exposure started at 1hpf, with respect to locomotion patterns (distance travelled: 659.1 ± 173.1 mm Vs 963.5 ± 200.4 mm), which could be correlated to anxiety-like behavior; along with a corresponding increase in yolk consumption (yolk sac area: 0.251 ± 0.019 mm2 Vs 0.225 ± 0.018 mm2). Therefore, we conclude that RF-EMR exposure influences the organism maximally during the earliest stage of development, and we also believe that an increase in the time of exposure (corresponding to the patterns of current usage of mobile phones) might reveal added afflictions.


Mobile phones and other wireless devices are on a rampant usage worldwide. They work by radiating low energy radiofrequency electromagnetic radiations. An excessive usage of wireless devices is leading to increased presence of these radiations in our surroundings. Since these radiations are not physically sensed by the organisms, its impact stays elusive. Nevertheless, the interaction of these radiations with biological systems may produce some unwarranted effects. When we exposed the ZE to the mobile phone radiation daily 1hr for 5days, our observations revealed that the youngest of the experimental group showed susceptibility. The effect was evident through haphazard movements and stressed behavior. So, it is important to be aware of the potential effects and take necessary precautions by following safety guidelines, especially when the organism is in its early life stage.


Assuntos
Comportamento Animal , Embrião não Mamífero , Ondas de Rádio , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Ondas de Rádio/efeitos adversos , Embrião não Mamífero/efeitos da radiação , Comportamento Animal/efeitos da radiação , Telefone Celular , Hidrocortisona/metabolismo , Radiação não Ionizante/efeitos adversos , Estresse Oxidativo/efeitos da radiação , Locomoção/efeitos da radiação , Desenvolvimento Embrionário/efeitos da radiação
12.
Mol Neurobiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787492

RESUMO

Isavuconazole is a broad-spectrum antifungal drug used for the treatment of serious infections caused by invasive aspergillosis and mucormycosis in adults. With the continuous use of this drug, its safety and environmental impact have received increasing attention. However, information on the adverse effects of the drug is very limited. Fish is a particularly important model for assessing environmental risks. In this study, the aquatic vertebrate zebrafish was used as a model to study the toxic effects and mechanisms of isavuconazole. We exposed zebrafish embryos to 0.25, 0.5, and 1 mg/L of isavuconazole 6 h after fertilization. The results showed that at 72 hpf, isavuconazole exposure reduced heart rate, body length, and survival of zebrafish embryos compared to controls. Secondly, when isavuconazole reached a certain dose level (0.25 mg/L), it caused morphological changes in the Tg(elavl3:eGFP) transgenic fish line, with the head shrunk, the body bent, the fluorescence intensity becoming weaker, the abnormal motor behaviour, etc. At the same time, exposure of zebrafish embryos to isavuconazole downregulated acetylcholinesterase (AchE) and adenosine triphosphate (ATPase) activities but upregulated oxidative stress, thereby disrupting neural development and gene expression of neurotransmitter pathways. In addition, astaxanthin partially rescued the neurodevelopmental defects of zebrafish embryos by downregulating oxidative stress. Thus, our study suggests that isavuconazole exposure may induce neurodevelopment defects and behavioural disturbances in larval zebrafish.

13.
J Cosmet Dermatol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665039

RESUMO

BACKGROUND: Microencapsulation of hydroxypinacolone retinoate (HPR) can improve its application in cosmetics. OBJECTIVE: To investigate the safety and efficacy of Spherulites Paeony Superior Retinol, a HPR microcapsule containing 5%-10% peony seed oil, 0.01%-1% epigallocatechin gallatyl glucoside (ECGG), and 0.1%-1% HPR. METHODS: The safety of Spherulites Paenoy Superior Retinol was evaluated with zebrafish embryo self-rotation irritation test and developmental toxicity test. SymRenew™ HPR was used as a reference. The skin care efficacies of Spherulites Paenoy Superior Retinol were evaluated using zebrafish embryos covering antioxidation, anti-inflammation, blood circulation, whitening, wound healing, skin barrier protection, Type I collagen, elastin, and 5α-reductase genes expression activities. RESULTS: The irritation test revealed that 250 µg/mL Spherulites Paenoy Superior Retinol did not, while 20 µg/mL SymRenew™ HPR significantly (p < 0.05) increased zebrafish embryo self-rotation frequency. The developmental toxicity test found the teratogenicity index (half lethal concentration/half toxicity concentration) of Spherulites Paenoy Superior Retinol and SymRenew™ HPR were 1.9 and 3.1, respectively. The efficacy analysis results showed that 5 µg/mL Spherulites Paenoy Superior Retinol significantly (p < 0.05) exerted 7.1% anti-ROS, 20% anti-inflammation, 14% enhanced blood circulation, 10% suppressed melanin synthesis, 9% enhanced tail fin regeneration, 72% elicited skin barrier protection activity, enhanced the expression of Type I collagen genes col1a1, col1a2, and col1a2 by 34%, 51%, and 42%, respectively, and elastin gene elna by 46%, and suppressed the expression of 5α-reductase genes srd5a1, srd5a2a, and srd5a2b by 52%, 15%, and 30%, respectively. CONCLUSION: This study demonstrated that Spherulites Paenoy Superior Retinol is a safe cosmetic ingredient with multi-skin care efficacies.

14.
J Appl Toxicol ; 44(8): 1139-1152, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38581191

RESUMO

Isobavachalcone (IBC) is a flavonoid component of the traditional Chinese medicine Psoraleae Fructus, with a range of pharmacological properties. However, IBC causes some hepatotoxicity, and the mechanism of toxicity is unclear. The purpose of this paper was to investigate the possible mechanism of toxicity of IBC on HepG2 cells and zebrafish embryos. The results showed that exposure to IBC increased zebrafish embryo mortality and decreased hatchability. Meanwhile, IBC induced liver injury and increased expression of ALT and AST activity. Further studies showed that IBC caused the increase of ROS and MDA the decrease of CAT, GSH, and GSH-Px; the increase of Fe2+ content; and the changes of ferroptosis related genes (acsl4, gpx4, and xct) and iron storage related genes (tf, fth, and fpn) in zebrafish embryos. Through in vitro verification, it was found that IBC also caused oxidative stress and increased Fe2+ content in HepG2 cells. IBC caused depolarization of mitochondrial membrane potential (MMP) and reduction of mitochondrial ATP, as well as altered expression of ACSl4, SLC7A11, GPX4, and FTH1 proteins. Treatment of HepG2 cells with ferrostatin-1 could reverse the effect of IBC. Targeting the System Xc--GSH-GPX4 pathway of ferroptosis and preventing oxidative stress damage might offer a theoretical foundation for practical therapy and prevention of IBC-induced hepatotoxicity.


Assuntos
Chalconas , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Humanos , Chalconas/toxicidade , Chalconas/farmacologia , Ferroptose/efeitos dos fármacos , Células Hep G2 , Transdução de Sinais/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Embrião não Mamífero/efeitos dos fármacos , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
15.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38684467

RESUMO

The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Embrião não Mamífero , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Descoberta de Drogas/métodos , Embrião não Mamífero/efeitos dos fármacos , Antibacterianos/farmacologia , Modelos Animais de Doenças , Anti-Infecciosos/farmacologia
16.
Front Cell Infect Microbiol ; 14: 1367938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590439

RESUMO

The increasing prevalence of antimicrobial-resistant Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA), poses a threat to successful antibiotic treatment. Unsuccessful attempts to develop a vaccine and rising resistance to last-resort antibiotics urge the need for alternative treatments. Host-directed therapy (HDT) targeting critical intracellular stages of S. aureus emerges as a promising alternative, potentially acting synergistically with antibiotics and reducing the risk of de novo drug resistance. We assessed 201 ATP-competitive kinase inhibitors from Published Kinase Inhibitor Sets (PKIS1 and PKIS2) against intracellular MRSA. Seventeen hit compounds were identified, of which the two most effective and well-tolerated hit compounds (i.e., GW633459A and GW296115X) were selected for further analysis. The compounds did not affect planktonic bacterial cultures, while they were active in a range of human cell lines of cervical, skin, lung, breast and monocyte origin, confirming their host-directed mechanisms. GW633459A, structurally related to lapatinib, exhibited an HDT effect on intracellular MRSA independently of its known human epidermal growth factor receptor (EGFR)/(HER) kinase family targets. GW296115X activated adenosine monophosphate-activated protein kinase (AMPK), thereby enhancing bacterial degradation via autophagy. Finally, GW296115X not only reduced MRSA growth in human cells but also improved the survival rates of MRSA-infected zebrafish embryos, highlighting its potential as HDT.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Staphylococcus aureus , Peixe-Zebra , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
17.
Eco Environ Health ; 3(2): 183-191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646095

RESUMO

Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 µg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.

18.
Environ Toxicol Chem ; 43(5): 1075-1089, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477677

RESUMO

The amount of Sargassum spp. arriving in the Caribbean Sea has increased steadily in the last few years, producing a profound environmental impact on the ecological dynamics of the coasts of the Yucatan Peninsula. We characterized the toxicological effects of an ethanolic extract of Sargassum spp. on zebrafish (Danio rerio) embryos (ZFEs) in a 96-h static bioassay using T1 (0.01 mg/L), T2 (0.1 mg/L), T3 (1 mg/L), T4 (10 mg/L), T5 (25 mg/L), T6 (50 mg/L), T7 (75 mg/L), T8 (100 mg/L), T9 (200 mg/L), and T10 (400 mg/L). In this extract, we detected 74 compounds by gas chromatography-mass spectrometry (GC-MS), of which hexadecanoic acid methyl ester, and 2-pentanone 4-hydroxy-4-methyl, were the most abundant. In ZFEs, a median lethal concentration of 251 mg/L was estimated. Exposed embryos exhibited extensive morphological changes, including edema in the yolk sac, scoliosis, and loss of pigmentation, as well as malformations of the head, tail, and eyes. By integrating these abnormalities using the Integrated Biological Response (IBRv2) and General Morphological Score (GMS) indices, we were able to determine that ZFEs exposed to 200 mg/L (T9) exhibited the most pronounced biological response in comparison with the other groups. In the comparative transcriptomic analysis, 66 genes were upregulated, and 246 genes were downregulated in the group exposed to 200 mg/L compared with the control group. In the upregulated genes, we identified several gene ontology-enriched terms, such as response to xenobiotic stimuli, cellular response to chemical stimulus, transcriptional regulation, pigment metabolic process, erythrocyte differentiation and embryonic hemopoiesis, extracellular matrix organization, and chondrocyte differentiation involved in endochondral bone morphogenesis, among others. In the down-regulated genes, we found many genes associated with nervous system processes, sensory and visual perception, response to abiotic stimulus, and the nucleoside phosphate biosynthetic process. The probable connections among the morphological changes observed in the transcriptome are thoroughly discussed. Our findings suggest that Sargassum spp. exposure can induce a wide negative impact on zebrafish embryos. Environ Toxicol Chem 2024;43:1075-1089. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Embrião não Mamífero , Etanol , Sargassum , Peixe-Zebra , Animais , Sargassum/química , Embrião não Mamífero/efeitos dos fármacos , Etanol/toxicidade , Poluentes Químicos da Água/toxicidade , Cromatografia Gasosa-Espectrometria de Massas
19.
Radiother Oncol ; 194: 110197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447870

RESUMO

PURPOSE: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS: Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above âˆ¼ 50 Gy with an FMF of âˆ¼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION: The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.


Assuntos
Relação Dose-Resposta à Radiação , Elétrons , Embrião não Mamífero , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Elétrons/uso terapêutico , Embrião não Mamífero/efeitos da radiação , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Prótons , Eficiência Biológica Relativa
20.
Drug Chem Toxicol ; : 1-14, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38384198

RESUMO

Prenatal exposure to environmental factors may play an important role in the aetiopathogenesis of autism spectrum disorder (ASD). We aim to investigate the potential effects of low-dose x-rays from dental diagnostic x-rays on neurodevelopment and molecular mechanisms associated with ASD in developing zebrafish embryos. Zebrafish embryos were divided into four groups and exposed using a dental x-ray unit: control, 0.08, 0.15 and 0.30 seconds, which are exemplary exposure settings for periapical imaging. These exposure times were measured as 7.17, 23.17 and 63.83 mSv using optical stimulated luminescence dosimeters. At the end of 72 hours post-fertilization, locomotor activity, oxidant-antioxidant status, and acetylcholine esterase (AChE) activity were analyzed. Expression of genes related to apoptosis (bax, bcl2a, p53), neurogenesis (α1-tubulin, syn2a, neurog1, elavl3) and ASD (eif4eb, adsl2a, shank3) was determined by RT-PCR. Even at reduced doses, developmental toxicity was observed in three groups as evidenced by pericardial edema, yolk sac edema and scoliosis. Deleterious effects of dental x-rays on neurogenesis through impaired locomotor activity, oxidative stress, apoptosis and alterations in genes associated with neurogenesis and ASD progression were more pronounced in the 0.30s exposure group. Based on these results we suggest that the associations between ASD and low-dose ionizing radiation need a closer look.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA