Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
World J Surg ; 48(1): 186-192, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38686792

RESUMO

BACKGROUND: There are few studies that examined the relationship between preoperative zinc (Zn) concentrations and postoperative pancreatic fistula (POPF) after distal pancreatectomy (DP). METHODS: Data from 98 patients who underwent DP between January 2016 and April 2022 were retrospectively reviewed. Patients' clinicopathological and surgical outcomes were analyzed, and we examined the relationship between Zn and clinically relevant POPF (CR-POPF) after DP. RESULTS: In this series, 41 (41.8%) patients had POPF and 31 (31.8%) patients had CR-POPF. The cut-off value for the preoperative Zn concentration was 74 µg/dL for POPF and CR-POPF. Patients with low Zn concentrations were significantly related with high age, low albumin concentrations, higher CRP concentrations, higher NLR, lower PNI, higher rates of POPF and CR-POPF, longer POPF healing time, longer hospital stay, and postoperative complications than patients with high Zn concentrations. The healing time of POPF after DP was significantly negatively correlated with serum Zn concentrations. A multivariate logistic regression analysis showed that preoperative lower Zn concentrations and a prolonged operation time were independent predictors of CR-POPF and the healing time of POPF after DP. The POPF healing time in patients with high Zn was significantly shorter than that in patients with low Zn concentrations. CONCLUSIONS: This retrospective study showed the association between the preoperative Zn concentrations and the occurrence of POPF and the healing time after DP. Zn is a simple biomarker for malnutrition, which may lead to POPF after DP.


Assuntos
Pancreatectomia , Fístula Pancreática , Complicações Pós-Operatórias , Zinco , Humanos , Feminino , Masculino , Fístula Pancreática/sangue , Fístula Pancreática/etiologia , Fístula Pancreática/epidemiologia , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Zinco/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Idoso , Período Pré-Operatório , Adulto , Cicatrização/fisiologia , Fatores de Tempo , Biomarcadores/sangue
2.
Plant Physiol Biochem ; 200: 107783, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269825

RESUMO

The present study aimed to introduce a new carbon dots nanocarrier (Zn-NCDs) as a slow-release Zn fertilizer. Zn-NCDs was synthesized using a hydrothermal method and characterized by instrumental methods. A greenhouse experiment was then conducted involving two Zn sources (Zn-NCDs and ZnSO4), three concentrations of Zn-NCDs (2, 4, and 8 mg/L), and under sand culture conditions. This study comprehensively evaluated the effects of Zn-NCDs on the zinc, nitrogen, and phytic acid content, biomass, growth indices, and yield in bread wheat (cv. Sirvan). Also, a fluorescence microscope was used to examine the in vivo transport route of Zn-NCDs in wheat organs. Finally, the availability of Zn in soil samples treated with Zn-NCDs was evaluated over 30 days in an incubation experiment. The findings indicated that Zn-NCDs as a slow-release fertilizer increased root-shoot biomass, fertile spikelet, and grain yield by 20, 44, 16, and 43%, respectively, compared to ZnSO4 treatment. The concentration of zinc and nitrogen in the grain was increased by 19% and 118%, respectively, while phytic acid was decreased by 18% than ZnSO4 treatment. Microscopic observations revealed that wheat plants could absorb and transfer Zn-NCDs from roots to stems and leaves through vascular bundles. This study demonstrated for the first time that Zn-NCDs could be used as a slow-release Zn fertilizer with high efficiency and low cost in wheat enrichment. In addition, Zn-NCDs could be applied as a new nano fertilizer and technology for in vivo plant imaging.


Assuntos
Triticum , Zinco , Fertilizantes/análise , Ácido Fítico , Solo , Grão Comestível/química , Nitrogênio
3.
Front Plant Sci ; 14: 1169858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077637

RESUMO

Introduction: Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods: In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results: We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion: A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.

4.
N Z Vet J ; 70(1): 32-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34165380

RESUMO

AIMS: To describe the concentration of Zn in bulk tank milk (BTM) in a sample of New Zealand dairy farms, investigate the association between the method of Zn administration for facial eczema prophylaxis and Zn concentrations in BTM and investigate the relationship between the concentration of Zn in serum and that in BTM. METHODS: Multiple BTM samples (n = 3,330) collected during milk pick-up by the milk tanker driver were stored and tested for 121 farms, in Northland (n = 50), Waikato (n = 51) and Southland (n = 20) from February to May 2017. Enrolled farms provided retrospective information on the type of Zn supplementation (if any) used for the prevention of facial eczema and the timeframe over which supplementation occurred. In addition, the concentration of Zn in serum was measured in blood samples collected from ≥15 cattle per farm for 22 farms from Northland (n = 11) and Waikato (n = 11), and compared against the concentrations of Zn in BTM on the day of blood sampling. A linear mixed model was used to model log Zn concentrations in BTM using method of Zn supplementation, region, milk fat and protein percentage, volume of milk, and frequency of milk pick-up as risk factors. A mixed logistic regression model was used to assess the relationship between Zn concentrations in BTM and the presence of cows with a concentration of Zn in serum of ≥20 µmol/L. RESULTS: The median Zn concentration in BTM was 67.9 (min 38.9, max 146.6) µmol/L. The median range of Zn concentrations for repeated samples of BTM within farm was 22.6 µmol/L. In comparison to farms that did not use any form of Zn supplementation, farms that supplemented Zn through a slow-release capsule, oral drench, in feed or a combination of in-feed and water were associated with increased concentrations of Zn in BTM (p < 0.001). There was no difference in Zn concentrations in BTM between farms that administered Zn through the water only and farms that did not administer Zn (p = 0.22). Every 15.3 µmol/L increase in Zn concentration in BTM was associated with 2.2 times (95% CI=1.7-2.9) the odds of a cow having Zn concentration in serum ≥20 µmol/L. CONCLUSION AND CLINICAL RELEVANCE: Zn concentration in BTM is highly variable between farms, days and Zn administration method. Zn concentration in BTM content has modest potential as a way to signal whether a herd has achieved the high Zn status considered to be protective against FE.


Assuntos
Doenças dos Bovinos , Eczema , Animais , Bovinos , Feminino , Doenças dos Bovinos/prevenção & controle , Indústria de Laticínios , Suplementos Nutricionais , Eczema/prevenção & controle , Eczema/veterinária , Leite , Estudos Retrospectivos , Zinco
5.
3 Biotech ; 11(7): 322, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34194906

RESUMO

Zinc oxide nanoparticles (ZnONP) were synthesized and characterized using SEM, EDAX, DLS and UV-Vis spectra. Its use as a nanofertilizer as an alternative to conventional zinc sulphate (ZnSO4.7H2O) was evaluated in five Zn-deficient soils with a variable pH range (7.2-8.7). For this, the carbon of the soil microbial biomass (SMBC), the bacterial population, the nutrient dynamics and the biometric parameters of the wheat crop were assessed. The varying dosages (0, 100, 200 and 500 mg/L), sizes (30-100 nm), and the spherical shape of ZnONPs were evaluated in comparison to ZnSO4.7H2O levels. Results showed the maximum SMBC and bacterial population at 100 mg/L of ZnONPs but a sharp decline at higher concentrations. In addition, soil application of ZnONPs at 5 mg/kg produced a higher root elongation (4.3-8.8%), shoot elongation (3.5-4.0%), total chlorophyll (4.9-5.6%), grain yield (1.7-2.3%) and grain Zn-content (1.6-2.1%) in comparison to the conventional ZnSO4.7H2O at 10 mg/L. ZnONPs at 100 mg/L produced a higher soil microbial biomass carbon (3.9-4.6%), bacterial population (7.2-9.0%), germination (22%) and grain Zn-content (17.9-20%) as compared to the conventional ZnSO4.7H2O at 0.5%. The higher grain Zn-contents could be attributed to the small size and high surface area of ZnONPs resulting in easy entry into the plant system either through root or foliar by penetrating the pores present in the cell membranes. Conversely, the conventional ZnSO4.7H2O, due to its larger size and higher solubility as compared to ZnONPs, has low retention in plant systems, high surface run-off and low fertilizer efficiency. Thus, the authors concluded to apply spherically synthesized ZnONPs (average size-36.7 nm) at 5 mg/kg in the soil application and 100 mg/L in the foliar application for maintaining SMBC and bacterial population, improving total chlorophyll, and grain Zn-contents and overall sustaining wheat production in Zn-deficient neutral and alkaline soils. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02861-1.

6.
J Sci Food Agric ; 100(11): 4139-4149, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32356568

RESUMO

BACKGROUND: Intake of food low in essential minerals, like zinc (Zn), is one of the major reasons of malnutrition. Development of genotypes with grains enriched in essential minerals may help to solve the issue of malnutrition. In this study, 16 chickpea genotypes (eight each of desi and kabuli types) of Pakistani origin were evaluated for genetic diversity and grain Zn biofortification potential with and without Zn fertilization. RESULTS: A wide variation was noted for agronomic, physiological, agro-physiological, utilization, and apparent recovery efficiencies of Zn in the chickpea genotypes tested. Genotypes also differed for grain Zn concentration (37.5-48.6 mg kg-1 ), bioavailable Zn (3.72-4.42 mg day-1 ), and grain yield. The highest grain Zn concentration and bioavailable Zn were noted in genotypes NIAB-CH-2016 (47.1 mg kg-1 and 4.30 mg day-1 respectively) and Noor-2013 (48.6 mg kg-1 and 4.38 mg day-1 respectively) among the desi and kabuli types respectively. The same genotypes were the highest yielders. Cluster analysis showed that all (eight) kabuli genotypes grouped together, whereas most (six) of the desi genotypes clustered in a separate group. There was low to moderate genetic diversity (0.149 for desi and 0.104 for kabuli types) and a low level of genetic differentiation between the two chickpea types (0.098). CONCLUSION: Two populations of chickpea had low to moderate genetic diversity, with consistent gene flow. This genetic diversity in both chickpea types allows the breeding gains for improving the grain yield and grain Zn biofortification potential of chickpea genotypes. © 2020 Society of Chemical Industry.


Assuntos
Cicer/genética , Alimentos Fortificados/análise , Variação Genética , Sementes/química , Zinco/análise , Biofortificação , Cicer/química , Genótipo , Paquistão , Melhoramento Vegetal , Sementes/genética
7.
Front Plant Sci ; 11: 534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457778

RESUMO

Enriching of kernel zinc (Zn) concentration in maize is one of the most effective ways to solve the problem of Zn deficiency in low and middle income countries where maize is the major staple food, and 17% of the global population is affected with Zn deficiency. Genomic selection (GS) has shown to be an effective approach to accelerate genetic gains in plant breeding. In the present study, an association-mapping panel and two maize double-haploid (DH) populations, both genotyped with genotyping-by-sequencing (GBS) and repeat amplification sequencing (rAmpSeq) markers, were used to estimate the genomic prediction accuracy of kernel Zn concentration in maize. Results showed that the prediction accuracy of two DH populations was higher than that of the association mapping population using the same set of markers. The prediction accuracy estimated with the GBS markers was significantly higher than that estimated with the rAmpSeq markers in the same population. The maximum prediction accuracy with minimum standard error was observed when half of the genotypes were included in the training set and 3,000 and 500 markers were used for prediction in the association mapping panel and the DH populations, respectively. Appropriate levels of minor allele frequency and missing rate should be considered and selected to achieve good prediction accuracy and reduce the computation burden by balancing the number of markers and marker quality. Training set development with broad phenotypic variation is possible to improve prediction accuracy. The transferability of the GS models across populations was assessed, the prediction accuracies in a few pairwise populations were above or close to 0.20, which indicates the prediction accuracies across years and populations have to be assessed in a larger breeding dataset with closer relationship between the training and prediction sets in further studies. GS outperformed MAS (marker-assisted-selection) on predicting the kernel Zn concentration in maize, the decision of a breeding strategy to implement GS individually or to implement MAS and GS stepwise for improving kernel Zn concentration in maize requires further research. Results of this study provide valuable information for understanding how to implement GS for improving kernel Zn concentration in maize.

8.
J Sci Food Agric ; 100(11): 4150-4164, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32421211

RESUMO

BACKGROUND: Nutrient deficiency in humans, especially in children and lactating women, is a major concern. Increasing the micronutrient concentration in staple crops like rice is one way to overcome this. The micronutrient content in rice, especially the iron (Fe) and zinc (Zn) content, is highly variable. The identification of rice genotypes in which there are naturally high Fe and Zn concentrations across environments is an important target towards the production of biofortified rice. RESULTS: Phenotypic correlations between grain Fe and Zn content were positive and significant in all environments but a significant negative association was observed between grain yield and grain Fe and Zn. Promising breeding lines with higher Zn or Fe content, or both, were: IR 82475-110-2-2-1-2 (Zn: 20.24-37.33 mg kg-1 ; Fe: 7.47-14.65 mg kg-1 ); IR 83294-66-2-2-3-2 (Zn: 22-37-41.97 mg kg-1 ; Fe: 9.43-17.16); IR 83668-35-2-2-2 (Zn: 27.15-42.73 mg kg-1 ; Fe: 6.01-14.71); IR 68144-2B-2-2-3-1-166 (Zn: 23.53-40.30 mg kg-1 ; Fe: 10.53-17.80 mg kg-1 ) and RP Bio 5478-185M7 (Zn: 22.60-40.07 mg kg-1 ; Fe: 7.64-14.73 mg kg-1 ). Among these, IR82475-110-2-2-1-2 (Zn: 20.24-37.33 mg kg-1 ; Fe: 7.47-14.65 mg kg-1 ) is also high yielding with 3.75 t ha-1 . Kelhrie Cha (Zn: 17.76-36.45 mg kg-1 ; Fe: 7.17-14.77 mg kg-1 ), Dzuluorhe (Zn: 17.48-39.68 mg kg-1 ; Fe: 7.89-19.90 mg kg-1 ), Nedu (Zn: 18.97-43.55 mg kg-1 Fe: 8.01-19.51 mg kg-1 ), Kuhusoi-Ri-Sareku (Zn: 17.37-44.14 mg kg-1 ; Fe: 8.99-14.30 mg kg-1 ) and Mima (Zn: 17.10-45.64 mg kg-1 ; Fe: 9.97-17.40 mg kg-1 ) were traditional donor genotypes that possessed both high grain Fe and high Zn content. CONCLUSION: Significant genotype × location (G × L) effects were observed in all traits except Fe. Genetic variance was significant and was considerably larger than the variance of G × L for grain Zn and Fe content traits, except grain yield. The G × L × year variance component was significant in all cases. © 2020 Society of Chemical Industry.


Assuntos
Interação Gene-Ambiente , Ferro/análise , Oryza/genética , Sementes/química , Zinco/análise , Genótipo , Ferro/metabolismo , Micronutrientes/análise , Micronutrientes/metabolismo , Oryza/química , Oryza/metabolismo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo , Oligoelementos/análise , Oligoelementos/metabolismo , Zinco/metabolismo
9.
Plant Sci ; 283: 416-423, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128713

RESUMO

Glutathione (GSH) is a vital compound involved in several plant metabolic pathways. Our previous study indicated that foliar GSH application can increase zinc (Zn) levels in leafy vegetables. The objective of this study was to determine the mode of action of GSH as it relates to Zn transport from roots to shoots. Two types of transgenic Arabidopsis plants with genes for GSH synthesis, including StGCS-GS or AtGSH1 driven by the leaf-specific promoter of chlorophyll a/b-binding protein (pCab3) gene were generated. Both types of transgenic Arabidopsis plants showed significant increases in shoot GSH concentrations compared to the wild type (WT). Monitoring 65Zn movement by positron-emitting tracer imaging system (PETIS) analysis indicated that the 65Zn amount in the shoots of both types of transgenic Arabidopsis plants were higher than that in the WT. GSH concentration in phloem sap was increased significantly in WT with foliar applications of 10 mM GSH (WT-GSH), but not in transgenic Arabidopsis with elevated foliar GSH synthesis. Both types of transgenic Arabidopsis with elevated foliar GSH synthesis and WT-GSH exhibited increased shoot Zn concentrations and Zn translocation ratios. These results suggest that enhancement of endogenous foliar GSH synthesis and exogenous foliar GSH application affect root-to-shoot transport of Zn.


Assuntos
Arabidopsis/metabolismo , Glutationa/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Zinco/metabolismo , Arabidopsis/genética , Transporte Biológico , Genes de Plantas/genética , Floema/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
10.
Nutrients ; 10(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544767

RESUMO

Zinc plays a pivotal role in various zinc enzymes, which are crucial in the maintenance of liver function. Patients with chronic liver diseases (CLDs) usually have lower concentrations of zinc, which decrease further as liver fibrosis progresses. Whether long-term zinc supplementation improves liver function and reduces the risk of hepatocellular carcinoma (HCC) development remains unknown. Two hundred and sixty-seven patients with CLDs who received a zinc preparation (Zn-group; 196 patients), or who did not receive zinc (no Zn-treatment group; 71 patients), were retrospectively analyzed in this study. The Zn-group was divided into 4 groups according to their serum Zn concentrations at 6 months after the start of Zn treatment. Liver function significantly deteriorated in the no Zn-treatment group, while no notable change was observed in the Zn-group. The cumulative incidence rates of events and HCC at 3 years were observed to be lower in the Zn-group (9.5%, 7.6%) than in the no Zn-treatment group (24.9%, 19.2%) (p < 0.001). According to serum Zn concentrations, the cumulative incidence rates of events and HCC were significantly decreased in patients with Zn concentrations ≥ 70 µg/dL (p < 0.001). Zinc supplementation appears to be effective at maintaining liver function and suppressing events and HCC development, especially among patients whose Zn concentration is greater than 70 µg/dL.


Assuntos
Carcinoma Hepatocelular/epidemiologia , Suplementos Nutricionais , Neoplasias Hepáticas/epidemiologia , Fígado/efeitos dos fármacos , Zinco/farmacologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/prevenção & controle , Feminino , Humanos , Incidência , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/prevenção & controle , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Zinco/administração & dosagem , Zinco/sangue , Zinco/uso terapêutico
11.
Br J Nutr ; 120(12): 1349-1358, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30387407

RESUMO

Zn serves as a powerful feed additive to reduce post-weaning diarrhoea in pigs. However, the mechanisms responsible for Zn-associated effects on the adaptive immune responses following feeding of a very high dosage of Zn remain elusive. In this study, we examined the T-cell response in gut-associated lymphatic tissues of seventy-two weaned piglets. Piglets received diets with 57 mg Zn/kg (low Zn concentration, LZn), 164 mg Zn/kg (medium Zn concentration, MZn) or 2425 mg Zn/kg (high Zn concentration, HZn) mg Zn/kg feed for 1, 2 or 4 weeks. We observed that feeding the HZn diet for 1 week increased the level of activated T-helper cells (CD4+ and CD8α dim) compared with feeding MZn and LZn (P<0·05). In addition, we observed higher transcript amounts of interferon γ and T-box 21 (TBET) in the HZn group compared with the MZn and LZn groups (P<0·05). A gene set enrichment analysis revealed an over-representation of genes associated with 'cytokine signalling in immune system'. Remarkably, feeding of a very high Zn dosage led to a switch in the immune response after 2 weeks. We detected higher relative cell counts of CD4+CD25high regulatory T-helper cells (P<0·05) and a higher expression of forkhead box P3 (FOXP3) transcripts (P<0·05). After 4 weeks of feeding a high-dosage Zn diet, the relative CD4+ T-cell count (P<0·05) and the relative CD8ß + T-cell count (P<0·1) were reduced compared with the MZn group. We hypothesise that after 1 week the cellular T-helper 1 response is switched on and after 2 weeks it is switched off, leading to decreased numbers of T-cells.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Tecido Linfoide/metabolismo , Zinco/farmacologia , Ração Animal , Animais , Citocinas/metabolismo , Dieta , Feminino , Regulação da Expressão Gênica , Sistema Imunitário , Intestinos/patologia , Leucócitos/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Masculino , Micronutrientes/química , Análise de Sequência de RNA , Sus scrofa , Suínos , Células Th1/efeitos dos fármacos , Desmame , Óxido de Zinco/química
12.
J Sci Food Agric ; 97(10): 3427-3432, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28026012

RESUMO

BACKGROUND: Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains. RESULTS: Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P. Grain yield in the plants grown on the native soils was positively correlated with Olsen P but not with diethylenetriaminepentaacetic acid (DTPA)-extractable Zn except for wheat on P-rich soils. Grain Zn concentration was negatively correlated with Olsen P. Grain Zn uptake differed little among soils. Application of P to the soils increased grain yield insignificantly and P concentration significantly; however, it reduced grain Zn concentration (particularly at low Olsen P values). Applying Zn alone only increased grain Zn concentration, whereas applying P and Zn in combination increased yield and grain Zn concentration at low and high Olsen P values, respectively. CONCLUSION: Applying P alone to plants grown on calcareous Vertisols low in available P and Zn may in practice reduce grain Zn concentrations while not increasing grain yield significantly. © 2016 Society of Chemical Industry.


Assuntos
Fertilizantes/análise , Hordeum/metabolismo , Fósforo/metabolismo , Solo/química , Triticum/metabolismo , Zinco/metabolismo , Silicatos de Alumínio/química , Argila , Hordeum/química , Hordeum/crescimento & desenvolvimento , Fósforo/análise , Espanha , Triticum/química , Triticum/crescimento & desenvolvimento , Zinco/análise
13.
J Sci Food Agric ; 96(5): 1484-91, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25951009

RESUMO

BACKGROUND: The objective of this study was to compare the efficiency of two Zn sources and two application methods on (i) Zn diffusion from fertilized soil to unfertilized soil, (ii) grain Zn concentration and (iii) grain Zn bio-accessibility to humans. In the laboratory experiment, 20 mg ZnSO4 or 4 mg Zn-EDTA were applied to a 5 mm and 1 mm-wide space in the soil in the half-cell technique. In the greenhouse experiment, Zn-ZnSO4 or Zn-ethylenediaminetetraacetic acid (Zn-EDTA) was mixed or banded with the soil at a rate of 20 or 4 mg Zn kg(-1) , respectively. RESULTS: The results from the diffusion experiment showed that both the extractability and the diffusion coefficient of Zn were higher when Zn fertilizer was applied to a 1 mm-wide space than when it was applied to a 5 mm-wide space. Zn-EDTA had a greater diffusion distance than ZnSO4 . The greenhouse experiment showed that the mixed ZnSO4 application and the Zn-EDTA application (both mixed and banded) treatments significantly increased grain Zn concentration and bio-accessibility. The positive effect of Zn-EDTA on grain Zn concentrations and bio-accessibility was greater than that of ZnSO4 . The banded application reduced the effectiveness of ZnSO4 but not of Zn-EDTA. CONCLUSION: It was concluded that Zn-EDTA was a better Zn source than ZnSO4 for increasing grain Zn content in a potentially Zn-deficient calcareous soil.


Assuntos
Fertilizantes , Solo/química , Triticum/metabolismo , Compostos de Zinco , Zinco/farmacocinética , Difusão , Ácido Edético/administração & dosagem , Grão Comestível/química , Zinco/análise , Sulfato de Zinco
14.
J Sci Food Agric ; 94(10): 2016-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24307341

RESUMO

BACKGROUND: The concentration of Zn and phytic acid in wheat grain has important implications for human health. We conducted field and greenhouse experiments to compare the efficacy of soil and foliar Zn fertilisation in improving grain Zn concentration and bioavailability in wheat (Triticum aestivum L.) grain grown on potentially Zn-deficient calcareous soil. RESULTS: Results from the 2-year field experiment indicated that soil Zn application increased soil DTPA-Zn by an average of 174%, but had no significant effect on grain Zn concentration. In contrast, foliar Zn application increased grain Zn concentration by an average of 61%, and Zn bioavailability by an average of 36%. Soil DTPA-Zn concentrations varied depending on wheat cultivars. There were also significant differences in grain phytic acid concentration among the cultivars. A laboratory experiment indicated that Zn (from ZnSO4 ) had a low diffusion coefficient in this calcareous soil. CONCLUSION: Compared to soil Zn application, foliar Zn application is more effective in improving grain Zn content of wheat grown in potentially Zn-deficient calcareous soils.


Assuntos
Fertilizantes , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Solo/química , Triticum/metabolismo , Zinco/metabolismo , Agricultura/métodos , Humanos , Ácido Fítico/metabolismo , Sementes/crescimento & desenvolvimento , Especificidade da Espécie , Triticum/classificação , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA