Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(28): 71599-71613, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948844

RESUMO

Pharmaceutical active drug(s) especially sulfamethazine (SMZ) is considered as one of the major emerging microcontaminants due its long-term existence in the environmental system and that can influence on the developmental of antibacterial resistance genes. Because of this region it has a great concern in the aquatic system. Moreover, the vast utilization of SMZ, excretion of undigested portion by animals and also through dumping or mishandling, SMZ is frequently detected in various samples (including water) of different places and its surroundings. Additionally, reports shown it has toxic effect against microalgae and mice. Thus, that can lead to several investigators, focusing on removal of SMZ alone or in combination of other drugs in wastewater treatment plants (WWTPs) either by abiotic and/or biotic treatment methods. The present review provides an overview of the toxic effect of SMZ and SMZ degradation/removal in abiotic and biotic processes. Finally, reveals the need of further implication of integrated treatments (including engineered biological mediators) to understand ideal biological approaches for the mineralization of SMZ.


Assuntos
Microalgas , Poluentes Químicos da Água , Animais , Camundongos , Sulfametazina , Poluentes Químicos da Água/toxicidade , Antibacterianos/farmacologia , Água
2.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718785

RESUMO

Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Éteres/farmacologia , Fungos/crescimento & desenvolvimento , Fungos/efeitos da radiação , Poliuretanos/farmacologia , Raios Ultravioleta , Biofilmes/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fungos/ultraestrutura , Processamento de Imagem Assistida por Computador , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
3.
Environ Sci Pollut Res Int ; 23(11): 11209-11223, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26920534

RESUMO

This study describes a gas chromatography-mass spectrometry analytical method for the analysis of cytostatic cyclophosphamide (CP), ifosfamide (IF) and their selected metabolites/transformation products (TPs): carboxy-cyclophosphamide (carboxy-CP), keto-cyclophosphamide (keto-CP) and 3-dechloroethyl-ifosfamide/N-dechloroethyl-cyclophosphamide (N-decl-CP) in wastewater (WW). Keto-cyclophosphamide, CP and IF were extracted with Oasis HLB and N-decl-CP and carboxy-CP with Isolute ENV+ cartridges. Analyte derivatization was performed by silylation (metabolites/TPs) and acetylation (CP and IF). The recoveries and LOQs of the developed method were 58, 87 and 103 % and 77.7, 43.7 and 6.7 ng L(-1) for carboxy-CP, keto-CP and N-decl-CP, respectively. After validation, the analytical method was applied to hospital WW and influent and effluent samples of a receiving WW treatment plant. In hospital WW, levels up to 2690, 47.0, 13,200, 2100 and 178 ng L(-1) were detected for CP, IF, carboxy-CP, N-decl-CP and keto-CP, respectively, while in influent and effluent samples concentrations were below LOQs. The formation of TPs during abiotic treatments was also studied. Liquid chromatography-high-resolution mass spectrometry was used to identify CP and IF TPs in ultrapure water, treated with UV and UV/H2O2. UV treatment produced four CP TPs and four IF TPs, while UV/H2O2 resulted in five CPs and four IF TPs. Besides already known TPs, three novel TPs (CP-TP138a, imino-ifosfamide and IF-TP138) have been tentatively identified. In hospital WW treated by UV/O3/H2O2, none of the target metabolites/TPs resulted above LOQs.


Assuntos
Antineoplásicos Alquilantes/análise , Ciclofosfamida/análise , Monitoramento Ambiental/métodos , Ifosfamida/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Antineoplásicos Alquilantes/metabolismo , Ciclofosfamida/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Ifosfamida/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA