Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Materials (Basel) ; 17(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39336303

RESUMO

The synergic effects of activated carbon and transition metals on the hydrogenation characteristics of commercial ZK60 magnesium alloy were investigated. Severe plastic deformation was performed using equal-channel angular pressing with an internal die angle of 120° and preheating at 300 °C. The ZK60 alloy samples were processed for 12 passes using route BA. The deformed ZK60 alloy powder was blended with activated carbon and different concentrations of transition metals (Ag, Pd, Co, Ti, V, Ti) using high-energy ball milling for 20 h at a speed of 1725 rpm. The amount of hydrogen absorbed and its kinetics were calculated using Sievert's apparatus at the higher number of cycles at a 300 °C ab/desorption temperature. The microstructure of the powder was analyzed using an X-ray diffractometer and scanning electron microscope. The results indicated that 5 wt% activated carbon presented the maximum hydrogen absorption capacity of 6.2 wt%. The optimal hydrogen absorption capacities were 7.1 wt%, 6.8 wt%, 6.7 wt%, 6.64 wt%, 6.65 wt%, and 7.06 wt% for 0.5 Ag, 0.3 Co, 0.1 Al, 0.5 Pd, 2 Ti, and 0.5 V, respectively. The hydrogen absorption capacities were reduced by 35.21%, 26.47%, 41.79%, 21.68%, 26.31%, and 26.34% after 100 cycles for 5C0.5Ag, 5C0.3Co, 5C0.1Al, 5C0.5Pd, 2Ti, and 5C0.5V, respectively. Hydrogen absorption kinetics were significantly improved so that more than 90% of hydrogen was absorbed within five minutes.

2.
J Sci Food Agric ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193876

RESUMO

BACKGROUND: Cowpea is a rich source of low-cost protein, but it remains underutilised due to the development of the hard-to-cook phenomenon. However, milling hard-to-cook (HTC) seeds has shown potential for their utilisation in developing food products. Also, yellow maize is a relatively underutilised grain that is rich in nutrients, including vitamin A. Extrusion cooking of blends including yellow maize and HTC cowpea in snack formulations has the potential to improve their utilisation. Therefore, the objective of the study was to formulate a nutritious acceptable extruded snack using a combination of HTC cowpea and yellow maize flours. RESULTS: The results showed that addition of HTC cowpea flour increased ash (0.56-1.47%), fibre (3.56-5.31%) and protein content (10.20-12.38%) for flour blends. While carbohydrate (2.39-1.57%) and moisture content (10.33-9.74%) decreased. Blended formulations had lower fat content (4.17-4.41%) than yellow maize (4.80%). Furthermore, addition of HTC cowpea increased water (21.18-30.07%) and oil absorption capacities (14.12-22.03%) for flour blends. While expansion ratio (2.39-1.57%) of snacks decreased. The formulation with 15% HTC cowpea and 85% yellow maize flour had higher sensory ratings for overall acceptability (6.98). CONCLUSION: HTC cowpea addition in yellow maize flour improved the proximate and functional properties. Also, blending of yellow maize-based snacks with HTC cowpea improves consumer acceptability. Yellow maize and HTC cowpea flour blends have potential for industrial utilisation and can be useful in food formulations. © 2024 Society of Chemical Industry.

3.
Materials (Basel) ; 17(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998197

RESUMO

This study aims to understand the water retention capabilities of Superabsorbent Polymers (SAPs) in different alkaline environments for internal curing and to assess their impact on the rheological properties of cement paste. Therefore, the focus of this paper is on the absorption capacities of two different sizes of polyacrylic-based Superabsorbent Polymers : SAP A, with an average size of 28 µm, and SAP B, with an average size of 80 µm, in various solutions, such as pH 7, pH 11, pH 13, and cement filtrate solution (pH 13.73). Additionally, the study investigates the rheological properties of SAP-modified cement pastes, considering three different water-to-cement (w/c) ratios (0.4, 0.5, and 0.6) and four different dosages of SAPs (0.2%, 0.3%, 0.4%, and 0.5% by weight of cement). The results showed that the absorption capacity of SAP A was higher in all solutions compared to SAP B. However, both SAPs exhibited lower absorption capacity and early desorption in the cement filtrate solution. In contrast to the absorption results in pH 13 and cement filtrate solutions, the rheological properties, including plastic viscosity and yield stress, of the cement paste with a w/c ratio of 0.4 and 0.5, as well as both dry and wet (presoaked) SAPs, were higher than those of the cement paste without SAP, indicating continuous absorption by SAP. The viscosity and yield stress increased over time with increasing SAP dosage. However, in the mixes with a w/c ratio of 0.6, the values of plastic viscosity and yield stress were initially lower for the mixes with dry SAPs compared to the reference mix. Additionally, cement pastes containing wet SAP showed higher viscosity and yield stress compared to the pastes containing dry SAP.

4.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063732

RESUMO

The associated effects of temperature and steel fiber content on the energy absorption properties of concrete were examined using quasi-static uniaxial compression tests of concrete materials with varied steel fiber contents (0%, 0.5%, 1%, and 1.5%) at various temperatures (20 °C, 200 °C, 400 °C, and 520 °C). The experimental findings demonstrate that steel fibers can greatly boost concrete's ability to absorb energy and that the toughness index rises with steel fiber concentration. The energy absorption capacity of concrete under high-temperature conditions also significantly decreases as temperature rises, and the energy absorption ability of steel fiber concrete under the same temperature is superior to that of plain concrete. The coupled influence factor K of temperature-steel fiber percentage characterizing the energy-absorbing ability of concrete was determined, and the coupled influence law of temperature and steel fiber content on the energy-absorbing capacity of concrete materials was summarized and analyzed on the basis of the experimental data of high-temperature compression. Equivalent equations for steel fiber reinforcing and temperature weakening effects when they are comparable (K = 1) are developed and equivalent parameters for concrete materials are given.

5.
Entramado ; 20(1): 1-ene.-jun. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1574827

RESUMO

RESUMEN La transferencia de conocimiento, la capacidad de absorción y la innovación son factores clave para el éxito de las empresas. El propósito de este artículo es estudiar la relación teórica entre los conceptos: capacidad de absorción, transferencia de conocimiento e innovación en empresas de servicios, a través de una investigación bibliométrica, abordando 506 artículos científicos. Los resultados indican que existe una relación teórica positiva entre la Capacidad de absorción y la innovación, la transferencia de conocimiento y la innovación, así como entre la transferencia de conocimiento y la capacidad de absorción, cabe destacar el impacto que tienen estos conceptos y su relación para la gestión empresarial, y su importancia para fortalecer la competitividad e innovación, especialmente en los procesos de las organizaciones de servicios.


AВSTRАСT Knowledge transfer absorption capacity and innovation are key factors for the success of companies. The purpose of this article is to study the theoretical relationship between the concepts: of absorption capacity knowledge transfer and innovation in service companies, through bibliometric research addressing 506 scientific articles. The results indicate that there is a positive theoretical relationship between absorption capacity and innovation, knowledge transfer and innovation as well as between knowledge transfer and absorption capacity, it is worth highlighting the impact of these concepts and their relationship with business management, and their importance to strengthen competitiveness and innovation, especially in the processes of service organizations.


RESUMO A transferência de conhecimento, a capacidade de absorção e a inovação são fatores-chave para o sucesso das empresas. O objetivo deste artigo é estudar a relação teórica entre os conceitos: capacidade absortiva, transferência de conhecimento e inovação em empresas de serviços, por meio de uma pesquisa bibliométrica, abordando 506 artigos científicos. Os resultados indicam que existe uma relação teórica positiva entre capacidade absortiva e inovação, transferência de conhecimento e inovação, bem como entre transferência de conhecimento e capacidade absortiva, destacando o impacto desses conceitos e sua relação para a gestão empresarial e sua importância para o fortalecimento da competitividade e da inovação, especialmente nos processos das organizações de serviços.

6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38804653

RESUMO

The integrity of the intestinal barrier is crucial for regulating the passage of pathogens and toxins, while facilitating nutrient absorption. The everted gut sac technique, an ex-vivo technique, can be used to study interventions on barrier function. This cost-effective approach utilizes relatively large gut segments to study specific intestinal regions. Typically, intact (non-stripped) intestinal segments are used, but their use may underestimate permeability due to the medial positioning of blood vessels relative to the seromuscular layer and serosa. However, removing these layers risks physical damage, resulting in an overestimation of intestinal permeability. Therefore, we investigated the impact of stripping jejunal segments on permeability to fluorescein isothiocyanate-dextran (FITC, 4 kDa) and tetramethylrhodamine isothiocyanate-dextran (TRITC, 40 kDa), and on the absorption of glucose, lysine, and methionine in jejunal segments from 80 piglets at 8 d postweaning. Piglets were subjected to either high or low sanitary housing conditions and diets provoking intestinal protein fermentation or not, expected to influence intestinal permeability. Stripping of the seromuscular layer and serosa increased the passage of 4 kDa FITC-dextran (stripped vs. non-stripped; 1.1 vs. 0.9 pmol/cm2/min, P < 0.001), glucose (40.0 vs. 19.1 pmol/cm2/min, P < 0.001), lysine (2.5 vs. 2.0 nmol/cm2/min, P < 0.001), and methionine (4.1 vs. 2.7 pmol/cm2/min, P < 0.001). As permeability increased, the differences in methionine passage between stripped and non-stripped intestinal segments also increased (slope = 1.30, P = 0.009). The coefficients of variation were comparable between stripped and non-stripped intestines (over all treatments, stripped vs. non-stripped 38% vs. 40%). Stripping, by isolating mucosal processes without introducing additional variation, is thus recommended for studies on intestinal permeability or absorption.


The intestinal barrier is vital for nutrient passage, while impeding pathogen and toxin translocation. The everted gut sac technique is used to study intestinal permeability, incubating an isolated, everted, intestinal segment filled with buffer solution in a medium containing the substances of interest. After incubation, the translocation of the substances into the created intestinal sac can be measured. Typically, intact intestinal segments are used, but under physiological conditions, nutrients do not need to pass the seromuscular layer and serosa to enter the blood flow. Therefore, removing these layers may be preferable, but, on the other hand, also risks physical damage. This study compared the use of non-stripped vs. stripped intestinal segments. Permeability to two markers (FITC-dextran, 4kDa and TRITC-dextran, 40 kDa), and absorption of glucose, lysine, and methionine were measured in non-stripped and stripped jejunal segments obtained from 80 piglets at 8 d postweaning. The piglets were housed under different hygiene and dietary conditions, which were anticipated to alter intestinal permeability. Stripping the seromuscular layer and serosa increased the passage of FITC-dextran, glucose, lysine, and methionine, without reducing assay precision due to physical damage. Thus, removal of the seromuscular layer and serosa is preferred for studying intestinal permeability or absorption.


Assuntos
Permeabilidade , Animais , Suínos/fisiologia , Mucosa Intestinal/metabolismo , Desmame , Jejuno , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Absorção Intestinal , Masculino , Feminino , Função da Barreira Intestinal
7.
Water Sci Technol ; 89(9): 2512-2522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747964

RESUMO

This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óxido de Zinco , Óxido de Zinco/química , Água/química , Óleos/química
8.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732231

RESUMO

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.


Assuntos
Materiais Biocompatíveis , Gelatina , Hidrogéis , Medicina Regenerativa , Alicerces Teciduais , Gelatina/química , Alicerces Teciduais/química , Medicina Regenerativa/métodos , Materiais Biocompatíveis/química , Hidrogéis/química , Hidrogéis/síntese química , Humanos , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/química
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619320

RESUMO

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Assuntos
Células Epiteliais , Glucose , Intestino Delgado , Transportador 1 de Glucose-Sódio , Tricotecenos , Animais , Tricotecenos/toxicidade , Suínos , Glucose/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Linhagem Celular , Intestino Delgado/efeitos dos fármacos , Inflamação/induzido quimicamente , Citocinas/metabolismo , Citocinas/genética , Transporte Biológico/efeitos dos fármacos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
10.
Environ Res ; 252(Pt 2): 118903, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609070

RESUMO

Heavy carbon industries produce solid side stream materials that contain inorganic chemicals like Ca, Na, or Mg, and other metals such as Fe or Al. These inorganic compounds usually react efficiently with CO2 to form stable carbonates. Therefore, using these side streams instead of virgin chemicals to capture CO2 is an appealing approach to reduce CO2 emissions. Herein, we performed an experimental study of the mineral carbonation potential of three industrial steel slags via aqueous, direct carbonation. To this end, we studied the absorption capacities, reaction yields, and physicochemical characteristics of the carbonated samples. The absorption capacities and the reaction yields were analyzed through experiments carried out in a reactor specifically designed to work without external stirring. As for the physicochemical characterization, we used solid-state Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Using this reactor, the absorption capacities were between 5.8 and 35.3 g/L and reaction yields were in the range of 81-211 kg CO2/ton of slag. The physicochemical characterization of the solid products with solid FTIR, XRD and SEM indicated the presence of CaCO3. This suggests that there is potential to use the carbonated products in commercial applications.


Assuntos
Resíduos Industriais , Aço , Aço/química , Resíduos Industriais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Difração de Raios X , Dióxido de Carbono/química
11.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473592

RESUMO

During the physiological period, women have the problem of lateral and posterior leakage, and they expect to have period underwear that can reduce lateral and posterior leakage. This study is combined with menstrual needs, and in the crotch penetration layer, three types of yarns are used, seaweed viscose yarn, apocynum viscose yarn, and viscose yarn, as well as two fabric structures: honeycomb-shaped convex-concave stitching and grid-shaped convex point stitching. In the crotch absorption layer, three types of yarns are used, modal yarn, bamboo yarn, and viscose yarn, as well as two fabric structures: plush stitching and plain stitching. The above two parts establish a sample scheme according to full-factor experimental tests, and 12 knitted fabric samples were knitted. The experimental data were analyzed through SPSS one-way ANOVA. The results indicate that in terms of veil raw materials, the crotch penetration layer with seaweed viscose yarn has better penetration performance, while the crotch absorption layer with bamboo yarn has better absorption performance. In terms of fabric structure, the crotch penetration layer with grid-shaped convex point stitching has better penetration performance, while the crotch absorption layer with plush stitching has better absorption performance. This study provides a theoretical basis for the development of period underwear.

12.
ACS Appl Bio Mater ; 7(3): 1362-1380, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38373393

RESUMO

Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.


Assuntos
Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Coagulação Sanguínea , Hemostasia , Hemorragia , Cicatrização
13.
Biosens Bioelectron ; 247: 115930, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134624

RESUMO

Advancement of wearable microelectronics demands their power source with continuous energy supply, skin-integration and miniaturization. In light of poly (vinyl alcohol) (PVA) hydrogel with nontoxicity, good biocompatibility and low cost, an advanced wearable PVA-based hybrid biofuel cells (HBFCs) with high self-adhesiveness was developed. Through the reaction between PVA molecules and succinic anhydride (SAA), the carboxylated PVA (PVA/SAA) was obtained, and by incorporation with PDA as crosslinker, the self-adhesive PVA/SAA-DA hydrogel electrolytes formed by dual covalent and hydrogen bonding. With increasing SAA and PDA content, the pore size decreased, and a uniform and dense network formed, endowing the hydrogel with a relatively high absorption capacity of PBS solution of lactate as cell fuel. Meanwhile the various functional groups of hydrogel, including catechol, quinone, amino and hydroxyl groups, contributed to impressive tissue adhesion strength against pigskin under dry and wet conditions. The PVA/SAA-DA hydrogel displayed high conductive property, and the integrated PVA-based HBFC generated open circuit voltage of 0.50 V and maximum power density of 128.76 µW/cm2 in 20 mM lactate solution, which was optimized to be 0.57 V/224.85 µW/cm2 when the pore size was enlarged. The power retention reached above 70% in one week, showing long-term stability of HBFC. The PVA-based HBFC was further adhered to human skin without extra adhesive tapes to scavenge human sweat as biofuel, and the maximum power density reached 85.34 µW/cm2, while by connected with a DC-DC converter, the HBFC could power watch, exhibiting promising application potentials as wearable electronic device to provide bioelectricity.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Biocombustíveis , Cimentos de Resina , Álcool de Polivinil , Adesivos , Hidrogéis , Etanol , Lactatos
14.
Environ Sci Pollut Res Int ; 31(4): 6316-6331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146024

RESUMO

Indoor low-concentration carbon monoxide (CO) exposure is widespread worldwide, and potted plants may be a potential means for CO purification. The objective is to evaluate common indoor plants' CO purification and tolerance capacities. Epipremnum aureum (Linden ex André) G.S.Bunting, Chlorophytum comosum (Thunb.) Jacques, Spathiphyllum kochii Engl. & K.Krause, and Sansevieria trifasciata Hort. ex Prain with similar sizes were tested in the glass chamber with initial CO concentrations of 10, 25, 50, 100, 200, and 400 ppm, respectively. (1) The CO purification capacity of the four potted plants is ranked as Epipremnum aureum (Linden ex André) G.S.Bunting > Chlorophytum comosum (Thunb.) Jacques > Spathiphyllum kochii Engl. & K.Krause > Sansevieria trifasciata Hort. ex Prain. Under the purification effect of each plant, the CO concentration in the chamber decreases linearly and significantly (p < 0.05), and within a specific time period, the time-weighted average (TWA) CO concentrations can be reduced to below the corresponding permissible exposure limits specified by some countries and organizations. (2) With the increase of the stomatal number of each plant and the increase in CO concentration, the hourly and cumulative absorbed CO of each plant increase linearly and significantly (p < 0.05). (3) With the increase in CO concentration, the CO purification efficiency of each plant decreases exponentially and significantly (p < 0.05). (4) When the CO concentration was ≤ 50 ppm, all plants could effectively purify CO without damage. When the CO concentration was in the range of 100 ~ 400 ppm, within 2 weeks after the 48-h experiment, the leaf tips of Chlorophytum comosum (Thunb.) Jacques and Epipremnum aureum (Linden ex André) G.S.Bunting were damaged one after another, and the damaged leaf area increased with the increase of CO concentration. However, each plant as a whole still survived. This study demonstrated that different species of potted plants can effectively absorb low concentrations of CO to varying degrees, but higher concentrations of CO will damage the survival of specific species of potted plants.


Assuntos
Asparagaceae , Monóxido de Carbono , Plantas
15.
Materials (Basel) ; 16(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005051

RESUMO

Here, hexagonal and triangular lattices are layered and merged into a re-entrant honeycomb to replace each cell wall of the re-entrant honeycomb. In order to study the crushing behavior of the new variable-angle-variable-substructure-number-gradient honeycomb, a finite element analysis of in-plane and out-of-plane crushing was carried out. The effects of different gradient parameters on the deformation mode and extrusion response were discussed, respectively. The results show that different grading parameters have different effects on the crushing behavior of honeycombs for in-plane and out-of-plane crushing. Compared with out-of-plane crushing, the influence of the hierarchical structure on the in-plane crushing deformation mode and the increase in platform stress are much larger. Compared with the ordinary honeycombs, changing the substructure angle does not necessarily improve the platform stress of the honeycomb. From the perspective of platform stress, the layered structure has different effects on the improvement of honeycomb energy absorption; the maximum platform stress of the honeycomb is increased.

16.
Anim Nutr ; 15: 173-186, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023377

RESUMO

Arecoline is an alkaloid with important pharmacological effects in the plant areca nut, which has been demonstrated to be an agonist of muscarinic receptors (M receptor). This study explored the influences of dietary arecoline on growth performance, intestinal digestion and absorption abilities, antioxidant capacity, and the apical junction complex (AJC) of adult grass carp (Ctenopharyngodon idella). Adult grass carp (608 to 1512 g) were fed at 6 graded levels of dietary arecoline (0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) for 9 weeks. The results suggested that appropriate dietary supplementation of arecoline (1.0 mg/kg) increased growth parameters and intestinal growth in adult grass carp (P < 0.05), enhanced digestion and absorption capacities (P < 0.05), up-regulated muscarinic receptor 3 (M3) mRNA level (P < 0.05), increased the content of neuropeptide fish substance P (P < 0.05), improved antioxidant capacity by activating the Keap1a/Nrf2 signaling pathway (P < 0.05), reduced intestinal mucosal permeability (P < 0.05), and increased mRNA levels of tight junction (TJ) and adherent junction AJ-related proteins in fish by inhibiting the RhoA/ROCK signaling pathway (RhoA/ROCK/MLCK/NMII) (P < 0.05). In addition, the appropriate arecoline supplementation for adult grass carp was determined to be 1.20, 1.21, 1.07, and 1.19 mg/kg based on percentage weight gain, lipase activity, serum diamine oxidase, and protein carbonyl, respectively. Overall, to the best of our knowledge, we investigated for the first time the effects and possible mechanisms of dietary arecoline on intestinal digestive and absorptive capacities and structural integrity in fish and evaluated the appropriate level of supplementation.

17.
Micromachines (Basel) ; 14(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37893396

RESUMO

The lattice metamaterial has attracted extensive attention due to its excellent specific strength, energy absorption capacity, and strong designability of the cell structure. This paper aims to explore the functional nickel plating on the basis of biomimetic-designed lattice structures, in order to achieve higher stiffness, strength, and energy absorption characteristics. Two typical structures, the body-centered cubic (BCC) lattice and the bioinspired hierarchical circular lattice (HCirC), were considered. The BCC and HCirC lattice templates were prepared based on DLP (digital light processing) 3D printing. Based on this, chemical plating, as well as the composite plating of chemical plating followed by electroplating, was carried out to prepare the corresponding nickel-plated lattice structures. The mechanical properties and deformation failure mechanisms of the resin-based lattice, chemically plated lattice, and composite electroplated lattice structures were studied by using compression experiments. The results show that the metal coating can significantly improve the mechanical properties and energy absorption capacity of microlattices. For example, for the HCirC structure with the loading direction along the x-axis, the specific strength, specific stiffness, and specific energy absorption after composite electroplating increased by 546.9%, 120.7%, and 2113.8%, respectively. The shell-core structure formed through composite electroplating is the main factor for improving the mechanical properties of the lattice metamaterial. In addition, the functional nickel plating based on biomimetic structure design can further enhance the improvement space of mechanical performance. The research in this paper provides insights for exploring lighter and stronger lattice metamaterials and their multifunctional applications.

18.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894632

RESUMO

In this research, we focused on the production of amylose-lipid nanocomposite material (ALN) through a green synthesis technique utilizing high-speed homogenization. Our aim was to investigate this novel material's distinctive physicochemical features and its potential applications as a low-glycemic gelling and functional food ingredient. The study begins with the formulation of the amylose-lipid nanomaterial from starch and fatty acid complexes, including stearic, palmitic, and lauric acids. Structural analysis reveals the presence of ester carbonyl functionalities, solid matrix structures, partial crystallinities, and remarkable thermal stability within the ALN. Notably, the ALN exhibits a significantly low glycemic index (GI, 40%) and elevated resistance starch (RS) values. The research extends to the formulation of ALN into nanocomposite hydrogels, enabling the evaluation of its anthocyanin absorption capacity. This analysis provides valuable insights into the rheological properties and viscoelastic behavior of the resulting hydrogels. Furthermore, the study investigates anthocyanin encapsulation and retention by ALN-based hydrogels, with a particular focus on the influence of pH and physical cross-link networks on the uptake capacity presenting stearic-acid (SA) hydrogel with the best absorption capacity. In conclusion, the green-synthesized (ALN) shows remarkable functional and structural properties. The produced ALN-based hydrogels are promising materials for a variety of applications, such as medicine administration, food packaging, and other industrial purposes.


Assuntos
Amilose , Nanocompostos , Amilose/química , Hidrogéis/química , Antocianinas , Amido/química , Nanocompostos/química , Nanogéis
19.
Environ Sci Pollut Res Int ; 30(43): 97872-97887, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603252

RESUMO

This study deals with the efficient, low-cost, and scalable treatment of oily polluted waters including colloidal emulsions, oil-in-water mixtures, and free oil removal using melamine foams (MFs) modified by ferric chloride (FeCl3). Modified foams have superhydrophobic character due to the coordination of Fe3+ with free electron pairs on nitrogen and oxygen atoms within the melamine structure. The water contact angles (WCA) were 146° ± 2°, 148° ± 4°, 153° ± 2°, and 150° ± 4° for foams modified by the solutions with concentrations of 0.001 M, 0.005 M, 0.01 M, and 0.02 M, respectively. This modification enables the efficient treatment of various oil/water systems, including oil/water colloidal emulsions (99 vol% of the droplets have dimensions below 500 nm), oil-in-water mixtures up to 40 weight % of the oil component, and "free" oil removal as it was demonstrated in this study for the first time. The emulsions containing 100 ppm diesel oil (DO) were separated with 91.4% efficiency, and the mixtures containing 20 and 40 weight % DO were separated with 99.9% efficiency. Modified foams also quickly remove free DO from the water surface, absorbing 95 g/g DO, whereas water sorption was negligible. The separation of colloidal oil in water emulsions represents the key finding of this study as it indicates the applicability of the treated MFs for the treatment of emulsified industrial wastewater. The demulsification mechanism is based on multiple diffusion processes running at different time scales, including diffusion of the emulsion into the foam and diffusion of oil droplets within the foam, combined with parallel adsorption of oil droplets onto the solid skeleton of the foam. A multiplied usage of these foams for all these niche operations was also proven. The application of our current study with previous studies on modified MFs and polyurethane for water oil separation utilization is summarized in Table S1 ESI.


Assuntos
Triazinas , Emulsões , Adsorção , Difusão
20.
Materials (Basel) ; 16(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512410

RESUMO

As a main goal of this work, a novel generation of cellular materials has been developed and manufactured by the kelvin cell model to be offered for different multifunctional applications. These Open-Cell Aluminum Foams (OCAF) have 85% porosities of spherical-shaped pores with a diameter of 11 mm. Several foamed square-section specimens were used. This work investigated the impact of different new quasi-static biaxial loading complexities on the mechanical behavior of such foams. Thus, new S-profiled rigs were already designed for examining the behavior of tested foams under biaxial loading conditions with different reverse torsional components named ACTP-S. After testing, their high specific strength and high energy absorption abilities have been characterized. Thus, in addition to the reference uniaxial test, all other tests were conducted at a speed of 5 mm/min. Thus, the mechanical responses of this foam are affected by loading complexities which are simple uniaxial, intermediate-biaxial (Bi-45°), and sever-biaxial (Bi-60°). These results were compared to the classical Absorption using Compression-Torsion Plastique (ACTP) responses. It was concluded that the highest dissipated energy increases with the increase in loading path complexity. Note that the energy absorption of the foam is essentially governed by its collapse mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA