Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nanotechnology ; 35(41)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38906117

RESUMO

The electromagnetic field enhancement mechanisms leading to surface-enhanced Raman scattering (SERS) of R6G molecules near Ti3C2TxMXene flakes of different shapes and sizes are analyzed theoretically in this paper. In COMSOL simulations for the enhancement factor (EF) of SERS, the dye molecule is modeled as a small sphere with polarizability spectrum based on experimental data. It is demonstrated, for the first time, that in the wavelength range of500 nm-1000 nm, the enhancement of Raman signals is largely conditioned by quadrupole surface plasmon (QSP) oscillations that induce a strong polarization of the MXene substrate. We show that the vis-NIR spectral range quadrupole SP resonances are strengthened due to interband transitions (IBTs), which provide EF values of the order of 105-107in agreement with experimental data. The weak sensitivity of the EF to the shape and size of MXene nanoparticles (NPs) is interpreted as a consequence of the low dependence of the absorption cross-section of QSP oscillations and IBT on the geometry of the flakes. This reveals a new feature: the independence of EF on the geometry of MXene substrates, which allows to avoid the monitoring of the shape and size of flakes during their synthesis. Thus, MXene flakes can be advantageous for the easy manufacturing of universal substrates for SERS applications. The electromagnetic SERS enhancement is determined by the 'lightning rod' and 'hot-spot' effects due to the partial overlapping of the absorption spectrum of the R6G molecule with these MXene resonances.

2.
Plants (Basel) ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337985

RESUMO

Chlorophyll (Chl) fluorescence induction (FI) upon a dark-light transition has been widely analyzed to derive information on initial events of energy conversion and electron transfer in photosystem II (PSII). However, currently, there is no analytical solution to the differential equation of QA reduction kinetics, raising a doubt about the fitting of FI by numerical iteration solution. We derived an analytical solution to fit the OJ phase of FI, thereby yielding estimates of three parameters: the functional absorption cross-section of PSII (σPSII), a probability parameter that describes the connectivity among PSII complexes (p), and the rate coefficient for QA- oxidation (kox). We found that σPSII, p, and kox exhibited dynamic changes during the transition from O to J. We postulated that in high excitation light, some other energy dissipation pathways may vastly outcompete against excitation energy transfer from a closed PSII trap to an open PSII, thereby giving the impression that connectivity seemingly does not exist. We also conducted a case study on the urban heat island effect on the heat stability of PSII using our method and showed that higher-temperature-acclimated leaves had a greater σPSII, lower kox, and a tendency of lower p towards more shade-type characteristics.

3.
Environ Sci Technol ; 58(9): 4268-4280, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393751

RESUMO

Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Carbono , Biomassa , Monitoramento Ambiental , Poluição do Ar/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise
4.
Environ Sci Technol ; 58(9): 4247-4256, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373403

RESUMO

Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.


Assuntos
Poluentes Atmosféricos , Ácido Nitroso , Ácido Nitroso/análise , Gases/análise , Poluentes Atmosféricos/análise , Análise Espectral , Fotólise
5.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1995-2005, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694485

RESUMO

Light response curve of photosynthesis (An-I curve) is a useful modeling tool to investigate how photosynthesis reacts with different abiotic factors, which would help quantify the response of photosynthetic rate to photosynthetically active radiation. Based on the mathematical characteristics of photosynthesis An-I models, we reviewed the advantages of using these model in practice and the potential caveats. We proposed the development of new mechanistic photosynthesis An-I models based on the primary light response and discussed its advantages in the field of plant ecology and physiology. Photosynthesis has three main steps, including the primary reaction, the assimilatory power forms, and the carbon assimilation. Changes in each step could directly affect the photochemical efficiency and carbon assimilation in photosynthesis. The primary reaction consists of a series of physical processes that are related to light energy absorption and utilization, including the absorption of light energy, the change of quantum state, and the transfer and de-excitation of exciton resonance of light-trapping pigment molecules. How-ever, the empirical photosynthesis An-I models can not explain some scenarios. For example, the non-photochemical quenching in plants increases with increasing light intensity in a non-linear manner. Further, the life-time of singlet chlorophyll molecules can be extended when plant light-harvesting pigment molecules absorb excessive light energy but would not be immediately used for the photochemical reaction. Meanwhile, the parameters obtained by fitting the mechanistic An-I curve model can not only reflect the primary photochemical reaction characteristics of plants, but also describe the physical characteristics of plant light harvesting pigment molecules, such as the number of light harvesting pigment molecules in the excited state (Nk) and effective light energy absorption cross-section (σik'). This can be used to further investigate the physical characteristics of light harvesting pigment molecules, including the light-response of Nk and σik' and the average life time of light harvesting pigment molecules in the lowest exciting state (τmin). In addition, it would be necessary to determine how to incorporate abiotic factors, such as temperature and CO2 concentration, into the mechanistic An-I curve model, as well as to determine the association between the abiotic factors and light harvesting pigment molecules, such as Nk, σik', and τmin.


Assuntos
Clorofila , Fotossíntese , Luz , Carbono , Ecologia
6.
Front Plant Sci ; 14: 1234462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711288

RESUMO

Investigation on intrinsic properties of photosynthetic pigment molecules participating in solar energy absorption and excitation, especially their eigen-absorption cross-section (σ ik) and effective absorption cross-section (σ ' ik), is important to understand photosynthesis. Here, we present the development and application of a new method to determine these parameters, based on a mechanistic model of the photosynthetic electron flow-light response. The analysis with our method of a series of previously collected chlorophyll a fluorescence data shows that the absorption cross-section of photosynthetic pigment molecules has different values of approximately 10-21 m2, for several photosynthetic organisms grown under various conditions: (1) the conifer Abies alba Mill., grown under high light or low light; (2) Taxus baccata L., grown under fertilization or non-fertilization conditions; (3) Glycine max L. (Merr.), grown under a CO2 concentration of 400 or 600 µmol CO2 mol-1 in a leaf chamber under shaded conditions; (4) Zea mays L., at temperatures of 30°C or 35°C in a leaf chamber; (5) Osmanthus fragrans Loureiro, with shaded-leaf or sun-leaf; and (6) the cyanobacterium Microcystis aeruginosa FACHB905, grown under two different nitrogen supplies. Our results show that σ ik has the same order of magnitude (approximately 10-21 m2), and σ ' ik for these species decreases with increasing light intensity, demonstrating the operation of a key regulatory mechanism to reduce solar absorption and avoid high light damage. Moreover, compared with other approaches, both σ ik and σ ' ik can be more easily estimated by our method, even under various growth conditions (e.g., different light environment; different CO2, NO2, O2, and O3 concentrations; air temperatures; or water stress), regardless of the type of the sample (e.g., dilute or concentrated cell suspensions or leaves). Our results also show that CO2 concentration and temperature have little effect on σ ik values for G. max and Z. mays. Consequently, our approach provides a powerful tool to investigate light energy absorption of photosynthetic pigment molecules and gives us new information on how plants and cyanobacteria modify their light-harvesting properties under different stress conditions.

7.
J Hazard Mater ; 452: 131215, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001210

RESUMO

Indicators signaling Arsenic (As) stress through physiology of microalgae using non-destructive methods like variable fluorescence are rare but requisite. This study reports stress markers indicating arsenic (As) toxicity (in two concentrations 11.25 µg/L and 22.5 µg/L compared to a control) exposed to a microalga (Diacronema lutheri), using fast repetition rate fluorometry (FRRf). Growth and physiological parameters such as cell density, chl a and the maximum quantum yield Fv/Fm showed coherence and impeded after the exponential phase (day 9 - day 12) in As treatments compared to the control (p < 0.05). On contrary photo-physiological constants were elevated showing higher optical (aLHII) and functional [Sigma (σPSII)] absorption cross-section for the As treatments (p < 0.05) further implying the lack of biomass production yet an increase in light absorption. In addition, As exposure increased the energy dissipation by heat (NPQ-NSV) showing a strong relationship with the de-epoxidation ratio (DR) involving photoprotective pigments. Total As bioaccumulation by D. lutheri showed a strong affinity with Fe adsorption throughout the algal growth curve. This study suggests some prompt photo-physiological proxies signaling As contamination and endorsing its usefulness in risk assessments, given the high toxicity and ubiquitous presence of As in the ecosystem.


Assuntos
Arsênio , Microalgas , Arsênio/toxicidade , Ecossistema , Fluorescência , Fluorometria , Biomassa , Fotossíntese
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122108, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423419

RESUMO

Chlorobenzene is considered an essential organic synthesis intermediate and a precursor for the generation of persistent organic compounds in the waste disposal process, for which accurate detection of gaseous chlorobenzene can further help understand and control various chemical processes and effectively reduce pollution. Differential optical absorption spectroscopy is a reliable online method for detecting gaseous chlorobenzenes. It is crucial to investigate the effect of temperature on the optical absorption of the chlorobenzenes to quantify chlorobenzenes more precisely at various temperatures. A method to fix the effect of temperature variation on absorption spectra of chlorobenzene is initially proposed in this study, and it gave accurate concentrations. The proposed method can effectively improve the accuracy of chlorobenzene concentration measurements with an inverse concentration deviation of 3.2 % or less. The differential absorption cross sections at various temperatures are studied to understand how chlorobenzene absorption cross sections vary with temperature. Such a study is also helpful in reducing the concentration inversion errors induced by the variation of absorption cross sections of chlorobenzene with temperature. A novel method of introducing the binary function of the differential absorption cross sections with respect to wavelength and temperature is also proposed. The fitting of the binary function is done by downscaling functions at fixed wavelength and fixed temperature,respectively. Both fitting approaches obtained continuous differential absorption cross sections in the 201-220 nm wavelength band and 288-473 K temperature range, along with less than 2.74 % deviation in the concentration inversion measurements. Finally,based on the temperature specificity of the shape of the differential absorption cross sections,we developed another method using differential absorption spectroscopy for the simultaneous measurement of temperature and concentration, with a temperature prediction error of less than 1.89 %. This method is favorable to the applications of differential absorption spectroscopy in simultaneous measurement of temperature and concentration.


Assuntos
Clorobenzenos , Gases , Temperatura , Fenômenos Químicos
9.
Photosynth Res ; 155(1): 49-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36266605

RESUMO

Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.


Assuntos
Clorofíceas , Microalgas , Cobre/farmacologia , Fotossíntese/fisiologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Microalgas/metabolismo , Clorofíceas/metabolismo , Clorofila/metabolismo
10.
Heliyon ; 8(9): e10587, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36132182

RESUMO

In this report, we measured experimentally the modal absorption spectra of the InP and InAsP quantum dot (QD) lasers using multi-section device technique. The optical absorption cross section ( σ 0 ) and inhomogeneous broadening for the ground state (GS) and excited state (ES) were analyzed and calculated theoretically from the absorption spectra. The results showed that the InP QD laser exhibited σ 0 to be 1.347 × 10 - 14  â€‹cm 2 . eV and 3.016 × 10 - 14  â€‹cm 2 eV for GS and ES respectively, whereas for the InAsP QD material it was found as 0.511 × 10 - 14 cm 2 eV and 3.099 × 10 - 14 cm 2 . eV for GS and ES respectively. Moreover, the inhomogeneous broadening in the GS increases from 35.6 eV to 63.6 eV when As was added to InP QD, similarly, the inhomogeneous broadening of ES increases from 46.9 eV to 103.8 eV. The alloying InP QDs with arsenic decreases the σ 0 of the ground state (lasing state) and increases both inhomogeneous and linewidth broadenings. This finding may help the grower to control the growth conditions and the molecule fractions of the crystal to improve the spectral properties of the optoelectronics devices.

11.
Environ Sci Technol ; 56(12): 8610-8618, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652563

RESUMO

The climate models of the Intergovernmental Panel on Climate Change list black carbon (BC) as an important contributor to global warming based on its radiative forcing (RF) impact. Examining closely these models, it becomes apparent that they might underpredict significantly the direct RF for BC, largely due to their assumed spherical BC morphology. Specifically, the light absorption and direct RF of BC agglomerates are enhanced by light scattering between their constituent primary particles as determined by the Rayleigh-Debye-Gans theory interfaced with discrete dipole approximation and recent relations for the refractive index and lensing effect. The light absorption of BC is enhanced by about 20% by the multiple light scattering between BC primary particles regardless of the compactness of their agglomerates. The resulting light absorption agrees very well with the observed absorption aerosol optical depth of BC. ECHAM-HAM simulations accounting for the realistic BC morphology and its coatings reveal high direct RF = 3-5 W/m2 in East, South Asia, sub-Sahara, western Africa, and the Arabian peninsula. These results are in agreement with satellite and AERONET observations of RF and indicate a regional climate warming contribution by 0.75-1.25 °C, solely due to BC emissions.

12.
J Lumin ; 2452022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35422532

RESUMO

EuIII and YbIII complexes with the carbazole-dipicolinato ligand dpaCbz2-, namely K3[Eu(dpaCbz)3] and K3[Yb(dpaCbz)3], were isolated. The EuIII complex displayed metal-centred emission upon one-photon excitation with a sensitized emission efficiency Φ L Ln of 1.8±0.3 %, corresponding to an intrinsic emission efficiency Φ Ln Ln of 46% and a sensitization efficiency of ηsens 3.9%, with an emission lifetime of the emissive state τ of 1.087±0.005 ms. The YbIII complex displayed Φ L Ln of 0.010±0.001 %, and a τ of 2.32±0.06 µs. The EuIII-centred emission was sensitized as well upon two-photon excitation and a two-photon absorption cross-section σ2PA of 63 GM at 750 nm was determined for the complex. The one- or two-photon sensitized emission intensity of the EuIII complex changes by more than two-fold when the solvent viscosity is varied in the range 0.5 - 200 cP and the emission is independent of dissolved oxygen. The YbIII complex displays a change in emission intensity as well. However, in this case, a dependence of the emission intensity on dissolved oxygen content was observed.

13.
ACS Nano ; 16(4): 6023-6033, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357114

RESUMO

Two-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < ℏω < 1.91 eV (wavelength 850 > λ > 650 nm) above the two-photon band gap Eg(QD)/2, and at a representative photon energy ℏω = 0.99 eV (λ = 1250 nm) below this gap. Two-photon excited photoluminescence (2PE-PL) spectra of nc-SiQDs with diameters d = 1.8 ± 0.2 nm and d = 2.3 ± 0.3 nm, each passivated with 1-dodecene and dispersed in toluene, are calibrated in strength against 2PE-PL from a known concentration of Rhodamine B dye in methanol. The 2PA cross section is observed to be smaller for the smaller diameter nanocrystals, and the onset of 2PA is observed to be blue shifted from the two-photon indirect band gap of bulk Si, as expected for quantum confinement of excitons. The efficiencies of nc-SiQDs for bioimaging using 2PE-PL are simulated in various biological tissues and compared to efficiencies of other quantum dots and molecular fluorophores and found to be comparable or superior at greater depths.


Assuntos
Nanopartículas , Pontos Quânticos , Silício/química , Pontos Quânticos/química , Fótons , Nanopartículas/química , Análise Espectral
14.
ACS Appl Mater Interfaces ; 14(11): 13631-13637, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258939

RESUMO

Semiconducting polymer dots (Pdots) are increasingly used in biomedical applications due to their extreme single-particle brightness, which results from their large absorption cross section (σ). However, the quantum yield (Φ) of Pdots is typically below 40% due to aggregation-induced self-quenching. One approach to reducing self-quenching is to use FRET between the donor (D) and acceptor (A) groups within a Pdot; however, Φ values of FRET-based Pdots remain low. Here, we demonstrate an approach to achieve ultrabright FRET-based Pdots with simultaneously high σ and Φ. The importance of self-quenching was revealed in a non-FRET Pdot: adding 30 mol % of a nonabsorbing polyphenyl to a poly(9,9-dioctylfluorene) (PFO) Pdot increased Φ from 13.4 to 71.2%, yielding an ultrabright blue-emitting Pdot. We optimized the brightness of FRET-based Pdots by exploring different D/A combinations and ratios with PFO and poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-phenylene)] (PFP) as donor polymers and poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(1,4-phenylene)] (PFPV) and poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT) as acceptor polymers, with a fixed concentration of poly(styrene-co-maleic anhydride) as surfactant polymer. Ultrabright blue-emitting Pdots possessing high Φ (73.1%) and σ (σR = σabs/σall, 97.5%) were achieved using PFP/PFPV Pdots at a low acceptor content (A/[D + A], 2.5 mol %). PFP/PFPV Pdots were 1.8 times as bright as PFO/PFPV Pdots due to greater coverage of acceptor absorbance by donor emission─a factor often overlooked in D/A pair selection. Ultrabright green-emitting PFO Pdots (Φ = 76.0%, σR = 92.5%) were obtained by selecting an acceptor (PFBT) with greater spectral overlap with PFO. Ultrabright red-emitting Pdots (Φ = 64.2%, σR = 91.0%) were achieved by blending PFO, PFBT, and PFTBT to create a cascade FRET Pdot at a D:A1:A2 molar ratio of 61:5:1. These blue, green, and red Pdots are among the brightest Pdots reported. This approach of using a small, optimized amount of FRET acceptor polymer with a large donor-acceptor spectral overlap can be generalized to produce ultrabright Pdots with emissions that span the visible spectrum.


Assuntos
Polímeros , Pontos Quânticos , Fenômenos Químicos , Semicondutores
15.
Adv Mater ; 34(11): e2108120, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997657

RESUMO

Single-emitter plasmonic patch antennas are room-temperature deterministic single-photon sources, which exhibit highly accelerated and directed single-photon emission. However, for efficient operation these structures require 3D nanoscale deterministic control of emitter positioning within the device, which is a demanding task, especially when emitter damage during fabrication is a major concern. To overcome this limitation, the deterministic room-temperature in situ optical lithography protocol uses spatially modulated light to position a plasmonic structure nondestructively on any selected single-emitter with 3D nanoscale control. Herein, the emission statistics of such plasmonic antennas that embed a deterministically positioned single colloidal CdSe/CdS quantum dot, which highlight acceleration and brightness of emission, are analyzed. It is demonstrated that the presented antenna induces a 1000-fold effective increase in the absorption cross-section, and, under high pumping, these antennas show nonlinearly enhanced emission.

16.
ACS Appl Mater Interfaces ; 14(2): 2452-2463, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34986306

RESUMO

Fluorescent gold nanoclusters (Au NCs) with excellent one-photon and multiphoton properties have been demonstrated as promising candidates in many application fields. However, small multiphoton absorption (MPA) cross sections and weak multiphoton excitation (MPE) fluorescence impede their practical applications under near-infrared (NIR) excitation for biological imaging. Here, we report the regulated one-photon and multiphoton properties and mechanisms of arginine-stabilized 6-aza-2-thiothymine Au NCs (Arg/ATT-Au NCs) and the applications for MPE fluorescence imaging. The introduction of arginine into the capping layer of ATT-Au NCs significantly modifies the electronic structure, the absorption cross sections, and the relaxation dynamics of the lowest excited state, drastically reducing the nonradiative relaxation, suppressing the blinking, and greatly enhancing the fluorescence. Besides the improved one-photon properties, Arg/ATT-Au NCs demonstrate remarkable MPE fluorescence with a large MPA cross section. The two-photon (λex = 850 nm), three-photon (λex = 1400 nm), and four-photon (λex = 1700 nm) absorption cross sections have been determined to be 6.1 × 10-47 cm4 s1 photon-1, 1.5 × 10-78 cm6 s2 photon-2, and 5.5 × 10-108 cm8 s3 photon-3, respectively, much higher than those of conventional organic compounds and previously reported Au NCs. Moreover, Arg/ATT-Au NCs have been successfully applied in two-photon and three-photon excitation fluorescence imaging of living cells with NIR excitation. The manifold advantages of small size, high quantum yield, suppressed blinking, good photostability and cytocompatibility, large MPA cross sections, and excellent MPE fluorescence imaging performances make fluorescent Arg/ATT-Au NCs a great candidate of imaging probes with vis-NIR excitation.


Assuntos
Materiais Biocompatíveis/química , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Óptica , Fótons , Arginina/química , Células Cultivadas , Ouro/química , Humanos , Teste de Materiais , Nanopartículas Metálicas/química
17.
Sci Total Environ ; 807(Pt 2): 150871, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634351

RESUMO

Black and Brown Carbon (BC, BrC) are key parameters of climate forcing, yet significant challenges exist assigning emission source contributions to light-absorption by carbonaceous aerosols. Additionally, BC and BrC emissions add to extreme air pollution events in Chinese mega-cities, which harm human health and detract from the natural and built environment. To address these concerns, the ability to estimate atmospheric light absorption related to emission sources and global inventories is a highly valuable tool for climate modelers and policy makers. Three months of BC and BrC data was collected using an Aethalometer in parallel to PM2.5 filter sampling during a stringent emission controls period and post controls period, including during the regional heating season. In this study reconstructed 370 nm wavelength absorption was calculated by applying source specific Mass Absorption Cross-Sections to PMF apportioned EC and OC results. Reconstructed absorption showed good agreement with the ambient measured absorption for both BC and BrC. In Beijing, the major contributor to near-UV absorption was mobile sources, which accounted for 45-54% of absorption by BC and 14-18% by BrC. BrC absorption from secondary aerosols, biomass burning, and soil dust was also estimated, with these sources contributing from 1 to 9% individually. Meteorological cluster analysis showed that air mass origin did not impact the absorption reconstruction and that the highest regional contribution to near-UV light absorption originated primarily in areas south and east of Beijing. The study shows ambient near-UV light absorption can be predicted using BC and BrC MAC values from sources. However, the current number of multi-wavelength and source specific BrC MAC values reported in the literature is limited. The reconstruction approach allows for a more robust method of assigning light absorption to source categories, allowing the expansion of aethalometer derived BrC apportionment to multiple sources, including biomass burning.


Assuntos
Carbono , Raios Ultravioleta , Aerossóis/análise , Pequim , Carbono/análise , China , Humanos
18.
Materials (Basel) ; 14(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300841

RESUMO

The photoinduced charge transfer process of a D-π-A molecule (W1) and three D-D-π-A molecules (WS5-WS7) with triphenylamine as a donor was studied theoretically. D-D-π-A molecules are formed by inserting donors between the triphenylamine and π-linker (π-bridge) on the base of the W1 molecule. The results showed that donor insertion resulted in a red shift in the absorption spectrum, and the absorption intensity increased to a certain extent. A visualization method was used to observe the charge transfer of the four molecules in the process of one- and two-photon absorption (TPA). The local excitation enhanced charge transfer excitation in the TPA process was analyzed and discussed, and the insertion of the thiazolo[5,4-d]thiazole donor showed the largest TPA cross-section. This work contributed to the profound understanding of D-D-π-A molecules and the design of large cross-section TPA molecules.

19.
Sci Total Environ ; 784: 147225, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088050

RESUMO

Black carbon (BC) as an important part of atmospheric aerosols imposes adverse effects on atmospheric visibility, health, and climate change. Mass absorption cross-section (MACBC) is an essential parameter in BC quantitative and model research, which is of growing concern in recent decades. In this study, we conducted real-world measurements on BC emissions from two major sources of residential biofuel stoves and diesel trucks. BC emissions and MACBC values are quantified based on the photoacoustic and thermo-optical methods. The impacts of typical factors from biofuel stoves (biofuel and stove types) and diesel trucks (vehicle types, emission standards, and driving conditions) on BC/EC, MACBC values, and the relationships between BC and EC, BC/PM2.5 and MACBC are analyzed comprehensively. We find the BC and EC emissions from these two sources present good correlations, and those emissions are almost equal from diesel trucks, while the EC emissions from biofuel burning are slightly higher than BC. The typical factors for analysis may affect the optical properties of BC, and then will affect the mass ratio of BC/EC, indirectly. We have calculated the equivalent MACBC values and compared those with previous studies. Then, we further divided the equivalent MACBC values under several typical factors, which are 5.84 and 2.71 m2/g for improved and simple biofuel stoves, and 5.91 and 4.64 m2/g for light-duty and heavy-duty diesel trucks, respectively. Furthermore, the MACBC and BC/PM2.5 under the main operational metrics generally present good correlations. Our results will help to enhance the understanding of MACBC and provide effective data support for BC quantification and atmospheric model research.

20.
Environ Sci Pollut Res Int ; 28(42): 60221-60234, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34156618

RESUMO

This study provides a thorough investigation of the trends of organic carbon (OC) and elemental carbon (EC) in particulate matter (PM)10 and PM2.5 samples collected at the Monte Curcio Observatory (1780 m a.s.l.), a station of the Global Atmosphere Watch (GAW) program and Global Mercury Observation System (GMOS) network. Although the drawn attention toward these pollutants, there is still a lack of data for southern Italy, and this work is a contribution toward the filling of this gap. PM was sampled daily in 2016 and analyzed by thermo-optical transmittance method, while equivalent black carbon (eBC) concentrations in PM10 were simultaneously measured using a multiangle absorption photometer. The results showed that in PM10, the average values of OC and EC were 1.43 µgC/m3 and 0.12 µgC/m3, whereas in PM2.5, these concentrations were 1.09 µgC/m3 and 0.12 µgC/m3, respectively. We detected a clear seasonal variability in OC and EC with higher concentrations during the warm period. Moreover, the analysis of the OC/EC ratio revealed that most of the carbonaceous aerosol was transported by long-range air masses, as further confirmed by the use of the concentration-weighed trajectory (CWT) model. The mass absorption cross-section at 632 nm of EC (MACEC) over the entire period was 9.67 ± 4.86 m2/g and 8.70 ± 3.18 m2/g in PM2.5 and PM10, respectively, and did not exhibit a clear seasonal variation. The concentrations for OC and EC were also used for the computation of the secondary organic carbon (SOC) content, whose outcomes resulted in a seasonal trend similar to those obtained for OC and EC. As regards the eBC, its weekly pattern showed a slight increase during the weekend in the warm period, consistent with the anthropic activities in the touristic area surrounding the observatory.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Altitude , Carbono/análise , Monitoramento Ambiental , Itália , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA