Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411861, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110601

RESUMO

Starphenes are structurally appealing three-fold symmetric polycyclic aromatic compounds with potential interesting applications in molecular electronics and nanotechnology. This family of star-shaped polyarenes can be regarded as three acenes that are connected through a single benzene ring. In fact, just like acenes, unsubstituted large starphenes are poorly soluble and highly reactive molecules under ambient conditions making their synthesis difficult to achieve. Herein, we report two different synthetic strategies to obtain a starphene formed by 19 cata-fused benzene rings distributed within three hexacene branches. This molecule, which is the largest starphene that has been obtained to date, was prepared by combining solution-phase and on-surface synthesis. [19]Starphene was characterized by high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) showing a remarkable small HOMO-LUMO transport gap (0.9 eV).

2.
Chemistry ; : e202402297, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032069

RESUMO

The on-surface synthesis of an isomer of undecacene, bearing two four-membered rings and two para-quinodimethane moieties, starting from a tetramethyl-substituted diepoxy precursor, is presented. The transformation implies a thermal double deoxygenation followed by a stepwise double dehydrogenation reaction on the Au(111) surface, locally induced by inelastic tunneling electrons. This results in the transformation of para-dimethylbenzene moieties into non-aromatic para-quinodimethanes. The structures and electronic properties of the intermediate and final products are investigated at the single molecule level with high spatial resolution, using both scanning tunneling microscopy/spectroscopy and non-contact atomic force microscopy. The experimental results are supported by density functional theory calculations.

3.
Chemistry ; : e202402122, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077888

RESUMO

Acenes, the group of polycyclic aromatic hydrocarbons (PAHs) with linearly fused benzene rings, possess distinctive electronic properties with potential applicability in material science. Hexacene was the largest acene obtained and characterized in the last century, followed by heptacene in 2006. Since then, a race for obtaining the largest acene resulted in the development of several members of this family as well as diverse innovative synthetic strategies, from solid-state chemistry to the promising on-surface chemistry. This last technique allows the obtention of higher acenes, up to tridecacene, the largest acene so far. This review presents the different methodologies employed for the synthesis of acenes, highlighting the newest studies, to provide a much more thorough understanding of the essence of the electronic structure of this captivating group of organic compounds.

4.
Chemistry ; 30(27): e202400208, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38454793

RESUMO

Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron-accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI-annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI-based heterocyclic acenes in contemporary multidisciplinary research and technological innovation.

5.
Angew Chem Int Ed Engl ; 63(13): e202316902, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38180106

RESUMO

We report soluble tetrakis-biphenylyl substituted pentacenes comprised of sp2 carbons and synthesized from pentacene-5,7,12,14-tetraone. Intramolecular Yamamoto coupling of two tetrakis(chlorobiphenylyl)pentacenes yields helical, doubly wrapped pentacenes, in which the quaterphenylene units solubilize the pentacenes and shield their central anthracene units to an unprecedented degree. The criss-cross-bridged pentacenes resist (photo)oxidation, Diels-Alder reactions and are much less reactive than TIPS-ethynylated pentacene. Extension of this concept might provide access to the larger acenes.

6.
Angew Chem Int Ed Engl ; 63(11): e202316596, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38216533

RESUMO

Embedding both boron and nitrogen into the backbone of acenes to generate their isoelectronic structures has significantly enriched the acene chemistry to offer appealing properties. However, only small BN-heteroacenes have been extensively investigated, with BN-heptacenes as the hitherto longest homologue. Herein, we report the synthesis of three new nonacene BN-isosteres via incorporating a pair of antiaromatic B2 C4 and N2 C4 heterocycles, representing a new length record for BN-heteroacenes. The distance between the B2 C4 and N2 C4 rings affects the contribution of the charge-separated resonance forms, leading to tunable antiaromaticity of the two heterocycles. The adjusted local antiaromaticity manifests substantial influence on the molecular orbital arrangement, and consequently, the radiative transition rate of BN-3 is greatly enhanced compared with BN-1 and BN-2, realizing a high fluorescence quantum yield of 92 %. This work provides a novel design concept of large acene BN-isosteres and reveals the importance of BN/CC isosterism on their luminescent properties.

7.
Angew Chem Int Ed Engl ; 63(9): e202317091, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38192200

RESUMO

The character of the electronic structure of acenes has been the subject of longstanding discussion. However, convincing experimental evidence of their open-shell character has so far been missing. Here, we present the on-surface synthesis of tridecacene molecules by thermal annealing of octahydrotridecacene on a Au(111) surface. We characterized the electronic structure of the tridecacene by scanning probe microscopy, which reveals the presence of an inelastic signal at 126 meV. We attribute the inelastic signal to spin excitation from the singlet diradical ground state to the triplet excited state. To rationalize the experimental findings, we carried out many-body ab initio calculations as well as model Hamiltonians to take into account the effect of the metallic substrate. Moreover, we provide a detailed analysis of how the dynamic electron correlation and virtual charge fluctuation between the molecule and metallic surface reduces the singlet-triplet band gap. Thus, this work provides the first experimental confirmation of the magnetic character of tridecacene.

8.
Beilstein J Org Chem ; 19: 1895-1911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116241

RESUMO

There has been a growing emphasis on the synthesis of polycyclic conjugated compounds, driven by their distinct structural characteristics that make them valuable candidates for use in cutting-edge technologies. In particular, acenes, a subgroup of polycyclic aromatic compounds, are sought-after synthetic targets due to their remarkable optoelectronic properties which stem from their π-conjugation and planar structure. Despite all these promising characteristics, acenes exhibit significant stability problems when their conjugation enhances. Various approaches have been developed to address this stability concern. Among these strategies, one involves the incorporation of the biphenylene unit into acene frameworks, limiting the electron delocalization through the antiaromatic four-membered ring. This review gives a brief overview of the methods used in the synthesis of biphenylenes and summarizes the recent studies on biphenylene-containing polycyclic conjugated compounds, elucidating their synthesis, and distinct optoelectronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA