RESUMO
BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized with progressive cardiac fibrosis and heart failure. However, the exact mechanism driving the progression of cardiac fibrosis and heart failure in ACM remains elusive. This study aims to investigate the underlying mechanisms of progressive cardiac fibrosis in ACM caused by newly identified Desmoglein-2 (DSG2) variation. METHODS: We identified homozygous DSG2F531C variant in a family with 8 ACM patients using whole-exome sequencing and generated Dsg2F536C knock-in mice. Neonatal and adult mouse ventricular myocytes isolated from Dsg2F536C knock-in mice were used. We performed functional, transcriptomic and mass spectrometry analyses to evaluate the mechanisms of ACM caused by DSG2F531C variant. RESULTS: All eight patients with ACM were homozygous for DSG2F531C variant. Dsg2F536C/F536C mice displayed cardiac enlargement, dysfunction, and progressive cardiac fibrosis in both ventricles. Mechanistic investigations revealed that the variant DSG2-F536C protein underwent misfolding, leading to its recognition by BiP within the endoplasmic reticulum, which triggered endoplasmic reticulum stress, activated the PERK-ATF4 signaling pathway and increased ATF4 levels in cardiomyocytes. Increased ATF4 facilitated the expression of TGF-ß1 in cardiomyocytes, thereby activating cardiac fibroblasts through paracrine signaling and ultimately promoting cardiac fibrosis in Dsg2F536C/F536C mice. Notably, inhibition of the PERK-ATF4 signaling attenuated progressive cardiac fibrosis and cardiac systolic dysfunction in Dsg2F536C/F536C mice. CONCLUSIONS: Hyperactivation of the ATF4/TGF-ß1 signaling in cardiomyocytes emerges as a novel mechanism underlying progressive cardiac fibrosis in ACM. Targeting the ATF4/TGF-ß1 signaling may be a novel therapeutic target for managing ACM.
Assuntos
Fator 4 Ativador da Transcrição , Desmogleína 2 , Fibrose , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Desmogleína 2/genética , Desmogleína 2/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genéticaRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of chronic liver disease worldwide. Spermidine (SPD), a naturally occurring polyamine, has shown potential in alleviating the accumulation of hepatic lipids and reducing NAFLD symptoms in overweight mice. Nonetheless, the specific mechanisms through which SPD exerts its effects remain largely unknown. This study seeks to explore the protective effects of SPD on NAFLD and to clarify the underlying mechanisms. An in vitro model of NAFLD was established by inducing steatosis in AML-12 cells through the use of free fatty acids (FFAs). Our experimental results demonstrate that SPD significantly reduces NAFLD development induced by FFAs. This reduction is primarily achieved through the inhibition of cellular ferroptosis, as evidenced by decreased levels of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, SPD was found to enhance cellular activity and ameliorate mitochondrial dysfunction and oxidative stress caused by FFA exposure. Further mechanistic studies have revealed that SPD upregulates the expression of solute transporter family 7a member 11 (SLC7A11), glutamate-cysteine ligase modifier subunit (GCLM), and glutathione peroxidase (GPX4). This upregulation is mediated by the activation of activating transcription factor 4 (ATF4). Knockdown experiments of ATF4 confirmed that its inhibition reverses the upregulation of SLC7A11, GCLM, and GPX4, thereby negating the protective effects of SPD. In conclusion, our findings suggest that SPD mitigates NAFLD by modulating the ATF4/SLC7A11/GCLM/GPX4 signaling pathway, resulting in the suppression of ferroptosis and the improvement of cellular health. These insights provide a novel molecular mechanism and identify potential therapeutic targets for the treatment of NAFLD.
Assuntos
Fator 4 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Espermidina , Ferroptose/efeitos dos fármacos , Espermidina/farmacologia , Espermidina/metabolismo , Animais , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
INTRODUCTION: ATF4, a stress-responsive transcription factor that upregulates adaptive genes, is a potential prognostic marker and modulator of glutamine metabolism in breast cancer. However, its exact role remains to be elucidated. METHODS: ATF4 expression was evaluated at genomic and transcriptomic levels using METABRIC (n = 1,980), GeneMiner (n = 4,712), and KM-Plotter datasets. Proteomic expression was assessed via immunohistochemistry (n = 2,225) in the Nottingham Primary Breast Cancer Series. ATF4 genomic copy number (CN) variation and mRNA/protein in association with clinicopathological parameters, amino acid transporters (AATs), and patient outcome were investigated. RESULTS: Genomic, transcriptomic, and proteomic overexpression of ATF4 was associated with more aggressive ER-negative tumours. ATF4 mRNA and protein expression were significantly associated with increased expression of glutamine related AATs including SLC1A5 (p < 0.01) and SLC7A11 (p < 0.02). High ATF4 and SLC1A5 protein expression was significantly associated with shorter breast cancer-specific survival (p < 0.01), especially in ER+ tumours (p < 0.01), while high ATF4 and SLC7A11 protein expression was associated with shorter survival (p < 0.01). CONCLUSION: These findings suggest a complex interplay between ATF4 and AATs in breast cancer biology and underscore the potential role for ATF4 as a prognostic marker in ER+ breast cancer, offering a unique opportunity for risk stratification and personalized treatment strategies.
RESUMO
BACKGROUND: The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS: Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS: The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION: The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.
Assuntos
Fator 4 Ativador da Transcrição , Apoptose , Cartilagem Articular , Condrócitos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Histona Desacetilases , Ratos Sprague-Dawley , Animais , Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Masculino , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Humanos , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Transcrição CHOP/metabolismo , Células Cultivadas , Osteoartrite/patologia , Osteoartrite/metabolismo , Proteínas RepressorasRESUMO
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Assuntos
Fator 4 Ativador da Transcrição , Envelhecimento , Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Fator 4 Ativador da Transcrição/metabolismo , Envelhecimento/metabolismo , Animais , Transdução de Sinais/fisiologiaRESUMO
Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.
Assuntos
Fator 4 Ativador da Transcrição , Animais Recém-Nascidos , Bilirrubina , Glucuronosiltransferase , Fígado , PPAR alfa , Triclosan , Animais , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Triclosan/farmacologia , Humanos , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Knockout , Feminino , Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genéticaRESUMO
Acute kidney injury (AKI) is a common and serious global health problem with high risks of mortality and the development of chronic kidney diseases. Leonurine is a unique bioactive component from Leonurus japonicus Houtt. and exerts antioxidant, antiapoptotic or anti-inflammatory properties. This study aimed to explore the benefits of leonurine on AKI and the possible mechanisms involved, with a particular foc on the regulation of ferroptosis and endoplasmic reticulum (ER) stress. Our results showed that leonurine exhibited prominent protective effects against AKI, as evidenced by the amelioration of histopathological alterations and reduction of renal dysfunction. In addition, leonurine significantly suppressed ferroptosis in AKI both in vivo and in vitro by effectively restoring ultrastructural abnormalities in mitochondria, decreasing ASCL4 and 4-HNE levels, scavenging reactive oxygen species (ROS), as well as increasing GPX4 and GSH levels. In parallel, leonurine also markedly mitigated ER stress via down-regulating PERK, eIF-2α, ATF4, CHOP and CHAC1. Further studies suggested that ER stress was closely involved in erastin-induced ferroptosis, and leonurine protected tubular epithelial cells in vitro by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway. Mechanistically, ATF4 silencing in vitro regulated CHOP and ACSL4 expressions, ultimately weakening both ER stress and ferroptosis. Notably, analyses of single-cell RNA sequencing data revealed that ATF4, CHOP and ASCL4 in renal tubular cells were all abnormally upregulated in patients with AKI compared to healthy controls, suggesting their contributions to the pathogenesis of AKI. Altogether, these findings suggest that leonurine alleviates AKI by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway, thus providing novel mechanisms for AKI treatment.
Assuntos
Fator 4 Ativador da Transcrição , Injúria Renal Aguda , Estresse do Retículo Endoplasmático , Ferroptose , Ácido Gálico , Transdução de Sinais , Fator de Transcrição CHOP , Ferroptose/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Fator 4 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais , Fator de Transcrição CHOP/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Espécies Reativas de Oxigênio/metabolismo , Substâncias Protetoras/farmacologiaRESUMO
BACKGROUND: The purpose of this study was to investigate the specific effects of signal transducer and activator of transcription 4 (STAT4)-induced long intergenic nonprotein coding RNA 1278 (LINC01278) on the growth of non-small cell lung cancer (NSCLC) cells involved in the microRNA (miR)-877-5p/activated transcription factor 4 (ATF4) axis. METHODS: NSCLC tumor tissue and adjacent normal tissue were collected. Human normal lung epithelial cell BEAS-2B and human NSCLC cell lines (H1299, H1975, A549, H2228) were collected. The expression levels of STAT4, LINC01278, miR-877-5p, and ATF4 were detected. A549 cells were screened for subsequent experiments. The proliferation ability of cells was detected by colony formation experiment. Cell apoptosis was tested by flow cytometry. Scratch test and transwell assay were used to detect the migration and invasion ability of cells. Biological function of LINC01278 in NSCLC was confirmed by xenograft experiments. RESULTS: Low expression miR-877-5p and high expression of STAT4, LINC01278 and ATF4 were detected in NSCLC. Silenced LINC01278 in A549 cell depressed cell proliferation, migration and invasion, but facilitated cell apoptosis. LINC01278 was positively correlated with STAT4 and could directly bind to miR-877-5p. Upregulating miR-877-5p suppressed NSCLC cell progression, while downregulating miR-877-5p had the opposite effect. Upregulating miR-877-5p abrogated the effects of silenced LINC01278 on NSCLC cell progression. MiR-877-5p targeted ATF4. ATF4 upregulation could partly restore the carcinogenic effect of LINC01278 in vitro and in vivo. CONCLUSION: Our data supports that STAT4-induced upregulation of LINC01278 promotes NSCLC progression by modulating the miR-877-5p/ATF4 axis, suggesting a novel direction for NSCLC treatment.
Assuntos
Fator 4 Ativador da Transcrição , Carcinoma Pulmonar de Células não Pequenas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT4 , Animais , Feminino , Humanos , Masculino , Camundongos , Células A549 , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT4/genética , Regulação para CimaRESUMO
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.
Assuntos
Fator 4 Ativador da Transcrição , Doenças Neurodegenerativas , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Lipídeos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Doenças Neurodegenerativas/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Cultivadas , GTP Fosfo-Hidrolases/metabolismoRESUMO
Objective: To investigate the effects of carbon black and cadmium (Cd) combined exposure on autophagy and inflammatory response mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in human bronchial epithelial (16HBE) cells. Methods: In January 2022, human bronchial epithelial (16HBE) cells were resuscitated and cultured. Carbon black nanoparticles (CBNPs) were oxidized to adsorb Cd ions to construct "CBNPs-Cd" complexes. CCK-8 assay was used to detect the effects of different concentrations and time combinations of CBNPs and Cd on the viability of 16HBE cells. The subsequent dose groups were exposed to 2 µg/ml Cd, 100 µg/ml CBNPs, 100 µg/ml CBNPs+2 µg/ml Cd for 24 h. The number of autophagosomes and autolysosomes was detected by transmission electron microscopy. Western blotting was used to detect the protein expressions of PERK, eukaryotic initiation factor 2α (eIf2α), activating transcription factor 4 (ATF4), sequestosome 1 (SQSTM1/P62), and microtubule-associated protein 1 light chain 3 (LC3). After PERK gene was silenced by siRNA technology, the changes of autophagy marker proteins P62 and LC3 were detected, and the expressions of inflammatory factors interleukin-6 (IL6) and interleukin-8 (IL8) were detected by fluorescence quantitative PCR technique. One-way ANOVA analysis was used to compare three groups or more. LSD test was used for comparison between two groups. Factorial analysis was used for multivariate component analysis. Results: There was no significant change in cell viability of 16HBE after 24 h exposure to CBNPs and Cd alone or combined (P>0.05). Compared with the control group, the expressions of P62 and LC3 in 16HBE cells were significantly increased in the CBNPs and Cd alone/combined exposure group (P<0.05), and the number of autophagosomes and autophagolysosomes in the combined exposure group was increased compared with other groups. Compared with the control group, CBNPs and Cd alone exposure group had no significant effects on p-PERK/PERK and p-eIf2α/eIf2α protein expression (P>0.05). However, the protein expressions of p-PERK/PERK and p-eIf2α/eIf2α and ATF4 were all increased in the combined exposure group (P<0.05), and the levels of IL6 and IL8 in 16HBE cells in the combined exposure group of CBNPs and Cd were significantly higher than those in the control group (P<0.05). The levels of LC3 protein, IL6 and IL8 were decreased in the CBNPs-Cd combined exposure group after knockdown of PERK gene (P<0.05). The results of factorial analysis showed that exposure to CBNPs and Cd had significant effects on the expression of P62, LC3 and IL6 (P<0.05), but the interaction between the two chemicals had no statistical significance (P>0.05) . Conclusion: CBNPs-Cd combined exposure may inhibit autophagy and increase inflammation in human bronchial epithelial cells through activation of PERK-eIf2α-ATF4 pathway.
Assuntos
Cádmio , Fuligem , Humanos , Cádmio/toxicidade , Fuligem/toxicidade , Interleucina-8 , Interleucina-6 , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/farmacologia , Autofagia , Células Epiteliais/metabolismo , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , InflamaçãoRESUMO
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Assuntos
Estresse Fisiológico , Humanos , Animais , Estresse Fisiológico/fisiologia , Organelas/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismoRESUMO
Hepatic ischemia-reperfusion (IR) injury is a complex systemic process causing a series clinical problem. C/EBPα is a key transcription factor for hepatocyte function, but its role and mechanism in regulating hepatic IR injury are largely unknown. Occluding portal vein and hepatic artery was used to establish a mouse model of hepatic IR injury. C/EBPα expression was decreased in IR-injured liver compared with the sham, accompanied by increased contents of serum alanine transaminase (ALT), aspartate transaminase (AST), high mobility group box-1, and proportion of hepatic cells. Oxygen and glucose deprivation/recovery (OGD/R) was used to establish a cellular hepatic IR model in WRL-68 hepatocytes in vitro, and C/EBPα was overexpressed in the hepatocytes to evaluate its effect on hepatic IR injury. OGD/R promoted oxidative stress, cell apoptosis and endoplasmic reticulum (ER) stress in hepatocytes, which was reversed by C/EBPα overexpression. Then, we found that C/EBPα promoted histone deacetylase 1 (HDAC1) transcription through binding to HDAC1 promoter. Moreover, HDAC1 deacetylated the activating transcription factor 4 (ATF4), a key positive regulator of ER stress. Trichostatin-A (an HDAC inhibitor) or ATF4 overexpression reversed the improvement of C/EBPα on OGD/R-induced ER stress and hepatocyte dysfunction. 4-Phenylbutyric acid (an endoplasmic reticulum stress inhibitor) also reversed the hepatic IR injury induced by ATF4 overexpression. Finally, lentivirus-mediated C/EBPα overexpression vector was applied to administrate hepatic IR mice, and the results showed that C/EBPα overexpression ameliorated IR-induced hepatic injury, manifesting with reduced ALT/AST, oxidative stress and ER stress. Altogether, our findings suggested that C/EBPα ameliorated hepatic IR injury by inhibiting ER stress via HDAC1-mediated deacetylation of ATF4 promoter.
Assuntos
Fator 4 Ativador da Transcrição , Traumatismo por Reperfusão , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia , Apoptose , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , Estresse do Retículo Endoplasmático , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Fígado/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.
Assuntos
Actomiosina , Temperatura Corporal , Camundongos , Masculino , Feminino , Animais , Actomiosina/metabolismo , Termogênese/genética , Fígado/metabolismo , Temperatura Baixa , Tecido Adiposo Marrom/metabolismo , Aminoácidos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Activating transcription factor 4 (ATF4) is a fundamental basic region/leucine zipper transcription factor, responds to various stress signals, and plays crucial roles in normal metabolic and stress response processes. Although its functions in human health and disease are not completely understood, compelling evidence underscores ATF4 is indispensable for multiple stages and lineages of erythroid development, including the regulation of fetal liver hematopoietic stem cells, induction of terminal erythroid differentiation, and maintenance of erythroid homeostasis. [Formula: see text]-Thalassemia is a blood disorder arising from mutations in the [Formula: see text]-globin gene. Reactivating the expression of the [Formula: see text]-globin gene in adult patients has emerged as a promising therapeutic strategy for ameliorating clinical symptoms associated with [Formula: see text]-thalassemia. Recent research has suggested that ATF4 contributes to decreased fetal hemoglobin (HbF) level through its binding to potent negative regulators of HbF, such as BCL11A and MYB. Notably, evidence also suggests a contrasting outcome where increased ATF4 protein levels are associated with enhanced HbF at the transcriptional level. Consequently, the identification of mechanisms that modulate ATF4-mediated [Formula: see text]-globin transcription and its effects on erythroid development may unveil novel targets for [Formula: see text]-thalassemia treatment.
RESUMO
Malignant ascites (MA) is a common manifestation of advanced gastric cancer (GC) with peritoneal metastasis (PM), which usually indicates a poor prognosis. The present study aimed to explore the effects of MA, a unique microenvironment of PM, on the proliferation of cancer cells and investigate the underlying mechanisms. Ex vivo experiments demonstrated that GC cells treated with MA exhibited enhanced proliferation. RNA sequencing indicated that asparagine synthetase (ASNS) was one of the differentially expressed genes in GC cells following incubation with MAs. Furthermore, the present study suggested that MA induced an upregulation of ASNS expression and the stimulatory effect of MA on cancer cell proliferation was alleviated upon ASNS downregulation. Activating transcription factor 4 (ATF4), a pivotal transcription factor regulating ASNS, was upregulated when cells were treated with MA supernatant. After ATF4 knockdown, the proliferation of MA-treated GC cells and the expression of ASNS decreased. In addition, the decline in the proliferation of the ATF4-downregulated AGS GC cell line was rescued by ASNS upregulation. The findings indicated that MA could promote the proliferation of GC cells via activation of the ATF4-ASNS axis. Hence, it may be a potential target for treating GC with PM and MA.
RESUMO
The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent.
RESUMO
Intermittent fasting (IF) is a diet with salutary effects on cognitive aging, Alzheimer's disease (AD), and stroke. IF restricts a number of nutrient components, including glucose. 2-deoxyglucose (2-DG), a glucose analog, can be used to mimic glucose restriction. 2-DG induced transcription of the pro-plasticity factor, Bdnf, in the brain without ketosis. Accordingly, 2-DG enhanced memory in an AD model (5xFAD) and functional recovery in an ischemic stroke model. 2-DG increased Bdnf transcription via reduced N-linked glycosylation, consequent ER stress, and activity of ATF4 at an enhancer of the Bdnf gene, as well as other regulatory regions of plasticity/regeneration (e.g., Creb5, Cdc42bpa, Ppp3cc, and Atf3) genes. These findings demonstrate an unrecognized role for N-linked glycosylation as an adaptive sensor to reduced glucose availability. They further demonstrate that ER stress induced by 2-DG can, in the absence of ketosis, lead to the transcription of genes involved in plasticity and cognitive resilience as well as proteostasis.
Assuntos
Doença de Alzheimer , Cetose , Acidente Vascular Cerebral , Humanos , Desoxiglucose/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glucose/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismoRESUMO
Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.
Assuntos
Hexoquinase , Sepse , Animais , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Citocinas/metabolismo , Glicólise , Hexoquinase/genética , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tolerância Imunológica , Ácido Láctico , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Mamíferos/metabolismo , Sepse/genética , Sepse/metabolismo , UbiquitinaçãoRESUMO
Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.
Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismoRESUMO
Background & Aims: Sepsis-induced acute liver dysfunction often occurs early in sepsis and can exacerbate the pathology by triggering multiple organ dysfunction and increasing lethality. Nevertheless, our understanding of the cellular heterogeneity and dynamic regulation of major nonparenchymal cell lineages remains unclear. Methods: Here, single-cell RNA sequencing was used to profile multiple nonparenchymal cell subsets and dissect their crosstalk during sepsis-induced acute liver dysfunction in a clinically relevant polymicrobial sepsis model. The transcriptomes of major liver nonparenchymal cells from control and sepsis mice were analysed. The alterations in the endothelial cell and neutrophil subsets that were closely associated with acute liver dysfunction were validated using multiplex immunofluorescence staining. In addition, the therapeutic efficacy of inhibiting activating transcription factor 4 (ATF4) in sepsis and sepsis-induced acute liver dysfunction was explored. Results: Our results present the dynamic transcriptomic landscape of major nonparenchymal cells at single-cell resolution. We observed significant alterations and heterogeneity in major hepatic nonparenchymal cell subsets during sepsis. Importantly, we identified endothelial cell (CD31+Sele+Glut1+) and neutrophil (Ly6G+Lta4h+Sort1+) subsets that were closely associated with acute liver dysfunction during sepsis progression. Furthermore, we found that ATF4 inhibition alleviated sepsis-induced acute liver dysfunction, prolonging the survival of septic mice. Conclusions: These results elucidate the potential mechanisms and subsequent therapeutic targets for the prevention and treatment of sepsis-induced acute liver dysfunction and other liver-related diseases. Impact and Implications: Sepsis-induced acute liver dysfunction often occurs early in sepsis and can lead to the death of the patient. Nevertheless, the pathogenesis of sepsis-induced acute liver dysfunction is not yet clear. We identified the major cell types associated with acute liver dysfunction and explored their interactions during sepsis. In addition, we also found that ATF-4 inhibition could be invoked as a potential therapeutic for sepsis-induced acute liver dysfunction.