Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Oncol Lett ; 28(4): 455, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39100993

RESUMO

Gastric cancer (GC) is the fourth most deadly cancer globally. The adducin 1 (ADD1) protein is involved in oncogenic signal transduction pathways in several types of cancer, and the rs4961 variant (c.1378 G>T, p.Gly460Trp) of the ADD1 gene is associated with salt-sensitive hypertension, renal cell cancer and breast cancer susceptibility; however, it has not been investigated in GC. The aim of the present study was to evaluate the association between the rs4961 variant and the development of GC and preneoplastic gastric lesions (PGLs) in a population from western Mexico. A total of 225 individuals who underwent an endoscopy were evaluated, of which 71 patients had histopathologically diagnosed GC and 53 patients had PGLs, with 101 patients used as controls. The rs4961 variant was genotyped by using PCR and DNA sequencing. The frequency of the mutated homozygous genotype (TT) of the rs4961 variant was <10% in the three evaluated groups, and the frequency of the minor allele (T) was <21% in the GC, PGL and control groups. Genotypic and allelic frequencies were similarly distributed in all of the studied groups (P>0.05). In summary, in the study population, the rs4961 variant was not associated with GC risk; however, its role in other populations and in other types of cancer is worthy of future research.

2.
Circulation ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708635

RESUMO

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.

3.
Front Aging Neurosci ; 15: 1241750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771520

RESUMO

Background: Tau phosphorylation is a pathological hallmark of Alzheimer's disease (AD). Previously, we reported that the γ-adducin 1-357 fragment is present in the brains of AD patients. However, it remains unknown how γ-adducin regulates tau phosphorylation. Objective: The aim of this project is to investigate the effects of the γ-adducin 1-357 fragment on tau phosphorylation and the kinases involved in this process. Methods: Full-length γ-adducin or the γ-adducin 1-357 fragment was expressed in HEK293 cells, SH-SY5Y cells, and primary neurons. The phosphorylation of tau Ser396 was determined using Western blot and immunofluorescence. Tau P301S transgenic mice were injected with adeno-associated virus encoding full-length γ-adducin or γ-adducin 1-357 fragment to determine the phosphorylation of tau. Results: The γ-adducin 1-357 fragment enhances tau phosphorylation at Ser396. Additionally, the expression of the γ-adducin 1-357 fragment leads to the activation of glycogen synthase kinase-3ß (GSK-3ß). This effect was mitigated by the GSK-3ß inhibitor 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). Conclusion: The γ-adducin 1-357 fragment enhances tau phosphorylation by activating GSK3ß. These results support that the fragmentation of γ-adducin may play a pivotal role in tau pathology.

4.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37044097

RESUMO

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Assuntos
Citoesqueleto , Eritrócitos , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Espectrina/análise , Espectrina/metabolismo , Suínos
5.
Neuropathol Appl Neurobiol ; 49(2): e12890, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36765387

RESUMO

AIMS: Muscleblind-like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models. METHODS: To create Mbnl2 knockout neurons, cDNA encoding Cre-recombinase was delivered into neural progenitors of Mbnl2flox/flox mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two-photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis. RESULTS: We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha-II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2. CONCLUSION: MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis-splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis.


Assuntos
Espinhas Dendríticas , Distrofia Miotônica , Animais , Camundongos , Encéfalo/patologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Distrofia Miotônica/genética , Isoformas de Proteínas/metabolismo
6.
Biomedicines ; 10(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36009414

RESUMO

Changes in F-actin distribution and cortical F-actin morphology are important for blastocyst developmental competence during embryogenesis. However, the effect of paclitaxel as a microtubule stabilizer on embryonic development in pigs remains unclear. We investigated the role of F-actin cytoskeleton stabilization via P38 MAPK activation using paclitaxel to improve the developmental potential of blastocysts in pigs. In this study, F-actin enrichment and adducin expression based on blastomere fragment rate and cytokinesis defects were investigated in cleaved embryos after in vitro fertilization (IVF). Adducin and adhesive junction F-actin fluorescence intensity were significantly reduced with increasing blastomere fragment rate in porcine embryos. In addition, porcine embryos were cultured with 10 and 100 nM paclitaxel for two days after IVF. Adhesive junction F-actin stabilization and p-P38 MAPK activity in embryos exposed to 10 nM paclitaxel increased significantly with blastocyst development competence. However, increased F-actin aggregation, cytokinesis defects, and over-expression of p-P38 MAPK protein by 100 nM paclitaxel exposure disrupted blastocyst development in porcine embryos. In addition, exposure to 100 nM paclitaxel increased the misaligned α-tubulin of spindle assembly and adhesive junction F-actin aggregation at the blastocyst stage, which might be caused by p-P38 protein over-expression-derived apoptosis in porcine embryos.

7.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456952

RESUMO

The intensive use of anesthetic and sedative agents in the neonatal intensive care unit (NICU) has raised controversial concerns about the potential neurodevelopmental risks. This study focused on midazolam (MDZ), a common benzodiazepine regularly used as a sedative on neonates in the NICU. Mounting evidence suggests a single exposure to MDZ during the neonatal period leads to learning disturbances. However, a knowledge gap that remains is how long-term exposure to MDZ during very early stages of life impacts synaptic alterations. Using a preclinical rodent model system, we mimicked a dose-escalation regimen on postnatal day 3 (P3) pups until day 21. Next, purified synaptosomes from P21 control and MDZ animals were subjected to quantitative mass-spectrometry-based proteomics, to identify potential proteomic signatures. Further analysis by ClueGO identified enrichment of proteins associated with actin-binding and protein depolymerization process. One potential hit identified was alpha adducin (ADD1), belonging to the family of cytoskeleton proteins, which was upregulated in the MDZ group and whose expression was further validated by Western blot. In summary, this study sheds new information on the long-term exposure of MDZ during the early stages of development impacts synaptic function, which could subsequently perturb neurobehavioral outcomes at later stages of life.


Assuntos
Midazolam , Proteoma , Animais , Hipnóticos e Sedativos/efeitos adversos , Midazolam/efeitos adversos , Proteômica , Ratos
8.
Genet Med ; 24(2): 319-331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906466

RESUMO

PURPOSE: Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown. METHODS: We used exome sequencing to uncover ADD1 variants associated with intellectual disability (ID) and brain malformations. We studied ADD1 splice isoforms in mouse and human neocortex development with RNA sequencing, super resolution imaging, and immunoblotting. We investigated 4 variant ADD1 proteins and heterozygous ADD1 cells for protein expression and ADD1-ADD2 dimerization. We studied Add1 functions in vivo using Add1 knockout mice. RESULTS: We uncovered loss-of-function ADD1 variants in 4 unrelated individuals affected by ID and/or structural brain defects. Three additional de novo copy number variations covering the ADD1 locus were associated with ID and brain malformations. ADD1 is highly expressed in the neocortex and the corpus callosum, whereas ADD1 splice isoforms are dynamically expressed between cortical progenitors and postmitotic neurons. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. CONCLUSION: Our human and mouse genetics results indicate that pathogenic ADD1 variants cause corpus callosum dysgenesis, ventriculomegaly, and/or ID.


Assuntos
Hidrocefalia , Deficiência Intelectual , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Animais , Variações do Número de Cópias de DNA , Humanos , Hidrocefalia/genética , Deficiência Intelectual/genética , Camundongos , Fenótipo
9.
Cell Mol Life Sci ; 78(13): 5371-5379, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085116

RESUMO

The identification of the membrane periodic skeleton (MPS), composed of a periodic lattice of actin rings interconnected by spectrin tetramers, was enabled by the development of super-resolution microscopy, and brought a new exciting perspective to our view of neuronal biology. This exquisite cytoskeleton arrangement plays an important role on mechanisms regulating neuronal (dys)function. The MPS was initially thought to provide mainly for axonal mechanical stability. Since its discovery, the importance of the MPS in multiple aspects of neuronal biology has, however, emerged. These comprise its capacity to act as a signaling platform, regulate axon diameter-with important consequences on the efficiency of axonal transport and electrophysiological properties- participate in the assembly and function of the axon initial segment, and control axon microtubule stability. Recently, MPS disassembly has also surfaced as an early player in the course of axon degeneration. Here, we will discuss the current knowledge on the role of the MPS in axonal physiology and disease.


Assuntos
Transporte Axonal , Axônios/fisiologia , Membrana Celular/metabolismo , Citoesqueleto/fisiologia , Espectrina/metabolismo , Animais , Humanos
10.
Prog Neurobiol ; 203: 102074, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33992672

RESUMO

Neurite deficits and synaptic dysfunction contribute to cognitive impairments in Alzheimer's disease (AD). However, the underlying molecular mechanisms remain unclear. Here, we show that γ-adducin, a cytoskeleton-associated protein that assembles the spectrin-actin framework, is cleaved by a lysosomal cysteine proteinase named asparagine endopeptidase (AEP). AEP is upregulated and activated during aging and cleaves γ-adducin at N357, disrupting spectrin-actin assembly. Moreover, γ-adducin (1-357) fragment downregulates the expression of Rac2, leading to defects in neurite outgrowth. Expression of the γ-adducin (1-357) fragment in the hippocampus of tau P301S transgenic mice resulted in significant AD-like pathology and cognitive deficits. In summary, AEP-mediated fragmentation of γ-adducin plays a vital role in AD. Blocking the activity of AEP might be a novel therapeutic target for AD.


Assuntos
Doença de Alzheimer , Actinas , Animais , Proteínas de Ligação a Calmodulina , Camundongos , Neuritos , Espectrina
11.
Am J Physiol Renal Physiol ; 320(1): F97-F113, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308016

RESUMO

We recently reported that the enhanced susceptibility to chronic kidney disease (CKD) in the fawn-hooded hypertensive (FHH) rat is caused, at least in part, by a mutation in γ-adducin (ADD3) that attenuates renal vascular function. The present study explored whether Add3 contributes to the modulation of podocyte structure and function using FHH and FHH.Add3 transgenic rats. The expression of ADD3 on the membrane of primary podocytes isolated from FHH was reduced compared with FHH.Add3 transgenic rats. We found that F-actin nets, which are typically localized in the lamellipodia, replaced unbranched stress fibers in conditionally immortalized mouse podocytes transfected with Add3 Dicer-substrate short interfering RNA (DsiRNA) and primary podocytes isolated from FHH rats. There were increased F/G-actin ratios and expression of the Arp2/3 complexes throughout FHH podocytes in association with reduced synaptopodin and RhoA but enhanced Rac1 and CDC42 expression in the renal cortex, glomeruli, and podocytes of FHH rats. The expression of nephrin at the slit diaphragm and the levels of focal adhesion proteins integrin-α3 and integrin-ß1 were decreased in the glomeruli of FHH rats. Cell migration was enhanced and adhesion was reduced in podocytes of FHH rats as well as in immortalized mouse podocytes transfected with Add3 DsiRNA. Mean arterial pressures were similar in FHH and FHH.Add3 transgenic rats at 16 wk of age; however, FHH rats exhibited enhanced proteinuria associated with podocyte foot process effacement. These results demonstrate that reduced ADD3 function in FHH rats alters baseline podocyte pathophysiology by rearrangement of the actin cytoskeleton at the onset of proteinuria in young animals.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Hipertensão/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Insuficiência Renal Crônica/metabolismo , Citoesqueleto de Actina/patologia , Animais , Pressão Arterial , Proteínas de Ligação a Calmodulina/genética , Adesão Celular , Linhagem Celular , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Adesões Focais/metabolismo , Adesões Focais/patologia , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Integrinas/metabolismo , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Ratos Endogâmicos , Ratos Transgênicos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Transdução de Sinais
13.
Appl Microbiol Biotechnol ; 104(10): 4417-4433, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215704

RESUMO

Here, we used codon usage technology to generate two codon-modified human papillomavirus (HPV)16 E7 genes and, together with wild-type E7, to construct three HPV16 E7 gene plasmids: Wt-E7, HB1-E7, and HB2-E7. The three HPV 16 E7 plasmids were used to investigate how HPV16 E7 protein was expressed in different cells and how this oncoprotein deregulated cellular and molecular events in human keratinocytes to induce carcinogenesis. We discovered that codon usage of HPV16 E7 gene played a key role in determining expression of E7 oncoprotein in all tested cells. HPV16 E7 inhibited significantly expression of pRb to impair keratinocyte differentiation and disrupted development of skin epidermis in mice. HPV16 E7 increased substantially the number of G0/G1 cells associated with upregulation of cyclin D2 and downregulation of cyclin B1 in keratinocytes. HPV16 E7 not only inhibited expression of involucrin and α-spectrin but also disrupted the organization of involucrin filaments and spectrin cytoskeleton. Furthermore, HPV16 E7 inhibited expression of ß-adducin, destroyed its cytoskeletal structure and induced phosphorylation of ß-adducin(Ser662) in keratinocytes. Importantly, HPV16 E7 induced carcinogenesis in mice associated with expression of phosphorylated ß-adducin(Ser662) and its nucleus-translocation. In conclusion, we provided evidence that HPV16 E7 oncoprotein inhibited keratinocyte differentiation in vitro and in vivo leading to carcinogenesis through cell cycle arrest and disruption of pRb/involucrin/spectrin/adducin cascade.


Assuntos
Carcinogênese/genética , Ciclo Celular , Diferenciação Celular/genética , Uso do Códon , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/genética , Animais , Células CHO , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Células Cultivadas , Cricetulus , Feminino , Células HEK293 , Papillomavirus Humano 16 , Humanos , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Repressoras/genética , Espectrina/genética , Espectrina/metabolismo
14.
Cancer Lett ; 474: 118-126, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958485

RESUMO

Adducin 3 (ADD3) is a crucial assembly factor in the actin cytoskeleton and has been found to be aberrantly expressed in various cancers, including glioblastoma multiforme (GBM). It has previously been studied in array-based studies with controversial findings as to its functional role in glioma. In microarray analyses of 452 glioma specimens, we found significant downregulation of ADD3 in GBM, but not in less malignant gliomas, compared to normal brain tissue, which suggests that its downregulation might underlie critical events during malignant progression. We also found that ADD3 was functionally dependent on cell-matrix interaction. In our in vivo study, the proliferative and angiogenic capacity of ADD3-depleted GBM cells was promoted, possibly through PCNA, while p53 and p21 expression was suppressed, and pro-angiogenic signals were induced through VEGF-VEGFR-2-mediated activation in endothelial cells. With correlative in vitro, in vivo, and clinical data, we provide compelling evidence on the putative tumor-suppressive role of ADD3 in modulating GBM growth and angiogenesis. As a preclinical study, our research offers a better understanding of the pathogenesis of glioma malignant progression for the benefit of future investigations.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proliferação de Células , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neovascularização Patológica/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ligação a Calmodulina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Immunol ; 10: 2706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824498

RESUMO

Alpha-adducin (Add1) is a critical component of the actin-spectrin network in erythrocytes, acting to cap the fast-growing, barbed ends of actin filaments, and recruiting spectrin to these junctions. Add1 is highly expressed in T cells, but its role in T-cell activation has not been examined. Using a conditional knockout model, we show that Add1 is necessary for complete activation of CD4+ T cells in response to low levels of antigen but is dispensable for CD8+ T cell activation and response to infection. Surprisingly, costimulatory signals through CD28 were completely abrogated in the absence of Add1. This study is the first to examine the role of actin-capping in T cells, and it reveals a previously unappreciated role for the actin cytoskeleton in regulating costimulation.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Ativação Linfocitária , Linfócitos T/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Imunofenotipagem , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia
16.
Biol Psychiatry ; 86(3): 196-207, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31060804

RESUMO

BACKGROUND: Depression is the most common psychiatric condition in Huntington's disease (HD), with rates more than twice those found in the general population. At the present time, there is no established molecular evidence to use as a basis for depression treatment in HD. Indeed, in some patients, classic antidepressant drugs exacerbate chorea or anxiety. Cyclin-dependent kinase 5 (Cdk5) has been involved in processes associated with anxiety and depression. This study evaluated the involvement of Cdk5 in the development and prevalence of depressive-like behaviors in HD and aimed to validate Cdk5 as a target for depression treatment. METHODS: We evaluated the impact of pharmacological inhibition of Cdk5 in depressive-like and anxiety-like behaviors in Hdh+/Q111 knock-in mutant mice by using a battery of behavioral tests. Biochemical and morphological studies were performed to define the molecular mechanisms acting downstream of Cdk5 activation. A double huntingtin/DARPP-32 (dopamine- and cAMP-regulated phosphoprotein 32) knock-in mutant mouse was generated to analyze the role of DARPP-32 in HD depression. RESULTS: We found that Hdh+/Q111 mutant mice exhibited depressive-like, but not anxiety-like, behaviors starting at 2 months of age. Cdk5 inhibition by roscovitine infusion prevented depressive-like behavior and reduced DARPP-32 phosphorylation at Thr75 in the nucleus accumbens. Hdh+/Q111 mice heterozygous for DARPP-32 Thr75Ala point mutation were resistant to depressive-like behaviors. We identified ß-adducin phosphorylation as a Cdk5 downstream mechanism potentially mediating structural spine plasticity changes in the nucleus accumbens and depressive-like behavior. CONCLUSIONS: These results point to Cdk5 in the nucleus accumbens as a critical contributor to depressive-like behaviors in HD mice by altering DARPP-32/ß-adducin signaling and disrupting the dendritic spine cytoskeleton.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Doença de Huntington/enzimologia , Núcleo Accumbens/metabolismo , Animais , Quinase 5 Dependente de Ciclina/genética , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Feminino , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Vias Neurais/fisiopatologia , Fosforilação
17.
J Cell Biochem ; 120(3): 4613-4619, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552709

RESUMO

BACKGROUND: Recently, the role of α-adducin rs4961 polymorphism in hypertension (HTN) was intensively analyzed, but the results of these studies were inconsistent. Therefore, we performed this study to better assess the relationship between α-adducin rs4961 polymorphism and the likelihood of HTN. METHODS: Eligible studies were searched in PubMed, Medline, Embase, and Web of Science. Odds ratios with 95% confidence intervals were used to assess the relationship between α-adducin rs4961 polymorphism and HTN. RESULTS: A total of 33 studies with 40 432 participants were analyzed. Significant associations with the likelihood of HTN were detected for the α-adducin rs4961 polymorphism with fixed effect models (FEM) (dominant model: P = 0.003; allele model: P = 0.003), but not with random effect models (REM). Further subgroup analysis according to ethnicity of participants revealed that the α-adducin rs4961 polymorphism was significantly associated with the likelihood of HTN in Asians (7721 cases and 8299 controls) with both FEMs (dominant model: P < 0.0001; additive model: P = 0.01; allele model: P < 0.0001) and REMs (dominant model: P = 0.0005; additive model: P = 0.03; allele model: P = 0.0006). CONCLUSIONS: Our findings indicate that the α-adducin rs4961 polymorphism may serve as a genetic biomarker of HTN in Asians.


Assuntos
Povo Asiático/genética , Proteínas de Ligação a Calmodulina/genética , Hipertensão , Polimorfismo Genético , Feminino , Humanos , Hipertensão/etnologia , Hipertensão/genética , Masculino
18.
Int J Mol Sci ; 19(7)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970843

RESUMO

The endogenous ouabain (EO) is a steroid hormone secreted by the adrenal gland with cardio-tonic effects. In this article, we have reviewed and summarized the most recent reports about EO, particularly with regard to how it may interact with specific genetic backgrounds. We have focused our attention on the EO's potential pathogenic role in several diseases, including renal failure, essential hypertension and heart failure. Notably, these reports have demonstrated that EO acts as a pro-hypertrophic and growth-promoting hormone, which might lead to a cardiac remodeling affecting cardiovascular functions and structures. In addition, a possible role of EO in the development of acute kidney injury has been hypothesized. During the last decays, many important improvements permitted a deeper understanding of EO's metabolisms and functions, including the characteristics of its receptor and the effects of its activation. Such progresses indicated that EO has significant implications in the pathogenesis of many common diseases. The patho-physiological role of EO in the development of hypertension and other cardiac and renal complications have laid the basis for the development of a new selective compound that could selectively modulate the genetic and molecular mechanisms involved in EO’s action. It is evident that the knowledge of EO has incredibly increased; however, many important areas remain to be further investigated.


Assuntos
Hipertensão/metabolismo , Hipertensão/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Ouabaína/metabolismo , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Humanos
19.
EMBO Rep ; 19(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925526

RESUMO

Bipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin-binding protein adducin-1 (ADD1) is phosphorylated at S726 during mitosis. S726-phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette-like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re-expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Polos do Fuso/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Deleção de Genes , Células HEK293 , Células HeLa , Humanos , Mitose , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica
20.
Biochem Biophys Res Commun ; 494(1-2): 234-241, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29032200

RESUMO

Increasing evidence shows that immune-mediated mechanisms may contribute to the pathogenesis of central nervous system disorders including cerebellar ataxias, as indicated by the aberrant production of neuronal surface antibodies. We previously reported a patient with cerebellar ataxia associated with production of a new anti-neuronal antibody, anti-seizure-related 6 homolog like 2 (Sez6l2). Sez6l2 is a type 1 membrane protein that is highly expressed in the hippocampus and cerebellar cortex and mice lacking Sez6l2 protein family members develop ataxia. Here we used a proteomics-based approach to show that serum derived from this patient recognizes the extracellular domain of Sez6l2 and that Sez6l2 protein binds to both adducin (ADD) and glutamate receptor 1 (GluR1). Our results indicate that Sez6l2 is one of the auxiliary subunits of the AMPA receptor and acts as a scaffolding protein to link GluR1 to ADD. Furthermore, Sez6l2 overexpression upregulates ADD phosphorylation, whereas siRNA-mediated downregulation of Sez612 prevents ADD phosphorylation, suggesting that Sez6l2 modulates AMPA-ADD signal transduction.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Ataxia Cerebelar/etiologia , Ataxia Cerebelar/imunologia , Ataxia Cerebelar/metabolismo , Córtex Cerebral/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Neurogênese/fisiologia , Fosforilação , Ligação Proteica , Receptores de AMPA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA