Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Microb Pathog ; 196: 106987, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39374885

RESUMO

Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 µM/mL) and NE (30 and 50 µM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 µM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 µM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.


Assuntos
Biofilmes , Galinhas , Epinefrina , Regulação Bacteriana da Expressão Gênica , Norepinefrina , Pasteurellaceae , Fatores de Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Epinefrina/farmacologia , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Pasteurellaceae/genética , Pasteurellaceae/patogenicidade , Pasteurellaceae/efeitos dos fármacos , Pasteurellaceae/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Pasteurellaceae/microbiologia , Infecções por Pasteurellaceae/veterinária
2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273114

RESUMO

Staphylococcus aureus acts both as a colonizing commensal bacterium and invasive pathogen. Nasal colonization is associated with an increased risk of infection caused by the identical strain. In patients with atopic dermatitis (AD), the degree of S. aureus colonization is associated with the severity of the disease. Here, we comparatively analyzed the in vivo transcriptional profile of S. aureus colonizing the nose and non-diseased skin (non-lesional skin) as opposed to the diseased skin (lesional skin-defined here as infection) of 12 patients with AD. The transcriptional profile during the asymptomatic colonization of the nose closely resembled that of the lesional skin samples for many of the genes studied, with an elevated expression of the genes encoding adhesion-related proteins and proteases. In addition, the genes that modify and remodel the cell wall and encode proteins that facilitate immune evasion showed increased transcriptional activity. Notably, in a subgroup of patients, the global virulence regulator Agr (accessory gene regulator) and downstream target genes were inactive during nasal colonization but upregulated in the lesional and non-lesional skin samples. Taken together, our results demonstrate a colonization-like transcriptional profile on diseased skin and suggest a role for the peptide quorum sensing system Agr during the transition from asymptomatic nasal colonization to skin colonization/infection.


Assuntos
Dermatite Atópica , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pele , Infecções Estafilocócicas , Staphylococcus aureus , Dermatite Atópica/microbiologia , Dermatite Atópica/genética , Humanos , Staphylococcus aureus/genética , Pele/microbiologia , Pele/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/genética , Feminino , Masculino , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adulto , Transcriptoma , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/genética , Mucosa Nasal/microbiologia , Transativadores
3.
BMC Microbiol ; 24(1): 344, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39271999

RESUMO

BACKGROUND: In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS: The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS: As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS: In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Fímbrias , Fímbrias Bacterianas , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/efeitos dos fármacos , Humanos , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Feminino , Adulto , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Proteínas de Bactérias
4.
Front Microbiol ; 15: 1456637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318426

RESUMO

Escherichia albertii is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing E. albertii strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic E. coli (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in E. albertii. Among the 108 adherence-related genes, those involved in biogenesis of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae were conserved in E. albertii. All 20 E. albertii strains carried a complete set of primary flagellar genes that were organized into four gene clusters, while five strains possessed genes related to the secondary flagella, also known as lateral flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located within the primary flagellar gene clusters were deleted in E. albertii. Additional deletion of motility genes flhABCD and motBC was identified in several E. albertii strains. Swimming motility was detected in three strains when grown in LB medium, however, when grown in 5% TSB or in the pond water-supplemented with 10% pigeon droppings, an additional four strains became motile. Although all E. albertii strains carried curli genes, curli fimbriae were detected only in four, eight, and nine strains following 24, 48, and 120 h incubation, respectively. Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C. Strong biofilms were detected in strains that produced curli fimbriae and in a chicken isolate that was curli fimbriae negative but carried genes encoding adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation was revealed between the strains isolated from different sources, or between the strains with and without Shiga toxin genes. The phenotypic variations could not be explained solely by the genetic diversity or the difference in adherence genes repertoire, implying complex regulation in expression of various adhesins. Strains that exhibited a high level of cytotoxicity and were also proficient in biofilm production, may have potential to emerge into high-risk pathogens.

5.
mBio ; 15(10): e0100224, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39230277

RESUMO

During its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the transition from the motile to the sessile lifestyle. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and promotes the motile lifestyle: HmrA (holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that form a putative phosphorelay pathway with HmrA. We postulate that the Hmr pathway acts as a rheostat to control the proportion of cells harboring a flagellum or a holdfast in the population. Further genetic analysis suggests that the Hmr pathway impacts c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Our results also indicate that the Hmr pathway is involved in the regulation of motile to sessile lifestyle transition as a function of various environmental factors: biofilm formation is repressed when excess copper is present and derepressed under non-optimal temperatures. Finally, we provide evidence that the Hmr pathway regulates motility and adhesion without modulating the transcription of the holdfast synthesis regulator HfiA. IMPORTANCE: Complex communities attached to a surface, or biofilms, represent the major lifestyle of bacteria in the environment. Such a sessile state enables the inhabitants to be more resistant to adverse environmental conditions. Thus, having a deeper understanding of the underlying mechanisms that regulate the transition between the motile and the sessile states could help design strategies to improve biofilms when they are beneficial or impede them when they are detrimental. For Caulobacter crescentus motile cells, the transition to the sessile lifestyle is irreversible, and this decision is regulated at several levels. In this work, we describe a putative phosphorelay that promotes the motile lifestyle and inhibits biofilm formation, providing new insights into the control of adhesin production that leads to the formation of biofilms.


Assuntos
Proteínas de Bactérias , Biofilmes , Caulobacter crescentus , Regulação Bacteriana da Expressão Gênica , Caulobacter crescentus/genética , Caulobacter crescentus/fisiologia , Caulobacter crescentus/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Histidina Quinase/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Flagelos/genética , Flagelos/metabolismo , Flagelos/fisiologia , Transcrição Gênica , Aderência Bacteriana , Locomoção
6.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 228-233, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39196706

RESUMO

The immunoglobulin (Ig)-like domain is found in a broad range of proteins with diverse functional roles. While an essential ß-sandwich fold is maintained, considerable structural variations exist and are critical for functional diversity. The Rib-domain family, primarily found as tandem-repeat modules in the surface proteins of Gram-positive bacteria, represents another significant structural variant of the Ig-like fold. However, limited structural and functional exploration of this family has been conducted, which significantly restricts the understanding of its evolution and significance within the Ig superclass. In this work, a high-resolution crystal structure of a Rib domain derived from the probiotic bacterium Limosilactobacillus reuteri is presented. This protein, while sharing significant structural similarity with homologous domains from other bacteria, exhibits a significantly increased thermal resistance. The potential structural features contributing to this stability are discussed. Moreover, the presence of two copper-binding sites, with one positioned on the interface, suggests potential functional roles that warrant further investigation.


Assuntos
Proteínas de Bactérias , Limosilactobacillus reuteri , Modelos Moleculares , Limosilactobacillus reuteri/química , Limosilactobacillus reuteri/metabolismo , Cristalografia por Raios X , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Sítios de Ligação , Parede Celular/metabolismo , Parede Celular/química , Domínios Proteicos , Cobre/química , Cobre/metabolismo , Estabilidade Proteica , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
7.
J Agric Food Chem ; 72(34): 18986-19002, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140151

RESUMO

The intestinal retention and persistence of lactic acid bacteria (LAB) are strain-specific and affected by the bacterial surface components. However, the contribution of surface adhesins of LAB to intestinal adhesion and colonization remains unclear. In the present study, seven gene knockout mutants (genes related to surface adhesin synthesis) of Lacticaseibacillus paracasei S-NB were derived based on the Cre-lox-based recombination system. Results showed that the capsule layer appeared thinner in the cell wall of S-NBΔ7576, S-NBΔdlt, and S-NBΔsrtA mutants when compared with the wild-type (WT) S-NB. The effects of S-NB_7576 (wzd and wze genes, responsible for capsular polysaccharide synthesis) and S-NB_srtA (sortase A) mutation on the hydrophobicity, surface charge, and adhesion ability seem to vary strongly among seven mutant strains. In vivo colonization experiments showed a decrease in the colonization numbers of S-NBΔ7576 and S-NBΔsrtA in both the ileal and colon lumen from 2 to 8 days when compared with those of the WT S-NB. In conclusion, the synthesis of capsular polysaccharides and the transport of surface proteins are closely related to the adhesion ability and intestinal colonization of L. paracasei S-NB.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Lacticaseibacillus paracasei , Animais , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Camundongos , Intestinos/microbiologia , Humanos
8.
Front Microbiol ; 15: 1458655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206373

RESUMO

Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.

9.
Chemosphere ; 363: 142928, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39048048

RESUMO

Extracellular cellular adhesins facilitate microbial aggregation; however, most of the information about extracellular adhesins is based on pure culture studies. In this study, we characterized the hydrophobic characteristics and distribution of the extracellular adhesins in environmental biofilms and flocs. The hydrophobic characteristics of the extracellular adhesins were studied by sonicating the microbial aggregates to disperse the cells and by fractionating them using the microbial adhesion to the hydrocarbon method. Furthermore, we probed environmental biofilms and flocs using immunohistochemistry coupled with confocal laser scanning microscopy for reimaging the microbial aggregates based on extracellular adhesins. Small flocs have a relatively dispersed distribution of extracellular adhesins (flagella, fimbriae, pili, and amyloid adhesins). The stratified distribution of extracellular adhesins was observed in environmental biofilms. It was observed that the pili and amyloid adhesins were predominantly present in the core of biofilms, whereas flagella and fimbriae were present in the outer layer of the microbial aggregates. The dispersion of microbial aggregates is one of the limiting factors that challenge the sustainable application of wastewater treatment processes. Greater attention to the components of extracellular protein (such as the adhesins) is required to understand the aggregation of dispersible environmental microbial aggregates.


Assuntos
Biofilmes , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo
10.
Proteomics Clin Appl ; : e202300115, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082488

RESUMO

PURPOSE: Merozoites are the only extracellular form of blood stage parasites, making it a worthwhile target. Multiple invasins that are stored in the merozoite apical organelles, are secreted just prior to invasion, and mediates its interaction with RBC. A comprehensive identification of all these secreted invasins is lacking and this study addresses that gap. EXPERIMENTAL DESIGN: Pf3D7 merozoites were enriched and triggered to discharge apical organelle contents by exposure to ionic conditions mimicking that of blood plasma. The secreted proteins were separated from cellular contents and both the fractions were subjected to proteomic analysis. Also, the identified secreted proteins were subjected to GO, PPI network analysis, and AI-based in silico approach to understand their vaccine candidacy. RESULTS: A total of 63 proteins were identified in the secretory fraction with membrane and apical organellar localization. This includes various MSPs, micronemal EBAs and rhoptry bulb proteins, which play a crucial role in initial and late merozoite attachment, and majority of them qualified as vaccine candidates. CONCLUSION AND CLINICAL RELEVANCE: We, for the first time, report the secretory repertoire of merozoite and its status for vaccine candidacy. This information can be utilized to develop better invasion blocking multisubunit vaccines, comprising of immunological epitopes from several secreted invasins.

11.
BMC Genomics ; 25(1): 609, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886681

RESUMO

Adhesins are crucial factors in the virulence of bacterial pathogens such as Escherichia coli. However, to date no resources have been dedicated to the detailed analysis of E. coli adhesins. Here, we provide adhesiomeR software that enables characterization of the complete adhesin repertoire, termed the adhesiome. AdhesiomeR incorporates the most comprehensive database of E. coli adhesins and facilitates an extensive analysis of adhesiome. We demonstrate that adhesiomeR achieves 98% accuracy when compared with experimental analyses. Based on analysis of 15,000 E. coli genomes, we define novel adhesiome profiles and clusters, providing a nomenclature for a unified comparison of E. coli adhesiomes.


Assuntos
Adesinas de Escherichia coli , Escherichia coli , Software , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/classificação , Genoma Bacteriano , Biologia Computacional/métodos
12.
BMC Microbiol ; 24(1): 221, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909237

RESUMO

BACKGROUND: Group B Streptococcus (GBS) is a commensal of healthy adults and an important pathogen in newborns, the elderly and immunocompromised individuals. GBS displays several virulence factors that promote colonisation and host infection, including the ST-17 strain-specific adhesin Srr2, previously characterised for its binding to fibrinogen. Another common target for bacterial adhesins and for host colonization is fibronectin, a multi-domain glycoprotein found ubiquitously in body fluids, in the extracellular matrix and on the surface of cells. RESULTS: In this study, fibronectin was identified as a novel ligand for the Srr2 adhesin of GBS. A derivative of the ST-17 strain BM110 overexpressing the srr2 gene showed an increased ability to bind fibrinogen and fibronectin, compared to the isogenic wild-type strain. Conversely, the deletion of srr2 impaired bacterial adhesion to both ligands. ELISA assays and surface plasmon resonance studies using the recombinant binding region (BR) form of Srr2 confirmed a direct interaction with fibronectin with an estimated Kd of 92 nM. Srr2-BR variants defective in fibrinogen binding also exhibited no interaction with fibronectin, suggesting that Srr2 binds this ligand through the dock-lock-latch mechanism, previously described for fibrinogen binding. The fibronectin site responsible for recombinant Srr2-BR binding was identified and localised in the central cell-binding domain of the protein. Finally, in the presence of fibronectin, the ability of a Δsrr2 mutant to adhere to human cervico-vaginal epithelial cells was significantly lower than that of the wild-type strain. CONCLUSION: By combining genetic and biochemical approaches, we demonstrate a new role for Srr2, namely interacting with fibronectin. We characterised the molecular mechanism of this interaction and demonstrated that it plays a role in promoting the adhesion of GBS to human cervico-vaginal epithelial cells, further substantiating the role of Srr2 as a factor responsible for the hypervirulence of GBS ST-17 strains. The discovery of the previously undescribed interaction between Srr2 and fibronectin establishes this adhesin as a key factor for GBS colonisation of host tissues.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Fibronectinas , Ligação Proteica , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Fibronectinas/metabolismo , Humanos , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Fibrinogênio/metabolismo , Fibrinogênio/genética , Células Epiteliais/microbiologia , Feminino , Infecções Estreptocócicas/microbiologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética
13.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 92-97, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699970

RESUMO

The Rib domain, which is often found as tandem-repeat structural modules in surface proteins of Gram-positive bacteria, plays important roles in mediating interactions of bacteria with their environments and hosts. A comprehensive structural analysis of various Rib domains is essential to fully understand their impact on the structure and functionality of these bacterial adhesins. To date, structural information has been limited for this expansive group of domains. In this study, the high-resolution crystal structure of the second member of the long Rib domain, a unique subclass within the Rib-domain family, derived from Limosilactobacillus reuteri is presented. The data not only demonstrate a highly conserved structure within the long Rib domain, but also highlight an evolutionary convergence in structural architecture with other modular domains found in cell-adhesion molecules.


Assuntos
Limosilactobacillus reuteri , Modelos Moleculares , Domínios Proteicos , Limosilactobacillus reuteri/química , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/genética , Cristalografia por Raios X , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Infect Immun ; 92(6): e0054023, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38727242

RESUMO

Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.


Assuntos
Adesinas Bacterianas , Anaplasma marginale , Dermacentor , Animais , Anaplasma marginale/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Dermacentor/microbiologia , Bovinos , Aderência Bacteriana/fisiologia , Anaplasmose/microbiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Visualização da Superfície Celular , Interações Hospedeiro-Patógeno , Doenças dos Bovinos/microbiologia
15.
J Fungi (Basel) ; 10(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786657

RESUMO

Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in ß-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1ß and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.

16.
Cell Rep ; 43(4): 114078, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598334

RESUMO

The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.


Assuntos
Lactobacillus , Microbiota , Vagina , Humanos , Vagina/microbiologia , Feminino , Microbiota/genética , Lactobacillus/genética , Adesinas Bacterianas/genética , Etnicidade/genética , Adulto , Evolução Molecular , Gravidez , Seleção Genética , Evolução Biológica
17.
Vaccines (Basel) ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675781

RESUMO

Bacterial surface display platforms have been developed for applications such as vaccine delivery and peptide library screening. The type V secretion system is an attractive anchoring motif for the surface expression of foreign proteins in gram-negative bacteria. SadA belongs to subtype C of the type V secretion system derived from Salmonella spp. and promotes biofilm formation and host cell adherence. The inner membrane lipoprotein SadB is important for SadA translocation. In this study, SadA was used as an anchoring motif to expose heterologous proteins in Salmonella typhimurium using SadB. The ability of SadA to display heterologous proteins on the S. typhimurium surface in the presence of SadB was approximately three-fold higher than that in its absence of SadB. Compared to full-length SadA, truncated SadAs (SadA877 and SadA269) showed similar display capacities when exposing the B-cell epitopes of urease B from Helicobacter pylori (UreB158-172aa and UreB349-363aa). We grafted different protein domains, including mScarlet (red fluorescent protein), the urease B fragment (UreBm) from H. pylori SS1, and/or protective antigen domain 4 from Bacillus anthracis A16R (PAD4), onto SadA877 or SadA1292. Whole-cell dot blotting, immunofluorescence, and flow cytometric analyses confirmed the localization of Flag×3-mScarlet (~30 kDa) and Flag×3-UreBm-mScarlet (~58 kDa) to the S. typhimurium surface using truncated SadA877 or SadA1292 as an anchoring motif. However, Flag×3-UreBm-PAD4-mScarlet (~75 kDa) was displayed on S. typhimurium using SadA1292. The oral administrated pSadBA1292-FUM/StmΔygeAΔmurI and pSadBA877-FUM/StmΔygeAΔmurI could elicit a significant mucosal and humoral immunity response. SadA could thus be used as an anchoring motif for the surface expression of large heterologous proteins as a potential strategy for attenuated bacterial vaccine development.

18.
Cytokine ; 178: 156577, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38479049

RESUMO

PURPOSE: Urinary tract infection (UTI) is one of the most common human bacterial infections primarily caused by uropathogenic E. coli (UPEC). Empiric treatment in UTI cause emergence of multidrug resistance and limit treatment options. Understanding UTI at the molecular level with respect to the causative pathogen as well as subsequent host response pose an absolute necessity towards appropriate clinical management. This study aimed to investigate host cytokine response in mouse UTI model with respect to bacterial colonization and associated virulence gene expression upon infection. METHOD: Mouse UTI model was established with two clinical UPEC isolates E. coli NP105 and E. coli P025. UPEC colonization in bladder and kidney was evaluated by bacterial culture (CFU/ml). Histopathology of the tissues were examined by hematoxylin and eosin staining. PCR and real time PCR were used to detect the incidence and expression of respective bacterial genes. Cytokine concentrations in tissues and sera were evaluated using ELISA. GraphPad prism version 8.0.2 was used for statistical interpretation. RESULT: Highest bacterial colonization was observed on 7th and 9th day post infection (p.i). in bladder and kidney of mouse infected with E. coli P025 and E. coli NP105 respectively with a distinct difference in relative expression of fimH and papC adhesin genes in vivo. IL-1ß level in tissues and sera of E. coli NP105 and E. coli P025 infected mouse was significantly different but the IL-17A, GCSF, TGF-ß levels were comparable. CONCLUSION: These findings show a role of IL1ß to stratify pathogenicity of UPEC in mouse UTI model.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Animais , Camundongos , Citocinas , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Bexiga Urinária/microbiologia
19.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529905

RESUMO

Fusobacterium nucleatum is an anaerobic commensal of the oral cavity associated with periodontitis and extra-oral diseases, including colorectal cancer. Previous studies have shown an increased relative abundance of this bacterium associated with oral dysplasia or within oral tumours. Using direct culture, we found that 75 % of Fusobacterium species isolated from malignant or potentially malignant oral mucosa were F. nucleatum subsp. polymorphum. Whole genome sequencing and pangenome analysis with Panaroo was carried out on 76 F. nucleatum subsp. polymorphum genomes. F. nucleatum subsp. polymorphum was shown to possesses a relatively small core genome of 1604 genes in a pangenome of 7363 genes. Phylogenetic analysis based on the core genome shows the isolates can be separated into three main clades with no obvious genotypic associations with disease. Isolates recovered from healthy and diseased sites in the same patient are generally highly related. A large repertoire of adhesins belonging to the type V secretion system (TVSS) could be identified with major variation in repertoire and copy number between strains. Analysis of intergenic recombination using fastGEAR showed that adhesin complement is shaped by horizontal gene transfer and recombination. Recombination events at TVSS adhesin genes were not only common between lineages of subspecies polymorphum, but also between different subspecies of F. nucleatum. Strains of subspecies polymorphum with low copy numbers of TVSS adhesin encoding genes tended to have the weakest adhesion to oral keratinocytes. This study highlights the genetic heterogeneity of F. nucleatum subsp. polymorphum and provides a new framework for defining virulence in this organism.


Assuntos
Transferência Genética Horizontal , Mosaicismo , Humanos , Filogenia , Fusobacterium/genética , Fenótipo , Dosagem de Genes
20.
Front Microbiol ; 15: 1354140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516014

RESUMO

The genus Paracoccidioides includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which comprises four phylogenetic species. A key feature distinguishing planktonic growth from biofilm is the presence of a 3D extracellular matrix (ECM). Therefore, in this study, we analyzed biofilm formation in different species of Paracoccidioides yeast phase, characterized the structural elements of the matrix of P. brasiliensis (Pb18), P. lutzii (Pl01 and 8334) and P. restrepiensis (339 and 192) and evaluated the expression of glucan genes, according to the stage of biofilm evolution for P. brasiliensis. The strains were cultivated in planktonic and biofilm form for 24-144 h. The fungi biomass and metabolic activity were determined by crystal violet and tetrazolium salt reduction (XTT) tests and colony-forming unit (CFU) by plating. The biofilm structure was designed using scanning electron microscopy and confocal laser scanning microscopy techniques. The extracellular matrix of P. brasiliensis and P. lutzii biofilms was extracted by sonication, and polysaccharides, proteins, and extracellular DNA (eDNA) were quantified. The RNA was extracted with the Trizol® reagent and quantified; then, the cDNA was synthesized to analyze the enolase expression, 14-3-3, FKS1, AGS1, GEL3, and KRE6 genes by real-time PCR. All strains of Paracoccidioides studied form a biofilm with more significant metabolic activity and biomass values in 144 h. The extracellular matrix of P. brasiliensis and P. lutzii had a higher content of polysaccharides in their composition, followed by proteins and eDNA in smaller quantities. The P. brasiliensis biofilm kinetics of formation showed greater expression of genes related to glucan's synthesis and its delivery to the external environment in addition adhesins during the biofilm's adhesion, initiation, and maturation. The GEL3 and enolase genes increased in expression within 24 h and during the biofilm maturation period, there was an increase in 14-3-3, AGS1, and FKS1. Furthermore, at 144 h, there was a decrease in KRE6 expression and an increase in GEL3. This study highlights the potential for biofilm formation for three species of Paracoccidioides and the main components of the extracellular matrix that can contribute to a better understanding of biofilm organization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA