Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
J Hazard Mater ; 478: 135546, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173385

RESUMO

Exacerbated by human activities and natural events, air pollution poses severe health risks, requiring effective control measures to ensure healthy living environments. Traditional filtration systems that employ high-efficiency particulate air (HEPA) filters are capable of effectively removing particulate matter (PM) in indoor environments. However, these systems often work without considering the fluctuations in air pollution levels, leading to high energy consumption. This study proposed a novel PM2.5 pollution-level adaptive air filtration system that combined elastic thermoplastic polyurethane (TPU) filters and an Internet of Things (IoT) system. The developed system can effectively adjust its filtration performance (i.e., pressure drop and PM2.5 filtration efficiency) in response to real-time air quality conditions by mechanically altering the structures of TPU filters. Furthermore, while operating in varied pollution conditions, the proposed system demonstrated remarkable reductions in pressure drop without notably compromising the pollution control capability. Finally, the energy consumption of the pollution-level adaptive air filtration system was estimated when applied in mechanical ventilation systems in different cities (Hong Kong, Beijing, and Xi'an) with various pollution conditions. The results revealed that, compared to a traditional fixed system, the annual energy consumption could be reduced by up to ∼26.4 % in Hong Kong.

2.
Small ; : e2402317, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988143

RESUMO

Here, the poly (l-lactic acid) (PLLA) membrane with multi-structured networks (MSN) is successfully prepared by electrospinning technology for the first time. It is composed of micron-sized ribbon-structured fibers and ultrafine nanofibers with a diameter of tens of nanometers, and they are connected to form the new network structure. Thanks to the special fiber morphology and structure, the interception and electrostatic adsorption ability for against atmospheric particulate matter (PM) are significantly enhanced, and the resistance to airflow is reduced due to the "slip effect" caused by ultrafine nanofibers. The PLLA MSN membrane shows excellent filtration performance with ultra-high filtration efficiency (>99.9% for PM2.5 and >99.5% for PM0.3) and ultra-low pressure drop (≈20 Pa). It has demonstrated filtration performance that even exceeds current non-biodegradable polymer materials, laying the foundation for future applications of biodegradable PLLA in the field of air filtration. In addition, this new structure also provides a new idea for optimizing the performance of other polymer materials.

3.
Sci Rep ; 14(1): 16128, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997418

RESUMO

This work presents a novel approach to investigating the slip effect in nanofiber filter media. Electrospun nanofiber media with high efficiency and low pressure drop were produced at different concentrations and durations. The surface and cross-sectional morphology of nanofiber media were studied using FE-SEM. Fiber orientation and diameter distributions were also examined. The 3D virtual nanofiber media was modeled using this information along with the experimentally measured porosity and thickness of the media. The effect of the slip phenomenon in nanofiber media was studied numerically, and the results were compared to experimental data. Excellent agreements were found between the measured and simulation results. Additionally, filtration simulations considering aerosols injected with airflow through the nanofibrous filter media were conducted by considering the slip effect, and the effect of filter structure on filtration performance (removal efficiency and pressure drop) was investigated.

4.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932006

RESUMO

Considering the high demand for air quality, the development of biomass-based air filtration membranes with high air filtration efficiency and good stability is an urgent task. In this work, polyvinyl alcohol (PVA), gelatin (GA), and cellulose nanocrystals (CNC) were mixed and prepared into a membrane through an electrospinning method for air filtration. After a hydrophobic modification, the modified PVA/GA/CNC composite membrane showed excellent filtration efficiency for PM2.5 (97.65%) through the internal three-dimensional structure barrier and the electrostatic capture effect of the CNC with a negative charge, as well as a low-pressure drop (only 50 Pa). In addition, the modified PVA/GA/CNC composite membrane had good mechanical properties (maximum tensile fracture rate of 78.3%) and high stability (air filtration efficiency of above 90% after five wash-filter cycles and a high-temperature treatment at 200 °C). It is worth noting that the whole preparation process is completed without organic solvents, putting forward a new strategy for the construction of green air filtration membranes.

5.
Int J Biol Macromol ; 275(Pt 2): 133411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945722

RESUMO

Preparing bio-based air filtration membrane through green electrospinning strategy is a vital approach to alleviating environmental and energy crises. However, the development of related biomaterials and method for regulating membrane structure are still lacking. In this study, ethyl cellulose (EC) bimodal nanofibrous membrane was prepared by electrospinning using ethanol and water as solvents to achieve high-performance air filtration. A new strategy for bimodal fiber molding based on molecular weight modulation was proposed. The EC polymer chains with medium molecular weights were subject to the highest degree of inhomogeneity of solvent intrusion, and there were significant differences in viscous forces "microscopically", leading to the formation of bimodal structure by inhomogeneous stretching of the jet. The well-defined bimodal structure endowed EC membrane with excellent air filtration performance. The filtration efficiency for PM0.3, pressure drop, quality factor were 99.11 %, 42.2 Pa, and 0.112 Pa-1, respectively. Compared to the commonly used zein, EC cost just 12.77 %, and its solution had a 50 % longer shelf life, making it a more desirable biomaterial. This work will facilitate the application of more biomaterials in air filtration, promote the green fabrication of high-performance air filtration membranes, and realize sustainable development.


Assuntos
Celulose , Membranas Artificiais , Peso Molecular , Nanofibras , Celulose/química , Celulose/análogos & derivados , Nanofibras/química , Filtração/métodos , Filtros de Ar , Química Verde
6.
Int J Phytoremediation ; : 1-10, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885074

RESUMO

This study evaluates for the first time whether 33 species of annual and perennial herbaceous plants originating from a moderate climate continue to be capable of air filtration of particulate matter (PM) at the end of the growing season. Research was undertaken in November in two urban meadows located in trafficked areas of Bialystok (Poland). The study reveals that despite the lateness in the season, tested species remained capable of PM accumulation. Deposition of total PM exceeding 100 µg·cm-2 was found on S. vulgaris, S. latifolia, T. pratense, E. vulgare, and A. officinalis. The finest and most toxic fraction was accumulated most effectively by S. latifolia, E. vulgare, and L. vulgare (>12 µg·cm-2). Taraxacum officinale and M. sylvestris retained c. 60% of PM in their epicuticular wax. A slight significant correlation was found between rosette growth pattern and deposition of total PM on foliage, while the accumulation of the finest fraction was correlated with a simple leaf shape. These results support the usefulness of urban meadows as long-lasting air bio-filters provided that their composition includes species that have a confirmed, prolonged PM accumulation capacity and that the meadow is not mown in autumn.


This is the first time that the PM accumulation capacity of urban meadow species at the end of the vegetative season has been evaluated in real-life conditions. Evidence of prolonged PM deposition on herbaceous plants was obtained. To enhance PM mitigation in cities located in moderate climate zones, it is proposed that a selection of species be sown in urban meadows.

7.
J Environ Manage ; 362: 121352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833930

RESUMO

The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.


Assuntos
Filtração , Nanopartículas , Poliestirenos , Poliestirenos/química , Nanopartículas/química , Filtração/métodos , Membranas Artificiais , Polímeros/química , Reciclagem , Permeabilidade
8.
Adv Mater ; 36(24): e2311129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557985

RESUMO

Air pollution threats to human health have increased awareness of the role of filter units in air cleaning applications. As an ideal energy-saving strategy for air filters, the slip effect on nanofiber surfaces can potentially overcome the trade-off between filtration efficiency and pressure drop. However, the potential of the slip effect in nanofibrous structures is significantly limited by the tight nanofiber stacks. In this study, trichome-like biomimetic (TLB) air filters with 3D-templated silicone nanofilaments (average diameter: ≈74 nm) are prepared based on an in situ chemical vapor deposition (CVD) method inspired by plant purification. Theoretical modeling and experimental results indicate that TLB air filters make significant use of the slip effect to overcome the efficiency-resistance tradeoff. The selectable filter class (up to U15, ≈99.9995%) allows TLB air filters to meet various requirements, and their integral filtration performance surpasses that of most commodity air filters, including melt-blown cloth, ePTFE membranes, electrospun mats, and glass fiber paper. The proposed strategy directly transforms commercial filter media and filters into TLB air filters using a bottom-up, one-step approach. As a proof-of-concept, reusable N95 respirators and air purifiers equipped with TLB air filters are fabricated, overcoming the limitations of existing filter designs and fabrication methods.

9.
Environ Sci Pollut Res Int ; 31(23): 33212-33222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38687452

RESUMO

Improvement of indoor air quality is beneficial for human health. However, previous studies have not reached consistent conclusions regarding the effects of indoor air filtration on inflammation and oxidative stress. This study aims to determine the relationship between indoor air filtration and inflammation and oxidative stress biomarkers. We conducted an electronic search that evaluated the association of indoor air filtration with biomarkers of inflammation and oxidative stress in five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) from the beginning to April 23, 2023. Outcomes included the following markers: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), 8-hydroxy-2deoxyguanosine (8-OHdG), and 8-iso-prostaglandinF2α (8-isoPGF2α). We extracted data from the included studies according to the system evaluation and the preferred reporting item for meta-analysis (PRISMA) guidelines and used the Cochrane risk of bias tool to assess bias risk. Our meta-analysis included 15 studies with 678 participants to assess the combined effect size. The meta-analysis demonstrated that indoor air filtration could have a marked reduction in IL-6 (SMD: -0.275, 95% CI: -0.545 to -0.005, p = 0.046) but had no significant effect on other markers of inflammation or oxidative stress. Subgroup analysis results demonstrated a significant reduction in 8-OHdG levels in the subgroup with < 1 day of duration (SMD: -0.916, 95% CI: -1.513 to -0.320; p = 0.003) and using filtrete air filter (SMD: -5.530, 95% CI: -5.962 to -5.099; p < 0.001). Our meta-analysis results depicted that indoor air filtration can significantly reduce levels of inflammation and oxidative stress markers. Considering the adverse effects of air pollution on human health, our study provides powerful evidence for applying indoor air filtration to heavy atmospheric pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Biomarcadores , Inflamação , Estresse Oxidativo , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Filtros de Ar , Filtração , Interleucina-6
10.
Polymers (Basel) ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611147

RESUMO

The development of high-performance filtration materials is essential for the effective removal of airborne particles, and metal-organic frameworks (MOFs) anchored to organic polymer matrices are considered to be one of the most promising porous adsorbents for air pollutants. Nowadays, most air filters are generally based on synthetic fiber polymers derived from petroleum residues and have limited functionality, so the use of MOFs in combination with nanofiber air filters has received a lot of attention. Here, a conjugated electrostatic spinning method is demonstrated for the one-step preparation of poly(lactic acid) (PLA) nanofibrous membranes with a bimodal diameter distribution and the anchoring of Zeolitic Imidazolate Framework-8 (ZIF-8) by the introduction of TiO2 and in situ generation to construct favorable multiscale fibers and rough structures. The prepared PLA/TZ maintained a good PM2.5 capture efficiency of 99.97%, a filtration efficiency of 96.43% for PM0.3, and a pressure drop of 96.0 Pa, with the highest quality factor being 0.08449 Pa-1. Additionally, ZIF-8 was uniformly generated on the surface of PLA and TiO2 nanofibers, obtaining a roughened structure and a larger specific surface area. An enhanced filtration retention effect and electrostatic interactions, as well as active free radicals, can be generated for the deep inactivation of bacteria. Compared with the unmodified membrane, PLA/TZ prepared antibacterial characteristics induced by photocatalysis and Zn2+ release, with excellent bactericidal effects against S. aureus and E. coli. Overall, this work may provide a promising approach for the development of efficient biomass-based filtration materials with antimicrobial properties.

11.
Nano Lett ; 24(15): 4462-4470, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574275

RESUMO

Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.

12.
Health Secur ; 22(2): 108-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625036

RESUMO

In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.


Assuntos
Inteligência Artificial , Militares , Estados Unidos , Humanos , Análise Custo-Benefício , Biologia Computacional , Órgãos Governamentais
13.
Int J Circumpolar Health ; 83(1): 2335702, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38546171

RESUMO

Alaska Native and American Indian children experience frequent respiratory illness. Indoor air quality is associated with the severity and frequency of respiratory infections in children. High efficiency particulate air (HEPA) purifiers effectively improve indoor air quality and may protect respiratory health. In 2019, the Yukon-Kuskokwim Health Corporation implemented a pilot programme that provided education and HEPA purifiers to households of children with chronic lung conditions. The team evaluated HEPA purifier acceptability and use by interviewing representatives from 11 households that participated in the pilot programme. All interviewees reported improvement in their child's health, and some believed that the health of other household members was also improved because of the HEPA purifier. Interviewees reported that the HEPA purifiers were easy to use, quiet, and not expensive to run. Five of 11 households were still using the HEPA purifier at the time of the interview, which was about three years after receipt of the unit. The most common reasons for discontinuing use were equipment failure and lack of replacement filter, suggesting that programme support could increase sustainability. Our evaluation suggests that HEPA purifiers are acceptable and feasible for use in rural Alaska Native households.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Nativos do Alasca , Pneumopatias , Criança , Humanos , Poluição do Ar em Ambientes Fechados/análise , Características da Família
14.
Trials ; 25(1): 197, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504367

RESUMO

BACKGROUND: Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS: BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION: We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION: NCT05615870. Registered on November 14, 2022.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Asma , Bronquiolite , Criança , Lactente , Humanos , Qualidade de Vida , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Material Particulado/efeitos adversos , Poeira , Bronquiolite/diagnóstico , Bronquiolite/prevenção & controle , Carbono , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
15.
Macromol Rapid Commun ; 45(9): e2300685, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339795

RESUMO

The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.


Assuntos
Antibacterianos , Escherichia coli , Nanofibras , Polímeros , Polivinil , Staphylococcus aureus , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polivinil/química , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química , Membranas Artificiais , Testes de Sensibilidade Microbiana , Filtros de Ar , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Filtração/métodos , Tamanho da Partícula , Polímeros de Fluorcarboneto
16.
J Hazard Mater ; 468: 133770, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401212

RESUMO

Recently, the demand for healthcare products especially wearable smart masks is increasing. The biosafety and degradability of smart masks are crucial for human health and environmental protection. However, the development of biodegradable and biocompatible fibrous membranes with high filtration efficiency and low pressure drop is still a challenge. How to realize the collaborative improvement between air filtration efficiency and pressure drop of the nanofibrous membrane is still a challenge. Here, a tribo-charge enhanced and biodegradable nanofibrous membranes (TCB NFMs) with highly fluffy structure for air filtration and self-powered respiration monitoring systems is reported for the first time. The filtration efficiency and pressure drop of the prepared membranes for 0.3 µm NaCl particulates is 99.971% and 41.67 Pa. The TCB NFMs based smart mask possesses a series of satisfactory and excellent characteristics, such as self-powered, biodegradable, biocompatible, high filtration efficiency, and low pressure drop, which is highly promising for application in air filtration systems and intelligent wearable respiration monitoring systems.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Celulose , Conservação dos Recursos Naturais , Respiração
17.
Int J Environ Health Res ; : 1-14, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357756

RESUMO

We conducted simultaneous real-time measurements for particles on the premises of four schools, two of which were naturally ventilated (NV) and two mechanically ventilated (MV) in Kanpur, India. Health to school children from reduced particle levels inside classrooms simulated to the lowest acceptable levels (ISHRAE Class C: PM10 ≤ 100 µg/m3 & PM2.5 ≤ 25 µg/m3) using air filters were examined. Lung deposition of particles was used as a proxy for health impacts and calculated using the MPPD model. The particle levels in all classrooms were above the baseline, with NV classrooms having higher particle masses than MV classrooms: 72.16% for PM1, 74.66% for PM2.5, and 85.17% for PM10. Our calculation reveals a whooping reduction in particles deposited in the lungs (1512% for PM10 and 1485% for PM2.5) in the case of the NV classrooms. Results highlight unhealthy air inside classrooms and suggest urgent interventions, such as simple filtration techniques, to achieve acceptable levels of particles inside schools.

18.
ACS Appl Mater Interfaces ; 16(8): 10148-10157, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363186

RESUMO

The COVID-19 pandemic sparked public health concerns about the transmission of airborne viruses. Current methods mainly capture pathogens without inactivation, leading to potential secondary pollution. Herein, we evaluated the inactivation performance of a model viral species (MS2) in simulated bioaerosol by an electromagnetically enhanced air filtration system under a 300 kHz electromagnetic induction field. A nonwoven fabric filter was coated with a 2D catalyst, MXene (Ti3C2Tx), at a coating density of 4.56 mg·cm-2 to absorb electromagnetic irradiation and produce local heating and electromagnetic field for microbial inactivation. The results showed that the MXene-coated air filter significantly enhanced the viral removal efficiency by achieving a log removal of 3.4 ± 0.15 under an electromagnetic power density of 369 W·cm-2. By contrast, the pristine filter without catalyst coating only garnered a log removal of 0.3 ± 0.04. Though the primary antimicrobial mechanism is the local heating as indicated by the elevated surface temperature of 72.2 ± 4 °C under the electromagnetic field, additional nonthermal effects (e.g., dielectrophoresis) on enhanced viral capture during electromagnetically enhanced filtration were investigated by COMSOL simulation to delineate the potential transmission trajectories of bioaerosol. The results provide unique insights into the mechanisms of pathogen control and thus promote alternative solutions for preventing the transmission of airborne pathogens.


Assuntos
Nitritos , Pandemias , Elementos de Transição , Vírus , Humanos , Microbiologia do Ar , Aerossóis e Gotículas Respiratórios , Filtração/métodos , Campos Eletromagnéticos
19.
Polymers (Basel) ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201819

RESUMO

A large number of non-degradable materials have severely damaged the ecological environment. Now, people are increasingly pursuing the use of environmentally friendly materials to replace traditional chemical materials. Polyhydroxyalkonates (PHAs) are receiving increasing attention because of the unique biodegradability and biocompatibility they offer. However, the applications of PHAs are still limited due to high production costs and insufficient study. This project examines the optimal electrospinning parameters for the production of PHA-based fibrous membranes for air filtration. A common biodegradable polyester, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was electrospun into a nanofibrous membrane with a well-controlled surface microstructure. In order to produce smooth, bead-free fibers with micron-scale diameters, the effect of the process parameters (applied electric field, solution flow rate, inner diameter of hollow needle, and polymer concentration) on the electrospun fiber microstructure was optimized. The well-defined fibrous structure was optimized at an applied electric field of 20 kV, flow rate of 0.5 mL/h, solution concentration of 12 wt.%, and needle inner diameter of 0.21 mm. The morphology of the electrospun PHBV fibrous membrane was observed by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) and Raman spectroscopy were used to explore the chemical signatures and phases of the electrospun PHBV nanofiber. The ball burst strength (BBS) was measured to assess the mechanical strength of the membrane. The small pore size of the nanofiber membranes ensured they had good application prospects in the field of air filtration. The particle filtration efficiency (PFE) of the optimized electrospun PHBV fibrous membrane was above 98% at standard atmospheric pressure.

20.
Int J Biol Macromol ; 261(Pt 1): 129687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272414

RESUMO

Airborne particulate matter is a pressing environmental and public health concern globally. This study aimed to develop sustainable filtration materials from cellulose nanofibers (CNFs) modified with graphene oxide (GO) to capture fine particulates from air effectively. CNFs were extracted from α-cellulose via mechanical grinding and modified with 0.5-1.5 wt% GO solution by ultrasonication to produce CNF-GO nanocomposites. These were freeze-dried into highly porous, lightweight aerogels for air filtration applications. Fourier transform infrared spectroscopy (FT-IR) confirmed GO incorporation through hydroxyl group interactions. Field emission scanning electron microscopy (FE-SEM) revealed a porous 3D network with reduced porosity after GO addition due to pore blocking. X-ray diffraction analysis showed the cellulose I crystal structure was retained after modification. Brunauer-Emmett-Teller (BET) measurements indicated increased density but decreased surface area and pore volume with GO loading. The thermogravimetric analysis demonstrated improved thermal stability with GO incorporation due to oxidative reactions and a barrier effect. The particulate absorption efficiency markedly increased from 86.37 % to 99.98 % for CNFs modified with 1.5 wt% GO due to the high surface area, surface oxygen functionalities, and nanoplatelet morphology of GO. The nanofiber filters with 1.5 wt% GO exhibited a maximum absorption efficiency of 99.98 % and a quality factor of 0.0912 Pa-1. Although GO reduced biodegradability, substantial degradation occurred under soil conditions. Overall, the sustainable, high-efficiency CNF-GO air filters developed in this work demonstrate immense promise for controlling air pollution and protecting human health.


Assuntos
Grafite , Nanofibras , Humanos , Nanofibras/química , Material Particulado , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA