Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geohealth ; 8(9): e2024GH001049, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39308667

RESUMO

The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution mortality in Sub-Saharan Africa. Well calibrated low-cost sensors can provide reliable data especially where reference monitors are unavailable. We evaluate the performance of Clarity Node-S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and develop a calibration model in Mombasa, Kenya's second largest city. As-reported Clarity Node-S data from January 2023 through April 2023 was moderately correlated with the TEOM-1400a measurements (R 2 = 0.61) and exhibited a mean absolute error (MAE) of 7.03 µg m-3. Employing three calibration models, namely, multiple linear regression (MLR), Gaussian mixture regression and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 µg m-3 respectively. The R 2 value improved to 0.63 for the MLR model but all other models registered a decrease (R 2 = 0.44 and 0.60 respectively). Applying the correction factor to a five-sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to the air quality in the city. The average daily concentrations of PM2.5 within the city ranged from 12 to 18 µg m-3. The concentrations exceeded the WHO daily PM2.5 limits more than 50% of the time, in particular at the sites nearby frequent industrial activity. Higher averages were observed during the dry and cold seasons and during early morning and evening periods of high activity. These results represent some of the first air quality monitoring measurements in Mombasa and highlight the need for more study.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33746555

RESUMO

The use of air sensor technology is increasing worldwide for a variety of applications, however, with significant variability in data quality. The United States Environmental Protection Agency held a workshop in July 2019 to deliberate possible performance targets for air sensors measuring particles with aerodynamic diameters of 10 µm or less (PM10), nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2). These performance targets were discussed from the perspective of non-regulatory applications and with the sensors operating primarily in a stationary mode in outdoor environments. Attendees included representatives from multiple levels of government organizations, sensor developers, environmental nonprofits, international organizations, and academia. The workshop addressed the current lack of sensor technology requirements, discussed fit-for-purpose data quality needs, and debated transparency issues. This paper highlights the purpose and key outcomes of the workshop. While more information on performance and applications of sensors is available than in past years, the performance metrics, or parameters used to describe data quality, vary among the studies reports and there is a need for more clear and consistent approaches for evaluating sensor performance. Organizations worldwide are increasingly considering, or are in the process of developing, sensor performance targets and testing protocols. Workshop participants suggested that these new guidelines are highly desirable, would help improve data quality, and would give users more confidence in their data. Given the wide variety of uses for sensors and user backgrounds, as well as varied sensor design features (e.g., communication approaches, data tools, processing/adjustment algorithms and calibration procedures), the need for transparency was a key workshop theme. Suggestions for increasing transparency included documenting and sharing testing and performance data, detailing best practices, and sharing data processing and correction approaches.

3.
Indoor Air ; 31(1): 74-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32649780

RESUMO

Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3 , with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3 . The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Filtração/métodos , Criança , China , Humanos , Ozônio , Tamanho da Partícula , Material Particulado
4.
Environ Justice ; 10(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-31741700

RESUMO

The U.S. Environmental Protection Agency (EPA) is actively involved in supporting citizen science projects and providing communities with information and assistance for conducting their own air pollution monitoring. As part of a Regional Applied Research Effort (RARE) project, EPA's Office of Research and Development (ORD) worked collaboratively with EPA Region 2 and the Ironbound Community Corporation (ICC) in Newark, New Jersey, to develop and test the "Air Sensor Toolbox for Citizen Scientists." In this collaboration, citizen scientists measured local gaseous and particulate air pollution levels by using a customized low-cost sensor pod designed and fabricated by EPA. This citizen science air quality measurement project provided an excellent opportunity for EPA to evaluate and improve the Toolbox resources available to communities. The Air Sensor Toolbox, developed in coordination with the ICC, can serve as a template for communities across the country to use in developing their own air pollution monitoring programs in areas where air pollution is a concern. This pilot project provided an opportunity for a highly motivated citizen science organization and the EPA to work together directly to address environmental concerns within the community. Useful lessons were learned about how to improve coordination between the government and communities and the types of tools and technologies needed for conducting an effective citizen science project that can be applied to future efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA