Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Int J Biol Macromol ; 280(Pt 3): 135920, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322165

RESUMO

Burn injuries are the fourth most prevalent devastating form of trauma worldwide. Among the most extensively explored materials, composite dressings with alginate loaded with herbal extract can be mentioned. This research aimed to develop a sodium alginate (SA)-based hydrogel encapsulated with Mentha aquatica (MA) methanol extract and investigate its therapeutic efficacy in the infected burn mouse model. SEM, FTIR, in vitro extract release, HPLC, mechanical test, contact angle, swelling, degradability, and temperature response properties were used to analyze the hydrogel scaffold's physicochemical structure. Additionally, the antibacterial activity and MIC level of the extract, cell cytotoxicity, and macroscopic and microscopic analysis of the wound healing process were done using Masson's trichrome and hematoxylin-eosin staining. The physicochemical properties of the SA hydrogel encapsulated with MA extract were verified. The lowest inhibitory dose of the extract was determined to be 12.5 mg/ml. Application of SA/MA hydrogel to localized wounds of deep third-degree burns demonstrated faster tissue regeneration, collagen recovery, and eradication of bacterial infection. This research focused on the design and the preparation of a novel and effective biomaterials-based medical product, which has the potential to rehabilitate infected and injured skin tissue; therefore, it can be a promising candidate for wound dressing applications.

2.
Biomed Mater ; 19(6)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39255828

RESUMO

Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acidδ-lactone/CaCO3system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ϵ-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling 'armor' on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 h ofin vitrorelease, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.


Assuntos
Alginatos , Antibacterianos , Sequestradores de Radicais Livres , Hemostáticos , Hidrogéis , Espécies Reativas de Oxigênio , Taninos , Cicatrização , Cicatrização/efeitos dos fármacos , Alginatos/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taninos/química , Taninos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Bandagens , Masculino , Picratos/química , Compostos de Bifenilo/química , Polilisina/química
3.
Food Res Int ; 195: 114989, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277250

RESUMO

Alginate hydrogel is broadly known for its potential as an encapsulation agent due to its compatibility and versatility. Despite its predominance, alginate hydrogel naturally has macropores and a less rigid structure, which leads to syneresis and uncontrolled diffusion of bioactive compounds from the gel network. Combining alginate with other biopolymers has been considered to improve its properties as an encapsulation agent. This research aimed to evaluate the effect of Crystalline Nanocellulose (CNC) to the physical properties and the diffusion of gallic acid (GA), as a water-soluble polyphenol model, through the alginate-CNC composite hydrogels performed as an encapsulation agent. The hydrogel mixtures were made from 1:0, 1:1, 2:0, 2:1, 2:2, and 2:3 solid-basis ratio of sodium alginate:crystalline nanocellulose and evaluated for syneresis, gel strength and stiffness, rehydration properties and gel porosity. Alginate-CNC and GA interaction was observed through zeta-potential analysis and Fourier Transform Infrared (FTIR) spectroscopy. Results showed that composite hydrogel with the highest proportion of CNC increased the gel rehydration capacity (87.33 %), gel strength and stiffness as well as reduced the gel syneresis (14.72 %) and dried gel porosity (0.62). GA pre-loaded gel with 2:2 and 2:3 S-C ratios reduced the diffusion of gallic acid by 92.07-92.27 %. FTIR showed hydrogen bonding between GA and the alginate-CNC hydrogel. Alginate-CNC hydrogel had a fibrous and compact structure as shown in the cryo-SEM and confocal microscope images.


Assuntos
Alginatos , Celulose , Ácido Gálico , Hidrogéis , Polifenóis , Alginatos/química , Hidrogéis/química , Celulose/química , Polifenóis/química , Ácido Gálico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Porosidade , Nanopartículas/química
4.
Food Chem X ; 23: 101775, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39280220

RESUMO

Based on the previous research, this work aimed to reveal the effect of sweet potato protein hydrolysates (SPPHs) with different molecular weights (1000, 3000, and 8000 Da) at 0.5 % on the gelation behavior of calcium-induced sodium alginate (SA), and the encapsulation efficiency and storage stability of purple sweet potato anthocyanins (PSPA) in calcium-induced alginate gel beads was determined. Results indicated that SPPHs with a molecular weight of 8000 Da formed hydrogen bonds and other interactions with SA, which strengthened the internal network connections of the gel, significantly enhanced the gel and effectively filled its pores. The highest encapsulation efficiency was achieved at 87.27 %, compared to 61.73 % without SPPHs. Additionally, stored at 37 °C for 21 days after commercial sterilization, the residual concentration of PSPA with SPPHs was 2.50 times higher than that without SPPHs. SPPHs can enhance the encapsulation efficiency of PSPA and retard their release in gel beads.

5.
J Biomed Mater Res A ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228141

RESUMO

Early healing of bone defects is still a clinical challenge. Many bone-filling materials have been studied, among which photocrosslinked alginate has received significant attention due to its good biocompatibility and morphological plasticity. Although it has been confirmed that photocrosslinked alginate can be used as an extracellular matrix for 3D cell culture, it lacks osteogenesis-related biological functions. This study constructed a copper ions-photo dual-crosslinked alginate hydrogel scaffold by controlling the copper ion concentration. The scaffolds were shaped by photocrosslinking and then endowed with biological functions by copper ions crosslinking. According to in vitro research, the dual-crosslinked hydrogel increased the compressive strength and favored copper dose-dependent osteoblast differentiation and cell surface adherence of rat bone marrow mesenchymal stem cells and the expression of type I collagen (Col1), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), vascular endothelial growth factor (VEGF). In addition, hydrogel scaffolds were implanted into rat skull defects, and more angiogenesis and osteogenesis could be observed in in vivo studies. The above results show that the copper-photo-crosslinked hydrogel scaffold has excellent osseointegration properties and can potentially promote angiogenesis and early healing of bone defects, providing a reference solution for bone tissue engineering materials.

6.
MedComm (2020) ; 5(9): e704, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268354

RESUMO

The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted the hematopoietic recovery of mice who had received sublethal-dose irradiation. Local intra-bone marrow (intra-BM) injection of RGD-Alg/Laponite@IL-12 hydrogel effectively stimulated IL12 receptor-phosphoinositide 3-kinase/protein kinase B (IL-12R-PI3K/AKT) signaling axis, which promoted proliferation and hematopoietic growth factors secretion of BM mesenchymal stem/stromal cells. This signaling axis facilitates the repair of the hematopoietic microenvironment and plays a pivotal role in hematopoietic reconstitution. In conclusion, we describe a biomaterial-sustained release of IL-12 for the treatment of irradiated hematopoietic injury and provide a new therapeutic strategy for hematopoietic ARS.

7.
J Nanobiotechnology ; 22(1): 465, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095807

RESUMO

On-demand dissolution of hydrogels has shown much potential in easy and pain-free removal of wound dressings. This work firstly describes a type of carbon dots (CDs) for dissolving Ca-alginate hydrogel via site-specific mineralization method. The CDs were characterized by two features, which included presence of primary/secondary amine groups and generation of calcium crystals with Ca2+. Especially, the amount of primary/secondary amine groups on CDs played key role in determining whether hydrogel could be dissolved. When there were sufficient primary/secondary amine groups, the mineralization occurred on CDs rather than alginates due to the hydrogen bond between primary/secondary amine and carboxyl of alginates. Thereby, this promoted the gel-sol transition through Ca2+ capture from the hydrogels. Moreover, antibacterial test revealed Ca2+ capture from cell walls, while in vivo test revealed hypoxia relief due to porous structures of the renewed hydrogels. Overall, CDs with sufficient primary/secondary amine groups could dissolve Ca-alginate hydrogel through site-specific mineralization method, accompanying by additional functions of antibacterial and hypoxia relief.


Assuntos
Alginatos , Antibacterianos , Carbono , Hidrogéis , Cicatrização , Alginatos/química , Hidrogéis/química , Carbono/química , Animais , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Pontos Quânticos/química , Cálcio/química , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
8.
Nutrients ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39203862

RESUMO

Carotenoids, the natural pigments that confer the bright orange color of sea buckthorn berries, are also associated with several health benefits, such as antioxidant activity and skin and eye protection. Due to their lipophilic nature and localization, carotenoids are largely retained in the sea buckthorn pomace (SBP) resulting from juice production. Carotenoids from SBP (70.03 mg/100 g DW), extracted and characterized by HPLC-PDA, contained zeaxanthin (free and esterified) and beta-carotene as major compounds. The SBP carotenoids-enriched sunflower oil was further encapsulated in Ca-alginate hydrogel beads (98.4% encapsulation efficiency) using ionotropic gelation. The hydrogel beads were characterized by confocal laser scanning microscopy and scanning electron microscopy. Fairly good stability (>64%) of the encapsulated carotenoids in the alginate hydrogel beads during storage (30 days, 4 °C and 25 °C) was found, with zeaxanthin esters being the most stable compounds, for all the experimental conditions. The bioaccessibility of the total carotenoids (INFOGEST protocol) was 42.1 ± 4.6% from hydrated, and, respectively, 40.8 ± 4% from dehydrated SBP alginate hydrogel beads. The addition of yogurt to the dehydrated hydrogel beads had a positive effect on the bioaccessibility of free and esterified zeaxanthin, but not on that of the carotenes. In conclusion, SBP is a valuable source of carotenoids which can be protected by encapsulation in alginate hydrogel beads, thus still retaining a good bioaccessibility.


Assuntos
Alginatos , Disponibilidade Biológica , Carotenoides , Hippophae , Hidrogéis , Alginatos/química , Hippophae/química , Hidrogéis/química , Carotenoides/farmacocinética , Carotenoides/administração & dosagem , Carotenoides/análise , Zeaxantinas/química , Iogurte/análise , Óleo de Girassol/química , Humanos , beta Caroteno/química , beta Caroteno/farmacocinética , beta Caroteno/administração & dosagem , Frutas/química
9.
Biomed Mater ; 19(6)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208843

RESUMO

Traditional cell culture methods often fail to accurately replicate the intricate microenvironments crucial for studying specific cell growth patterns. In our study, we developed a 4D cell culture model-a precision instrument comprising an electromagnet, a force transducer, and a cantilever bracket. The experimental setup involves placing a Petri dish above the electromagnet, where gel beads encapsulating magnetic nanoparticles and tongue cancer cells are positioned. In this model, a magnetic force is generated on the magnetic nanoparticles in the culture medium to drive the gel to move and deform when the magnet is energized, thereby exerting an external force on the cells. This setup can mimic the microenvironment of tongue squamous cell carcinoma CAL-27 cells under mechanical stress induced by tongue movements. Electron microscopy and rheological analysis were performed on the hydrogels to confirm the porosity of alginate and its favorable viscoelastic properties. Additionally, Calcein-AM/PI staining was conducted to verify the biosafety of the hydrogel culture system. It mimics the microenvironment where tongue squamous cell carcinoma CAL-27 cells are stimulated by mechanical stress during tongue movement. Electron microscopy and rheological analysis experiments were conducted on hydrogels to assess the porosity of alginate and its viscoelastic properties. Calcein-AM/PI staining was performed to evaluate the biosafety of the hydrogel culture system. We confirmed that the proliferation of CAL-27 tongue squamous cells significantly increased with increased matrix stiffness after 5 d as assessed by MTT. After 15 d of incubation, the tumor spheroid diameter of the 1%-4D group was larger than that of the hydrogel-only culture. The Transwell assay demonstrated that mechanical stress stimulation and increased matrix stiffness could enhance cell aggressiveness. Flow cytometry experiments revealed a decrease in the number of cells in the resting or growth phase (G0/G1 phase), coupled with an increase in the proportion of cells in the preparation-for-division phase (G2/M phase). RT-PCR confirmed decreased expression levels of P53 and integrinß3 RNA in the 1%-4D group after 21 d of 4D culture, alongside significant increases in the expression levels of Kindlin-2 and integrinαv. Immunofluorescence assays confirmed that 4D culture enhances tissue oxygenation and diminishes nuclear aggregation of HIF-1α. This device mimics the microenvironment of tongue cancer cells under mechanical force and increased matrix hardness during tongue movement, faithfully reproducing cell growthin vivo, and offering a solid foundation for further research on the pathogenic matrix of tongue cancer and drug treatments.


Assuntos
Carcinoma de Células Escamosas , Técnicas de Cultura de Células , Hidrogéis , Estresse Mecânico , Neoplasias da Língua , Neoplasias da Língua/patologia , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodos , Hidrogéis/química , Proliferação de Células , Microambiente Tumoral , Reologia , Alginatos/química , Porosidade
10.
Reprod Sci ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210236

RESUMO

Ovarian tissue cryopreservation is regarded as useful method for fertility preservation. This study aimed to preserve most of the follicular reserve from the destructive effects of cryoprotectant solutions and liquid nitrogen. For this purpose, 48 female NMRI mice (8 weeks old) were randomly divided into six groups: Fresh (not vitrified), Vitrification (not encapsulated), Alginate 1 (encapsulated in 1% alginate hydrogel before placing in vitrification solutions), Alginate 2 (encapsulated in 1% alginate hydrogel before placing in liquid nitrogen), Aloe vera 1 (encapsulated in Aloe vera pieces before placing in vitrification solutions), Aloe vera 2 (encapsulated in Aloe vera pieces before placing in liquid nitrogen). After vitrification and warming, the histological evaluation showed that the average number of intact primordial follicles decreased significantly in all groups compared to the Fresh group. (P < 0.05). Results of evaluating the expression of apoptosis-related genes showed that the ratio of Bax/Bcl2 and P53 significantly decreased in the Alginate 2 group compared with the vitrification group. The level of Kit gene (KIT proto-oncogeni receptor tyrosine kinase gene) expression was either the same or lower in the experimental groups than in the vitrification group, but there was no statistically significant difference. Levels of tissue nitric oxide (NO) and malondialdehyde (MDA) in Alginate groups 1 and 2 showed a significant decrease compared with the vitrification group (P < 0.05). To conclude, Encapsulation of ovaries in 1% alginate hydrogel before immersion in liquid nitrogen may reduce the damage caused by cryopreservation.

11.
Int J Biol Macromol ; 279(Pt 1): 135019, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39182869

RESUMO

With the development in the field of biomaterials, research on alternative biocompatible materials has been initiated, and alginate in polysaccharides has become one of the research hotspots due to its advantages of biocompatibility, biodegradability and low cost. In recent years, with the further understanding of microscopic molecular structure and properties of alginate, various physicochemical methods of cross-linking strategies, as well as organic and inorganic materials, have led to the development of different properties of alginate hydrogels for greatly expanded applications. In view of the potential application prospects of alginate-based hydrogels, this paper reviews the properties and preparation of alginate-based hydrogels and their major achievements in delivery carrier, dressings, tissue engineering and other applications are also summarized. In addition, the combination of alginate-based hydrogel and new technology such as 3D printing are also involved, which will contribute to further research and exploration.

12.
J Gynecol Obstet Hum Reprod ; 53(9): 102828, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094696

RESUMO

OBJECTIVE: Infertility is a significant public health concern affecting 10-15 % of couples. Young women undergoing gonadotoxic treatment are at higher risk of ovarian dysfunction and infertility. To mitigate this risk, ovarian tissue freezing and transplantation have been developed as a novel strategy. However, challenges such as follicular loss and dysfunction during the freezing process, and ovarian damage during transplantation, persist. This study aimed to investigate the potential of using appropriate antifreeze, antioxidant, wound healing, and biological hydrogels to reduce these injuries. Specifically, the effect of fibrin scaffold with endothelial cells and melatonin on apoptotic gene expression and antioxidants in cryopreserved ovaries after transplantation was examined. METHODS: A total of 36 adult female wistar rats) 6-8-week-old and weighing from 200 to 220 g) were divided equally into six groups (n = 6): 1) control group (C), 2) transplanted ovarian tissue after vitrification and thawing process (Group 1), 3) transplanted vitrified/thawed ovarian tissue while encapsulated in Fib/Alg hydrogel (Group 2), 4) transplanted vitrified/thawed ovarian tissue while encapsulated in Fib/Alg hydrogel in addition with melatonin (Group 3), 5) transplanted vitrified/thawed ovarian tissue while encapsulated in Fib/Alg hydrogel in addition with endothelial cells (Group 4) and 6) transplanted vitrified/thawed ovarian tissue while encapsulated in Fib/Alg hydrogel in addition with melatonin endothelial cells (Group 5). The ovaries were auto-transplanted in the rats' lumbar region. After 14 days, the ovaries were removed. Antioxidant levels (SOD, GPx, MDA, and TAC) were evaluated using ELISA, and apoptotic gene expressions (Bax/Bcl2 and caspase 3) were analyzed by real-time RT-PCR to determine apoptosis. RESULTS: In the transplanted frozen ovary group, Bax/Bcl2 and caspase 3 gene expression increased significantly (P < 0.05), while antioxidant levels (SOD, GPx, MDA, and TAC) decreased. The encapsulated frozen ovary group showed decreased gene expression and increased antioxidant levels. The ovary group encapsulated with fibrin scaffold, endothelial cells, and melatonin had the most significant decrease in gene expression and increase in antioxidant levels (P < 0.05). CONCLUSION: Coordinated action of Fibrin-based scaffold with endothelial cells and melatonin could decrease apoptosis gene expression and increase antioxidant levels in cryopreserved ovaries after transplantation, providing valuable insights into preserving fertility in young women undergoing gonadotoxic treatment.

13.
Chemistry ; 30(47): e202400855, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39031737

RESUMO

Hydrogels with cell adhesive moieties stand out as promising materials to enhance tissue healing and regeneration. Nonetheless, bacterial infections of the implants represent an unmet major concern. In the present work, we developed an alginate hydrogel modified with a multifunctional peptide containing the RGD cell adhesive motif in combination with an antibacterial peptide derived from the 1-11 region of lactoferrin (LF). The RGD-LF branched peptide was successfully anchored to the alginate backbone by carbodiimide chemistry, as demonstrated by 1H NMR and fluorescence measurements. The functionalized hydrogel presented desirable physicochemical properties (porosity, swelling and rheological behavior) to develop biomaterials for tissue engineering. The viability of mesenchymal stem cells (MSCs) on the peptide-functionalized hydrogels was excellent, with values higher than 85 % at day 1, and higher than 95 % after 14 days in culture. Moreover, the biological characterization demonstrated the ability of the hydrogels to significantly enhance ALP activity of MSCs as well as to decrease bacterial colonization of both Gram-positive and Gram-negative models. Such results prove the potential of the functionalized hydrogels as novel biomaterials for tissue engineering, simultaneously displaying cell adhesive activity and the capacity to prevent bacterial contamination, a dual bioactivity commonly not found for these types of hydrogels.


Assuntos
Alginatos , Adesão Celular , Hidrogéis , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Alginatos/química , Adesão Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Engenharia Tecidual , Peptídeos/química , Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
14.
Biomater Adv ; 163: 213936, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38959652

RESUMO

Matrix stiffening is one of the major risk factors for hepatocellular carcinoma (HCC) and drives tumor progression. The extracellular matrix (ECM) stiffness of HCC displays mechanical heterogeneity, with stiffness increasing from the core to the invasive frontier. The distribution of liver cancer stem cells (CSCs) is related to this mechanical property. However, it is not sufficiently understood how heterogeneous matrix stiffness regulates the stemness of CSCs. In this study, we developed an adjustable gelatin/alginate hydrogel to investigate the effect of various matrix stiffnesses on CSC stemness under three-dimensional culture conditions. Gelatin/alginate hydrogel with the stiffness of soft (5 kPa), medium (16 kPa), and stiff (81 kPa) were prepared by altering the concentration of calcium ions. It was found that a stiffer matrix promoted stemness-associated gene expression, reduced drug sensitivity, enhanced sphere-forming and clonogenic ability, and tumorigenic potential. Mechanistically, matrix stiffening facilitates CSC stemness by increasing Yes-associated protein (YAP) activity and inhibiting Bcl-2 modifying factor (BMF) expression. Knockdown of YAP or overexpression of BMF significantly attenuated matrix stiffening-induced stemness, suggesting the involvement of YAP and BMF in this process. Together, our results unravel the regulatory mechanism of heterogeneous matrix stiffness on CSC stemness and also provide a novel therapeutic strategy for eradicating CSCs and improving the efficiency of HCC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Matriz Extracelular , Hidrogéis , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Fatores de Transcrição , Proteínas de Sinalização YAP , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Hidrogéis/química , Proteínas de Sinalização YAP/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Alginatos/farmacologia , Animais , Gelatina/química , Camundongos
15.
ACS Appl Mater Interfaces ; 16(28): 37028-37040, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963006

RESUMO

Shape-anisotropic hydrogel microparticles have attracted considerable attention for drug-delivery applications. Particularly, nonspherical hydrogel microcarriers with enhanced adhesive and circulatory abilities have demonstrated value in gastrointestinal drug administration. Herein, inspired by the structures of natural suckers, we demonstrate an ionic polymerization-based production of calcium (Ca)-alginate microparticles with tunable shapes from Janus emulsion for the first time. Monodispersed Janus droplets composed of sodium alginate and nongelable segments were generated using a coflow droplet generator. The interfacial curvatures, sizes, and production frequencies of Janus droplets can be flexibly controlled by varying the flow conditions and surfactant concentrations in the multiphase system. Janus droplets were ionically solidified on a chip, and hydrogel beads of different shapes were obtained. The in vitro and in vivo adhesion abilities of the hydrogel beads to the mouse colon were investigated. The anisotropic beads showed prominent adhesive properties compared with the spherical particles owing to their sticky hydrogel components and unique shapes. Finally, a novel computational fluid dynamics and discrete element method (CFD-DEM) coupling simulation was used to evaluate particle migration and contact forces theoretically. This review presents a simple strategy to synthesize Ca-alginate particles with tunable structures that could be ideal materials for constructing gastrointestinal drug delivery systems.

16.
Front Bioeng Biotechnol ; 12: 1417742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070169

RESUMO

Introduction: Osteochondral repair poses a significant challenge due to its unique pathological mechanisms and complex repair processes, particularly in bacterial tissue conditions resulting from open injuries, infections, and surgical contamination. This study introduces a biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) designed for osteochondral repair. The scaffold consists of a dicalcium phosphate dihydrate (DCPD)-coated porous magnesium scaffold (DCPD Mg) embedded within a dual crosslinked sodium alginate hydrogel (Zn-AlgMA). This combination aims to synergistically exert antibacterial and osteochondral integrated repair properties. Methods: The Zn-AlgMA@Mg scaffold was fabricated by coating porous magnesium scaffolds with DCPD and embedding them within a dual crosslinked sodium alginate hydrogel. The structural and mechanical properties of the DCPD Mg scaffold were characterized using scanning electron microscopy (SEM) and mechanical testing. The microstructural features and hydrophilicity of Zn-AlgMA were assessed. In vitro studies were conducted to evaluate the controlled release of magnesium and zinc ions, as well as the scaffold's osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis was performed to elucidate the mechanism of osteochondral integrated repair. In vivo efficacy was evaluated using a rabbit full-thickness osteochondral defect model, with micro-CT evaluation, quantitative analysis, and histological staining (hematoxylin-eosin, Safranin-O, and Masson's trichrome). Results: The DCPD Mg scaffold exhibited a uniform porous structure and superior mechanical properties. The Zn-AlgMA hydrogel displayed consistent microstructural features and enhanced hydrophilicity. The Zn-AlgMA@Mg scaffold provided controlled release of magnesium and zinc ions, promoting cell proliferation and vitality. In vitro studies demonstrated significant osteogenic and chondrogenic properties, as well as antibacterial efficacy. Proteomic analysis revealed the underlying mechanism of osteochondral integrated repair facilitated by the scaffold. Micro-CT evaluation and histological analysis confirmed successful osteochondral integration in the rabbit model. Discussion: The biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) demonstrated promising results for osteochondral repair, effectively addressing the challenges posed by bacterial tissue conditions. The scaffold's ability to release magnesium and zinc ions in a controlled manner contributed to its significant osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis provided insights into the scaffold's mechanism of action, supporting its potential for integrated osteochondral regeneration. The successful in vivo results highlight the scaffold's efficacy, making it a promising biomaterial for future applications in osteochondral repair.

17.
Polymers (Basel) ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065313

RESUMO

The bacterial anode of microbial electrolysis cells (MECs) is the limiting factor in a high hydrogen evolution reaction (HER). This study focused on improving biofilm attachment to a carbon-cloth anode using an alginate hydrogel. In addition, the modified bioanode was encapsulated by a filter bag that served as a physical barrier, to overcome its low mechanical strength and alginate degradation by certain bacterial species in wastewater. The MEC based on an encapsulated alginate bioanode (alginate bioanode encapsulated by a filter bag) was compared with three controls: an MEC based on a bare bioanode (non-immobilized bioanode), an alginate bioanode, and an encapsulated bioanode (bioanode encapsulated by a filter bag). At the beginning of the operation, the Rct value for the encapsulated alginate bioanode was 240.2 Ω, which decreased over time and dropped to 9.8 Ω after three weeks of operation when the Geobacter medium was used as the carbon source. When the MECs were fed with wastewater, the encapsulated alginate bioanode led to the highest current density of 9.21 ± 0.16 A·m-2 (at 0.4 V), which was 20%, 95%, and 180% higher, compared to the alginate bioanode, bare bioanode, and encapsulated bioanode, respectively. In addition, the encapsulated alginate bioanode led to the highest reduction currents of (4.14 A·m-2) and HER of 0.39 m3·m-3·d-1. The relative bacterial distribution of Geobacter was 79%. The COD removal by all the bioanodes was between 62% and 88%. The findings of this study demonstrate that the MEC based on the encapsulated alginate bioanode exhibited notably higher bio-electroactivity compared to both bare, alginate bioanode, and an encapsulated bioanode. We hypothesize that this improvement in electron transfer rate is attributed to the preservation and the biofilm on the anode material using alginate hydrogel which was inserted into a filter bag.

18.
Int J Biol Macromol ; 276(Pt 2): 133989, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084990

RESUMO

The current research studies the synergistic effect of Cydonia oblonga and its extracted nano bio­silver as a natural and eco-friendly agent for the improvement of three-dimensional (3D)-printed alginate wound dressings. Therefore, Cydonia oblonga extract was first prepared and silver nanoparticles were extracted from it through a green and simple method. The Cydonia oblonga and its extracted bio-based nanoparticles were then added to 3D printing alginate-based ink. Subsequently, a 3D structural extrusion printer was employed to create the porous hydrogel-based wound dressings. The morphological investigation demonstrated that using the extraction method the bio-based silver nanoparticles were successfully prepared, having an average size of 17.95 ± 4.50 nm. The Cydonia oblonga extract showed comparable antioxidant activity to the commercial antioxidant and an excellent total phenol content. In addition, the results showed the combination of Cydonia oblonga extracts/silver nanoparticles significantly improved the antibacterial performance of alginate-based bioinks. In vivo, and in vitro studies confirmed their biocompatibility and significant efficacy in the treatment of burn wounds.


Assuntos
Alginatos , Antibacterianos , Antioxidantes , Bandagens , Hidrogéis , Nanopartículas Metálicas , Extratos Vegetais , Impressão Tridimensional , Prata , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Alginatos/química , Alginatos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Testes de Sensibilidade Microbiana
19.
J Biomater Appl ; 39(4): 396-405, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39075851

RESUMO

Glioma is the most common malignant tumor in the brain, accounting for over 80% of all primary intracranial tumors. The current clinical treatment has shown certain limitations. Although M1 type microglia can secrete various pro-inflammatory cytokines and are expected to be used for glioma treatment, direct use of microglia may lead to overactivation and trigger immune storms. Therefore, we first found that serum starvation can stimulate the transformation of microglia into M1 type. Subsequently, we found through comparative experiments that the inhibitory effect of microglial cell lysis medium on glioma cells was stronger than that of microglial cell culture medium. Finally, we successfully prepared sodium alginate hydrogel loaded with microglia lysis solution to achieve sustained inhibitory effect on the growth of glioma and avoid its proliferation.


Assuntos
Alginatos , Glioma , Hidrogéis , Microglia , Alginatos/química , Glioma/patologia , Glioma/metabolismo , Hidrogéis/química , Microglia/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Meios de Cultura Livres de Soro/química
20.
Bioprocess Biosyst Eng ; 47(9): 1515-1531, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904714

RESUMO

Hydrogel nanocatalyst composed of nickel oxide (NiO) nanoparticles embedded in PVA-alginate hydrogels were potentially explored toward the reduction of anthropogenic water pollutants. The NiO nanoparticles was accomplished via green method using waste pineapple peel extract. The formation of the nanoparticles was affirmed from different analytical techniques such as UV-Vis, FTIR, XRD, TGA, FESEM, and EDS. Spherical NiO nanoparticles were obtained having an average size of 11.5 nm. The nano NiO were then integrated into PVA-alginate hydrogel matrix forming a nanocomposite hydrogel (PVALg@ NiO). The integration of nano NiO rendered an improved thermal stability to the parent hydrogel. The PVALg@ NiO hydrogel was utilized as a catalyst in the reduction of 4-nitrophenol (4-NP), potassium hexacyanoferrate (III), rhodamine B (RhB), methyl orange (MO), and malachite green (MG) in the presence of a reducing agent, i.e., NaBH4. Under optimized conditions, the reduction reactions were completed by 4.0 min and 3.0 min for 4-NP and potassium hexacyanoferrate (III), respectively, and the rate constant was estimated to be 1.14 min-1 and 2.15 min-1. The rate of reduction was found to be faster for the dyes and the respective rate constants were be 0.17 s-1 for RhB, MG and 0.05 s-1 for MO. The PVALg@ NiO hydrogel nanocatalyst demonstrated a recyclability of four runs without any perceptible diminution in its catalytic mettle. The efficacy of the PVALg@ NiO hydrogel nanocatalyst was further examined for the reduction of dyes in real water samples collected from different sources and the results affirm its high catalytic potential. Thus, this study paves the path for the development of a sustainable hydrogel nanocatalyst for reduction of hazardous pollutants in wastewater treatment.


Assuntos
Alginatos , Hidrogéis , Níquel , Poluentes Químicos da Água , Níquel/química , Hidrogéis/química , Alginatos/química , Catálise , Poluentes Químicos da Água/química , Álcool de Polivinil/química , Química Verde , Nanopartículas Metálicas/química , Purificação da Água/métodos , Compostos Azo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA