Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Biol Res Commun ; 13(3): 127-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915457

RESUMO

Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.

2.
J Integr Med ; 22(1): 83-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311542

RESUMO

OBJECTIVE: Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS: An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS: AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 µmol/L and 1 µg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION: AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.


Assuntos
Colestenonas , Dieta Hiperlipídica , Obesidade , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Tecido Adiposo Branco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Glucose/metabolismo , Insulina/farmacologia , Lipídeos/farmacologia , Lipídeos/uso terapêutico , Mamíferos/metabolismo
3.
Chem Biodivers ; 21(3): e202301631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38205915

RESUMO

Two undescribed protostane triterpenoids, 11-deoxy-13(17),15-dehydro-alisol B 23-acetate (2) and alisol S (3), together with 21 known ones (1, 4-23), were isolated from the dried rhizome of Alisma plantago-aquatica. Of these compounds, 13(17),15-Dehydro-alisol B 23-acetate (1) and 11-deoxy-13(17),15-dehydro-alisol B 23-acetate (2) are two protostane triterpenoids containing conjugated double bonds in the five-membered ring D that are rarely found from nature resource, while alisol S (3) is a protostane triterpenoid with undescribed tetrahydrofuran moiety linked via C20 -O-C24 at the side chain. Additionally, compound 18 is a new natural product, and cycloartenol triterpenoid 23 is a non protostane triterpenoid firstly isolated from genus Alisma. Their structures were elucidated by extensive spectral analysis of the UV, IR, MS, 1D and 2D NMR, and comparison of the experimental and calculated CD curves.


Assuntos
Alisma , Triterpenos , Alisma/química , Rizoma/química , Triterpenos/química , Extratos Vegetais/química , Espectroscopia de Ressonância Magnética
4.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858975

RESUMO

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Colina , Fígado/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
J Adv Res ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37802148

RESUMO

INTRODUCTION: Emerging severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 causes a global health disaster and pandemic. Seeking effective anti-pan-CoVs drugs benefit critical illness patients of coronavirus disease 2019 (COVID-19) but also may play a role in emerging CoVs of the future. OBJECTIVES: This study tested the hypothesis that alisol B 23-acetate could be a viral entry inhibitor and would have proinflammatory inhibition for COVID-19 treatment. METHODS: SARS-CoV-2 and its variants infected several cell lines were applied to evaluate the anti-CoVs activities of alisol B 23-aceate in vitro. The effects of alisol B 23-acetate on in vivo models were assessed by using SARS-CoV-2 and its variants challenged hamster and human angiotensin-converting enzyme 2 (ACE2) transgenic mice. The target of alisol B 23-acetate to ACE2 was analyzed using hydrogen/deuterium exchange (HDX) mass spectrometry (MS). RESULTS: Alisol B 23-acetate had inhibitory effects on different species of coronavirus. By using HDX-MS, we found that alisol B 23-acetate had inhibition potency toward ACE2. In vivo experiments showed that alisol B 23-acetate treatment remarkably decreased viral copy, reduced CD4+ T lymphocytes and CD11b+ macrophages infiltration and ameliorated lung damages in the hamster model. In Omicron variant infected human ACE2 transgenic mice, alisol B 23-acetate effectively alleviated viral load in nasal turbinate and reduced proinflammatory cytokines interleukin 17 (IL17) and interferon γ (IFNγ) in peripheral blood. The prophylactic treatment of alisol B 23-acetate by intranasal administration significantly attenuated Omicron viral load in the hamster lung tissues. Moreover, alisol B 23-acetate treatment remarkably inhibited proinflammatory responses through mitigating the secretions of IFNγ and IL17 in the cultured human and mice lymphocytes in vitro. CONCLUSION: Alisol B 23-acetate could be a promising therapeutic agent for COVID-19 treatment and its underlying mechanisms might be attributed to viral entry inhibition and anti-inflammatory activities.

6.
Int Immunopharmacol ; 123: 110768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573684

RESUMO

Previous studies have shown that Alisol B 23-acetate (23ABA) had potent liver-protection effects, however, its roles and potential mechanisms in carbon tetrachloride (CCl4)-induced liver fibrosis remain to be determined. The present study aimed to investigate the effects of 23ABA on CCl4-induced liver fibrosis and tried to elucidate the underlying mechanisms by focusing on regulating of farnesoid X receptor (FXR). In vivo study found that 23ABA alleviated the CCl4-induced liver injury, and showed no obvious systemic toxicity on mice. 23ABA inhibited the collagen production, decreased sera levels of hyaluronic acid (HA) and procollagen type III (PC-III), lowered mRNA expression of α-smooth muscle actin (α-SMA), fibronectin, collagen I and collagen III in livers of mice. 23ABA inhibited the mRNA expressions and the sera levels of interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α), as well as decreased the expression of cyclooxygenase 2 (COX-2) in fibrotic livers of mice. Besides, 23ABA decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased glutathione (GSH) level, enhanced activities of superoxide dismutase (SOD) and glutathione reductase (GR) as well as increased mRNA expression of nuclear factor-E2-related factor 2 (Nrf2), glutamate-cysteine ligase, catalytic subunit (GCLC) and glutamate-cysteine ligase, modifier subunit (GCLM). Further study showed that the anti-liver injury and anti-fibrotic effects of 23ABA were abrogated by FXR antagonist guggulsterone (GS) in vivo. In addition, the inhibition effects of 23ABA on liver inflammation and oxidative stress were also weakened by treatment with GS in CCl4-induced fibrotic mice livers. In conclusion, the protective effects of 23ABA against CCl4-induced liver injury and fibrosis, due to FXR-mediated regulation of liver inflammation and oxidative stress.


Assuntos
Tetracloreto de Carbono , Glutamato-Cisteína Ligase , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Tetracloreto de Carbono/efeitos adversos , Fibrose , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Inflamação , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo
7.
Biomol Ther (Seoul) ; 31(6): 611-618, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317820

RESUMO

Rhizome of Alisma orientale has been used as a traditional medicine for treating kidney diseases in East Asian countries. Its inhibitory effects on hypersensitivity responses have been reported for methanol extracts, with alisol B 23-acetate (AB23Ac) being the most active constituent among six terpenes in inhibiting the direct passive Arthus reaction. However, whether AB23Ac has efficacy against allergic asthma has not been tested to date. The in vivo efficacy of AB23Ac in an ovalbumin (OVA)-induced allergic asthma mouse model was evaluated by administrating AB23Ac before OVA sensitization or OVA challenge in BALB/c mice. AB23Ac suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of AB23Ac both before OVA sensitization and OVA challenge greatly lowered pulmonary resistance and the increase in immune cell counts and inflammatory responses around the peribronchial and perivascular regions. In addition, the inflammatory cytokine levels of Th1/Th2/Th17 cells in the bronchoalveolar lavage fluid decreased in the AB23Ac-treated groups. AB23Ac reduced the number of PAS-stained cells in the lungs. Furthermore, a computer modeling study indicated that AB23Ac can bind tightly to spleen tyrosine kinase (Syk). These results suggest that AB23Ac may ameliorate allergic asthma by suppressing immune responses in dendritic cells during sensitization and in mast cells during challenge periods.

8.
Front Pharmacol ; 14: 1160665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089921

RESUMO

Introduction: Alisol B 23-acetate (AB23A), a major bioactive constituent in the Chinese herb Zexie (Rhizoma Alismatis), has been found with multiple pharmacological activities. AB23A can be readily hydrolyzed to alisol B in mammals, but the hydrolytic pathways of AB23A in humans and the key enzymes responsible for AB23A hydrolysis are still unrevealed. This study aims to reveal the metabolic organs and the crucial enzymes responsible for AB23A hydrolysis in human biological systems, as well as to decipher the impact of AB23A hydrolysis on its biological effects. Methods: The hydrolytic pathways of AB23A in human plasma and tissue preparations were carefully investigated by using Q-Exactive quadrupole-Orbitrap mass spectrometer and LC-UV, while the key enzymes responsible for AB23A hydrolysis were studied via performing a set of assays including reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses. Finally, the agonist effects of both AB23A and its hydrolytic metabolite(s) on FXR were tested at the cellular level. Results: AB23A could be readily hydrolyzed to form alisol B in human plasma, intestinal and hepatic preparations, while human butyrylcholinesterase (hBchE) and human carboxylesterases played key roles in AB23A hydrolysis in human plasma and tissue preparations, respectively. It was also found that human serum albumin (hSA) could catalyze AB23A hydrolysis, while multiple lysine residues of hSA were covalently modified by AB23A, suggesting that hSA catalyzed AB23A hydrolysis via its pseudo-esterase activity. Biological tests revealed that both AB23A and alisol B exhibited similar FXR agonist effects, indicating AB23A hydrolysis did not affect its FXR agonist effect. Discussion: This study deciphers the hydrolytic pathways of AB23A in human biological systems, which is very helpful for deep understanding of the metabolic rates of AB23A in humans, and useful for developing novel prodrugs of alisol B with desirable pharmacokinetic behaviors.

9.
Am J Chin Med ; 51(3): 623-650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961296

RESUMO

The treatment of cardiovascular diseases and obesity, two diseases posing a major risk to human health, has been plagued by the scarcity of potent and effective medication with fewer side effects. To address this problem, numerous efforts, and some progress, have been made. Among possible treatments are some medicinal herbs; particularly promising is Alisma orientale (AO). In the last decade, an increasing amount of research has shown that AO has some desirable therapeutic effects on cardiovascular diseases and obesity. Because of its efficacy, natural origin, and minimal adverse effects, AO has aroused great attention. Based on this, this review provides an overview of the latest progress from the last decade regarding the pharmacological and therapeutic effects, molecular mechanisms, and related effective constituents of AO in the treatment of cardiovascular diseases and obesity. Results from the research currently available reveal that active constituents of AO, such as alisol B 23-acetate, alisol A 24-acetace, and alisol A, have been proven to be effective for treating cardiovascular diseases by modulating the lipid metabolism of macrophages, improving the biological behavior of vascular smooth muscle cells (VSMCs), and enhancing anti-inflammatory effects. Moreover, the active constituents of AO can also intervene in obesity by modulating abnormal glucose and lipid metabolism and fat decomposition of the body by activating the AMPK- and PPAR-related signaling pathways. In summation, based upon our research of available literature, this review reveals that AO and its active constituents have a great potential to be used as drugs for treating cardiovascular diseases and ameliorating obesity.


Assuntos
Alisma , Doenças Cardiovasculares , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico
10.
Drug Des Devel Ther ; 16: 3677-3689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277599

RESUMO

Background: Tumor microenvironment has attracted more and more attention in oncology. Alisol B23 acetate (AB23A) inhibits the proliferation of tumor cells including non-small cell lung cancer (NSCLC) cells. However, whether AB23A plays a role in the tumor microenvironment of NSCLC still remains obscure. Methods: After THP-1 cells were polarized to M0 type by PMA, M0 macrophages were differentiated into M1 by LPS and IFNγ, and were differentiated into M2 by IL-4 and IL-13. The differentiation of THP-1 cells was detected by flow cytometry. After AB23A was given to macrophage RT-qPCR and ELISA detected the expressions of IL-6, IL-1ß, IL-10 and TGF-ß. Western blot and RT-qPCR detected the expressions of CD11b and CD18 at both mRNA and protein levels. Lung cancer cell A549 cells were induced by above related macrophage culture medium. Cell proliferation was detected by CCK-8. Tunel, wound healing and Transwell detected the apoptotic, migration and invasion capabilities. Next, M0 and M1-type macrophages were cultured in the cell culture medium of conventional A549 cells, to which AB23A was added. Subsequently, cell differentiation and inflammatory response were measured. Finally, the expression of CD18 in A549 cells was knocked down to construct NSCLC tumor-bearing mice and AB23A was applied for intragastric administration. Immunohistochemistry detected the polarization of macrophages in tumor tissues. Western blot detected the expressions of CD11b, CD18, invasion-, migration- and apoptosis-related proteins. Results: AB23A promoted the polarization of macrophages towards M1, thus promoting the apoptosis and inhibiting the invasion and migration of A549 cells. The tumor cell culture medium induced M0 macrophages to M2, while AB23A reversed this effect. AB23A targeted CD11b/CD18 and improved the polarization of macrophages, thereby affecting tumor invasion, migration and apoptosis. Conclusion: AB23A affected the polarization of tumor-associated macrophages through the targeted regulation of CD11b/CD18, thus inhibiting the development of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Colestenonas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Colestenonas/farmacologia
11.
Front Pharmacol ; 13: 911196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774596

RESUMO

Alisol B 23-Acetate (AB23A) is a naturally occurring triterpenoid, which can be indicated in the rhizome of medicinal and dietary plants from Alisma species. Previous studies have demonstrated that AB23A could inhibit intestinal permeability by regulating tight junction (TJ)-related proteins. Even so, the AB23A protective mechanism against intestinal barrier dysfunction remains poorly understood. This investigation seeks to evaluate the AB23A protective effects on intestinal barrier dysfunction and determine the mechanisms for restoring intestinal barrier dysfunction in LPS-stimulated Caco-2 monolayers. According to our findings, AB23A attenuated the inflammation by reducing pro-inflammatory cytokines production like IL-6, TNF-α, IL-1ß, and prevented the paracellular permeability by inhibiting the disruption of TJ in LPS-induced Caco-2 monolayers after treated with LPS. AB23A also inhibited LPS-induced TLR4, NOX1 overexpression and subsequent ROS generation in Caco-2 monolayers. Transfected with NOX1-specific shRNA diminished the up-regulating AB23A effect on ZO-1 and occludin expression. Moreover, transfected with shRNA of TLR4 not only enhanced ZO-1 and occludin expression but attenuated NOX1 expression and ROS generation. Therefore, AB23A ameliorates LPS-induced intestinal barrier dysfunction by inhibiting TLR4-NOX1/ROS signaling pathway in Caco-2 monolayers, suggesting that AB23A may have positive impact on maintaining the intestinal barrier's integrity.

12.
Arch Biochem Biophys ; 714: 109080, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742934

RESUMO

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from Rhizoma alisamatis that has been widely used as a traditional Chinese medicine (TCM). Previous studies have documented the beneficial effect of AB23A on non-alcoholic fatty liver disease (NAFLD), but the functional interactions between gut microbiota and the anti-NAFLD effect of AB23A remain unclear. In this study, we investigated the benefits of experimental treatment with AB23A on gut microbiota dysbiosis in NAFLD with an obesity model. C57BL/6J mice were administrated a high-fat diet (HFD) with or without AB23A for 12 weeks. AB23A significantly improved metabolic phenotype in the HFD-fed mice. Moreover, results of 16S rRNA gene-based amplicon sequencing in each group reveled that AB23A not only reduced the abundance of the Firmicutes/Bacteroidaeota ratio and Actinobacteriota/Bacteroidaeota ratio, but regulated the abundance of the top 10 genera, including norank_f__Muribaculaceae, Lactobacillus, Ileibacterium, Turicibacter, Faecalibaculum, the Lachnospiraceae_NK4A136_group, unclassified_f__Lachnospiraceae, and norank_f__Lachnospiraceae. AB23A significantly reduced the serum levels of lipopolysaccharide and branched-chain amino acids, which are positively correlated with the abundances of Ileibacterium and Turicibacter. Moreover, AB23A led to remarkable reductions in the activation of TLR4, NF-κB, and mTOR, and upregulated the expression of tight junction proteins, including ZO-1 and occludin. These results revealed that AB23A displayed a prebiotic capacity in HFD-fed NAFLD mice.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Colestenonas/farmacologia , Dieta Hiperlipídica , Lipopolissacarídeos/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Probióticos , Animais , Peso Corporal/efeitos dos fármacos , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Aumento de Peso/efeitos dos fármacos
13.
Am J Physiol Renal Physiol ; 321(5): F617-F628, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569253

RESUMO

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-reperfusion injury. In vitro and in vivo FXR activation was determined by a dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal ischemia-reperfusion injury (IRI). We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal ischemia-reperfusion-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against ischemia-reperfusion injury-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.NEW & NOTEWORTHY In the present study, we found that alisol B 23-acetate (ABA), an identified natural farnesoid X receptor (FXR) agonist from the well-known traditional Chinese medicine Alismatis rhizoma, protects against ischemic acute kidney injury (AKI) in an FXR-dependent manner, as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative stress, and suppressed inflammatory factor expression. Therefore, ABA may have great potential as a novel therapeutic agent in the treatment of AKI in the future.


Assuntos
Injúria Renal Aguda/prevenção & controle , Colestenonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Rim/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
14.
Int Immunopharmacol ; 99: 107956, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284288

RESUMO

Atherosclerosis (AS) is characterized by dyslipidemia and chronic inflammation. In the high-fat environment, the lipid metabolism of dendritic cells (DCs) is abnormal, which leads to abnormal immune function, promotes the occurrence of immune inflammatory reactions, and promotes the development of AS. Alisol B 23-acetate (23B) is a triterpenoid in the rhizomes of Alisma, which is a traditional Chinese medicine. Here, we identified cholesterol metabolism-related targets of 23B through a virtual screen, and further transcriptome analysis revealed that 23B can change antigen presentation and cholesterol metabolism pathways in cholesterol-loaded DCs. In vitro experiments confirmed that 23B promoted cholesterol efflux from ApoE-/- DCs, reduced the expression of MHC II, CD80, and CD86, and inhibited the activation of CD4+ T cells and the production of inflammatory cytokines IL-12 and IFN-γ. In advanced AS mice, 23B can decrease triacylglycerol (TG) levels and increase high-density lipoprotein-cholesterol (HDL-C) levels in plasma and the expression of cholesterol efflux genes in the aorta. Neither helper T cells 1 (Th1) nor regulatory T cells (Tregs) in peripheral blood changed significantly in the presence of 23B, but 23B reduced the levels of IL-12 and IFN-γ in serum. However, 23B did not change the total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in serum or lipid accumulation in the aorta. Moreover, 23B did not increase the production of IL-10 and TGF-ß1 in vivo or in vitro. These results indicate that 23B promotes cholesterol efflux from DCs, which can improve the immune inflammatory response and contribute to controlling the inflammatory status of AS.


Assuntos
Aterosclerose/metabolismo , Colestenonas/metabolismo , Colesterol/metabolismo , Dislipidemias/metabolismo , Inflamação/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Células Dendríticas , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Transdução de Sinais , Linfócitos T Reguladores , T-Linfocitopenia Idiopática CD4-Positiva
15.
Front Cell Infect Microbiol ; 11: 640225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996624

RESUMO

Hunting for natural compounds that can modulate the structure of the intestinal flora is a new hotspot for colitis-associated cancer (CAC) prevention or treatment. Alisol B 23-acetate (AB23A) is a natural tetracyclic triterpenoid found in Alismatis rhizoma which is well known for dietary herb. Alismatis rhizoma is often used clinically to treat gastrointestinal diseases in China. In this study, we investigated the potential prevention of AB23A in male mouse models of azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CAC. AB23A intervention alleviated the body weight loss, disease activity index, colon tumor load, tissue injury, and inflammatory cytokine changes in CAC mice. AB23A intervention leads to remarkable reductions in the activation of TLR, NF-κB and MAPK. AB23A significantly decreased the phosphorylation of p38, ERK, and JNK and up-regulated mucin-2 and the expression of tight junction proteins. The gut microbiota of AB23A-interfered mice was characterized with high microbial diversity, the reduced expansion of pathogenic bacteria, such as Klebsiella, Citrobacter, and Akkermansia, and the increased growth of bacteria including Bacteroides, Lactobacillus, and Alloprevotella. These data reveal that AB23A has the potential to be used to treat CAC in the future.


Assuntos
Neoplasias Associadas a Colite , Colite , Microbioma Gastrointestinal , Animais , Azoximetano , China , Colestenonas , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfatos
16.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33537833

RESUMO

Alisol B 23­acetate (AB23A) is a natural triterpenoid isolated from Alismatis rhizoma, which exhibits a number of pharmacological activities. In the present study, AB23A­induced anticancer efficacy was examined in AGS gastric cancer cells. Cell viability assay, cell cycle analysis, caspase activity assay, western blotting and reactive oxygen species (ROS) assay were used to investigate the anticancer effects of AB23A on AGS cells. AB23A reduced the viability of AGS cells, increased the sub­G1 cell fraction and depolarized the mitochondrial membrane. Notably, AB23A­induced cell death was associated with downregulation of the B­cell lymphoma 2 and survivin proteins, and upregulation of the Bax protein. In addition, AB23A increased caspase­3 and ­9 activities, and regulated the activation of mitogen­activated protein kinases (MAPK). Moreover, AB23A increased the production of reactive oxygen species. These results suggested that AB23A may induce apoptosis through cell cycle arrest and the mitochondrial pathway, accompanied by the caspase and MAPK signaling cascades. In conclusion, AB23A may have potential as a novel anticancer drug for the treatment of gastric cancer.


Assuntos
Apoptose/efeitos dos fármacos , Colestenonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Neoplasias/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
17.
Life Sci ; 258: 118030, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739470

RESUMO

The risk of atherosclerosis (AS) ascends among post-menopausal women, while current hormone replacement therapy exerts several adverse effects. Alisol B 23-acetate (AB23A), a tetracyclic triterpenoid isolated from the rhizome of Alisma orientale, was reported to show multiple physiological activities, including regulating lipid metabolism. According to molecular docking analysis, it was predicted to bind with estrogen receptor α (ERα). In this study, we aimed to observe the effect of AB23A on preventing post-menopausal AS and explore whether the mechanism was mediated by ERα. In vitro, free fatty acid (FFA) was applied to induce the abnormal lipid metabolism of L02 cells. In vivo, the ApoE-/- mice were ovariectomized to mimic the cessation of estrogen. The high-fat diet was also given to induce post-menopausal AS. We demonstrated AB23A attenuated the accumulation of total cholesterol and triglyceride induced by free fatty acids in hepatocytes. In high-fat diet-ovariectomy-treated ApoE-/- mice, AB23A eliminated lipids in blood and liver. AB23A not only reduced the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) through sterol-regulatory element binding proteins (SREBPs) but also suppressed the secretion of PCSK9 through silent information regulator 1 (SIRT1). Notably, AB23A promoted the expression of ERα in vivo and in vitro. The both ERα inhibitor and ERα siRNA were also applied in confirming whether the hepatic protective effect of AB23A was mediated by ERα. We found that AB23A significantly promoted the expression of ERα. AB23A could inhibit the synthesis and secretion of PCSK9 through ERα, lower the accumulation of triglyceride and cholesterol, and prevent post-menopausal AS.


Assuntos
Aterosclerose/patologia , Colestenonas/farmacologia , Receptor alfa de Estrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pós-Menopausa/efeitos dos fármacos , Animais , Aterosclerose/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colestenonas/química , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Lipoproteínas LDL/metabolismo , Camundongos , Ovariectomia , Regiões Promotoras Genéticas/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sirtuína 1/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Ther Adv Chronic Dis ; 11: 2040622320920025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547719

RESUMO

BACKGROUND: Increasing evidence suggests a link between the gut microbiome and various diseases including hypertension and chronic kidney disease (CKD). However, studies examining the efficacy of controlling blood pressure and inhibiting the renin-angiotensin system (RAS) in preventing CKD progression are limited. METHODS: In the present study, we used 5/6 nephrectomised (NX) and unilateral ureteral obstructed (UUO) rat models and cultured renal tubular epithelial cells and fibroblasts to test whether alisol B 23-acetate (ABA) can attenuate renal fibrogenesis by regulating blood pressure and inhibiting RAS. RESULTS: ABA treatment re-established dysbiosis of the gut microbiome, lowered blood pressure, reduced serum creatinine and proteinuria, suppressed expression of RAS constituents and inhibited the epithelial-to-mesenchymal transition in NX rats. Similarly, ABA treatment inhibited expression of collagen I, fibronectin, vimentin, α-smooth muscle actin and fibroblast-specific protein 1 at both mRNA and protein levels in UUO rats. ABA was also effective in suppressing activation of the transforming growth factor-ß (TGF-ß)/Smad3 and preserving Smad7 expression in both NX and UUO rats. In vitro experiments demonstrated that ABA treatment inhibited the Wnt/ß-catenin and mitochondrial-associated caspase pathways. CONCLUSION: These data suggest that ABA attenuated renal fibrosis through a mechanism associated with re-establishing dysbiosis of the gut microbiome and regulating blood pressure, and Smad7-mediated inhibition of Smad3 phosphorylation. Thus, we demonstrate ABA as a promising candidate for treatment of CKD by improving the gut microbiome and regulating blood pressure.

19.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1566-1577, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32489035

RESUMO

The present research was launched to improve the quality standards of Alismatis Rhizoma and supply scientific evidence and recommendations for the quality control of Alismatis Rhizoma in Chinese Pharmacopoeia(Ch. P) 2020 edition. The contents of water, total ash, heavy metals and deleterious element, pesticide residues and alcohol-soluble extract were analyzed according to the methods listed in the volume Ⅳ of Ch. P 2015 edition. Alisol B 23-acetate, alisol C 23-acetate and reference herbs were used to identify Alismatis Rhizoma by TLC method, which was developed by using a mixture of dichloromethane-methanol(15∶1) as developing solvent on silica gel GF_(254 )precoated plates. In HPLC method, alisol B 23-acetate and alisol C 23-acetate were separated with acetonitrile-water as the mobile phase and detected at 208 nm and 246 nm, respectively. Thirty-seven batches of crude drugs, thirty batches of prepared slices and nineteen batches of salt prepared slices of Alismatis Rhizoma were determined according to the methods established. The quality standards established based on the research results were specific and repeatable, and suitable for the quality evaluation of Alismatis Rhizoma. We recommended that the botanical sources, TLC examination, alcohol-soluble extract of salt prepared slices and content determination should be revised in the Ch. P 2020 edition.


Assuntos
Rizoma , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Controle de Qualidade
20.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1729-1733, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31342693

RESUMO

To establish a quality constant evaluation system of Alismatis Rhizoma decoction pieces,in order to provide reference for regulating the market circulation of this decoction pieces. A total of 18 batches of Alismatis Rhizoma decoction pieces were collected from different pharmaceutical factories,and the morphological parameters of each sample were tested. The content of alisol B 23-acetate in Alismatis Rhizoma decoction pieces was determined by HPLC in the 2015 edition of Chinese Pharmacopoeia,and the parameters such as quality constant and relative quality constant were calculated. The quality constant range of 18 batches of Alismatis Rhizoma decoction pieces was 0. 390-2. 076. If 18 batches of Alismatis Rhizoma decoction pieces were divided into 3 grades,taking 80% of the maximum quality constant as first grade,50% to 80% as second grade,and the rest as third grade,then the quality constant of firstgrade samples was ≥1. 66,the quality constant of second-grade samples was ≥1. 04 and <1. 66,and the quality constant of third-grade samples was <1. 04. The established quality constant evaluation method is objective and feasible,which can be used to classify the grade of Alismatis Rhizoma decoction pieces and provide a reference method to control the quality of this decoction pieces.


Assuntos
Alisma/química , Medicamentos de Ervas Chinesas/normas , Cromatografia Líquida de Alta Pressão , Controle de Qualidade , Rizoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA