Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Metabolites ; 14(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668308

RESUMO

Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.

2.
Genes (Basel) ; 15(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38540383

RESUMO

Many monoterpenoid indole alkaloids (MIAs) produced in Catharanthus roseus have demonstrated biological activities and clinical potential. However, their complex biosynthesis pathway in plants leads to low accumulation, limiting therapeutic applications. Efforts to elucidate the MIA biosynthetic regulatory mechanism have focused on improving accumulation levels. Previous studies revealed that jasmonic acid (JA), an important plant hormone, effectively promotes MIA accumulation by inducing the expression of MIA biosynthesis and transport genes. Nevertheless, excessive JA signaling can strongly inhibit plant growth, decreasing MIA productivity in C. roseus. Therefore, identifying key components balancing growth and MIA production in the JA signaling pathway is imperative for effective pharmaceutical production. Here, we identify a homolog of the jasmonate transporter 1, CrJAT1, through co-expression and phylogenetic analyses. Further investigation demonstrated that CrJAT1 can activate JA signaling to promote MIA accumulation without compromising growth. The potential role of CrJAT1 in redistributing intra/inter-cellular JA and JA-Ile may calibrate signaling to avoid inhibition, representing a promising molecular breeding target in C. roseus to optimize the balance between growth and specialized metabolism for improved MIA production.


Assuntos
Catharanthus , Ciclopentanos , Oxilipinas , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Filogenia , Melhoramento Vegetal , Alcaloides de Triptamina e Secologanina/metabolismo , Transdução de Sinais
3.
Plant Mol Biol ; 114(1): 15, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329633

RESUMO

Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.


Assuntos
Arabidopsis , Alcaloides de Triptamina e Secologanina , Uncaria , Luz , Luz Vermelha , Fatores de Transcrição GATA
4.
Front Plant Sci ; 14: 1098987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636089

RESUMO

The tropical tree, D. binectariferum, is a prominent source of chromone alkaloid rohitukine, which is used in the semi-syntheses of anticancer molecules such as flavopiridol and P-276-00. The biosynthetic pathway of rohitukine or its derivatives is currently unknown in plants. Here, we explored chromone alkaloid biosynthesis in D. binectariferum through targeted transcriptome sequencing. Illumina sequencing of leaves and roots of a year-old D. binectariferum seedling generated, 42.43 and 38.74 million paired-end short reads, respectively. Quality filtering and de novo assembly of the transcriptome generated 274,970 contigs and 126,788 unigenes with an N50 contig length of 1560 bp. The assembly generated 117,619 translated unigene protein sequences and 51,598 non-redundant sequences. Nearly 80% of these non-redundant sequences were annotated to publicly available protein and nucleotide databases, suggesting the completeness and effectiveness of the transcriptome assembly. Using the assembly, we identified a chalcone synthase (CHS) and three type III polyketide synthases (PKS-III; non-CHS type) that are likely to be involved in the biosynthesis of chromone ring/noreugenin moiety of rohitukine. We also identified key enzymes like lysine decarboxylase in the piperidine pathway that make the piperidine moiety of rohitukine. Besides these, the upstream enzymes in flavonoid biosynthesis like phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H),4-coumarate-CoA ligase (4CL), and chalcone isomerase (CHI) have also been identified. Also, terpene synthases that are likely to be involved in the biosynthesis of various terpenoid scaffolds have been identified. Together, the D. binectariferum transcriptome resource forms a basis for further exploration of biosynthetic pathways of these valuable compounds through functional validation of the candidate genes and metabolic engineering in heterologous hosts. Additionally, the transcriptome dataset generated will serve as an important resource for research on functional genomics and enzyme discovery in D. binectariferum and comparative analysis with other Meliaceae family members.

5.
Chin Herb Med ; 12(2): 133-141, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36119792

RESUMO

Objective: Lycopodiastrum casuarinoides, a fern of the Lycopodiaceae family, is a traditional Chinese medicine, which has similar efficacy to that of Huperzia serrata in treating rheumatoid arthritis (RA). However, they are different in the contents and compositions of lycopodium alkaloids. In this study, the biosynthesis related genes of lycopodium alkaloids and genetic markers are discovered in L. casuarinoides transcriptome. Methods: The plant of L. casuarinoides was collected and was subjected to the RNA isolation, cDNA library construction, high throughput RNA sequencing and bioinformatics analysis. Results: Totally 124, 524 high-quality unigenes were assembled from RNA sequencing reads, with an average sequence length of 601 bp. Among the L. casuarinoides transcripts, 61,304 shared the significant similarity (E-value < 10-5) with existing protein sequences in the public databases. From 124,524 unigenes, 47,538 open reading frames (ORFs) were predicted. Based on the bioinformatics analysis, all possible enzyme genes involved in the lycodine-type alkaloids biosynthetic pathway of L. casuarinoides were identified, including lysine decarboxylase (LDC), primary amine oxidase (PAO), malonyl-CoA decarboxylase, etc. Sixty-four putative cytochrome p450 (CYP) and 827 putative transcription factors were selected from the transcriptome unigenes as the candidates of lycodine-type alkaloids biosynthesis modifiers. Furthermore, 13,352 simple sequence repeats (SSRs) were identified from 124,524 unigenes, of which dinucleotide motifs AG/CT were the most abundant (50.1%). Meanwhile, we confirmed the amplification effectiveness of 25 PCR primer pairs for randomly selected SSRs. Conclusion: We obtained the comprehensive transcriptomic information from the high throughput RNA sequencing and bioinformatics analysis, which provided a valuable resource of transcript sequences of L. casuarinoides in public databases.

6.
PeerJ ; 5: e3303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533961

RESUMO

Coptis chinensis Franch., the Chinese goldthread ('Weilian' in Chinese), one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%). Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.

7.
C R Biol ; 338(11): 745-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26298518

RESUMO

Plant cell culture technology has been introduced for the mass production of the many useful components. A variety of plant-derived compounds is being used in various fields, such as pharmaceuticals, foods, and cosmetics. Plant cell cultures are believed to be derived from the dedifferentiation process. In the present study, an undifferentiated cambial meristematic cell (CMCs) of Catharanthus is isolated using histological and genetic methods, and compared with dedifferentiation-derived callus (DDCs) cultures. Furthermore, differential culture conditions for both DDCs- and CMCs-derived cell lines were established. A suitable media for the increased accumulation of terpenoid indole alkaloids (TIAs) was also standardized. Compared with DDCs, CMCs showed marked accumulation of TIAs in cell lines grown on media with 1.5 mg·mL(-1) of NAA and 0.5 mg·mL(-1) of kinetin. CMCs-derived cultures of Catharanthus, as a source of key anticancer drugs (viblastine and vincristine), would overcome the obstacles usually associated with the production of natural metabolites through the use of DDCs. Cell culture systems that are derived from CMCs may also provide a cost-effective and eco-friendly basis for the sustainable production of a number of important plant natural products.


Assuntos
Catharanthus/citologia , Técnicas de Cultura de Células , Meristema/citologia , Células-Tronco/citologia , Câmbio/citologia , Desdiferenciação Celular , Linhagem Celular , Meios de Cultura , Células Vegetais/metabolismo , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação
8.
Genet Mol Biol ; 34(4): 640-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22215969

RESUMO

Khat (Catha edulis Forsk.) is a flowering perennial shrub cultivated for its neurostimulant properties resulting mainly from the occurrence of (S)-cathinone in young leaves. The biosynthesis of (S)-cathinone and the related phenylpropylamino alkaloids (1S,2S)-cathine and (1R,2S)-norephedrine is not well characterized in plants. We prepared a cDNA library from young khat leaves and sequenced 4,896 random clones, generating an expressed sequence tag (EST) library of 3,293 unigenes. Putative functions were assigned to > 98% of the ESTs, providing a key resource for gene discovery. Candidates potentially involved at various stages of phenylpropylamino alkaloid biosynthesis from L-phenylalanine to (1S,2S)-cathine were identified.

9.
Genet. mol. biol ; Genet. mol. biol;34(4): 640-646, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-605922

RESUMO

Khat (Catha edulis Forsk.) is a flowering perennial shrub cultivated for its neurostimulant properties resulting mainly from the occurrence of (S)-cathinone in young leaves. The biosynthesis of (S)-cathinone and the related phenylpropylamino alkaloids (1S,2S)-cathine and (1R,2S)-norephedrine is not well characterized in plants. We prepared a cDNA library from young khat leaves and sequenced 4,896 random clones, generating an expressed sequence tag (EST) library of 3,293 unigenes. Putative functions were assigned to > 98 percent of the ESTs, providing a key resource for gene discovery. Candidates potentially involved at various stages of phenylpropylamino alkaloid biosynthesis from L-phenylalanine to (1S,2S)-cathine were identified.


Assuntos
Catha , Fenilpropanolamina , Sequência de Bases , Plantas Medicinais , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA