Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 104(5): e4023, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890684

RESUMO

Resource quantity and quality can differ between adjacent ecosystems, and these differences can impact subsidies exchanged between ecosystems. The quantity and quality of subsidies are rapidly changing in response to stressors associated with global environmental change, but while we have models to predict the effects of changes in subsidy quantity, we currently lack models to predict the effects of changes in subsidy quality on recipient ecosystem functioning. We developed a novel model to predict the effects of subsidy quality on recipient ecosystem biomass distribution, recycling, production, and efficiency. We parameterized the model for a case study of a riparian ecosystem subsidized by pulsed emergent aquatic insects. In this case study we focused on a common measure of subsidy quality that differs between riparian and aquatic ecosystems: the higher content of long-chain polyunsaturated fatty acids (PUFAs) in aquatic ecosystems. We analyzed how changes in the PUFA concentration of aquatic subsidies affect the dynamics in biomass stocks and functions of the riparian ecosystem. We also conducted a global sensitivity analysis to identify key drivers of subsidy impacts. Our analysis showed that subsidy quality increased the functioning of the recipient ecosystem. Recycling increased more strongly than production per unit subsidy quality increase, meaning there was a threshold where an increase in subsidy quality led to stronger effects of subsidies on recycling relative to the production of the recipient ecosystem. Our predictions were most sensitive to basal nutrient input, highlighting the relevance of recipient ecosystem nutrient levels to understanding the effects of ecosystem connections. We argue that recipient ecosystems that rely on high-quality subsidies, such as aquatic-terrestrial ecotones, are highly sensitive to changes in subsidy-recipient ecosystem connections. Our novel model unifies the subsidy hypothesis and food quality hypothesis and provides testable predictions to understand the effects of ecosystem connections on ecosystem functioning under global changes.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Insetos
2.
J Anim Ecol ; 90(5): 1142-1151, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33560517

RESUMO

Most resource subsidies are temporally variable, dynamically affecting the consumer populations, community structures and ecosystem functions of recipient ecosystems. Temporally variable resource subsidies are characterized by the duration, magnitude, timing and frequency of resource subsidy inputs. These different characteristics may have different mechanisms by which to affect recipient ecosystems. Few studies have examined the duration of resource subsidy inputs on recipient ecosystems, although there exist previous studies focusing on magnitude, timing and frequency. We provide the first experimental test of the effects of subsidy duration on a stream ecosystem by using an outdoor mesocosm experiment, in which we directly manipulated the subsidy duration (pulsed vs. prolonged) of terrestrial invertebrate input into the mesocosm. Given the same overall amount of terrestrial invertebrate subsidy was added, a prolonged subsidy allowed large-stage fish to effectively monopolize the subsidy over small-stage fish, which led small-stage fish to maintain their predation pressure on in-situ prey, that is, benthic invertebrates. On the other hand, a pulsed subsidy allowed small-stage fish to increase their feeding rate of the subsidy and to become away from foraging in-situ prey. Consequently, weaker indirect positive effects on in-situ benthic prey and leaf break-down rate were found with the prolonged versus pulsed subsidy. However, these indirect effects varied by the dominant benthic prey species, which differed in edibility for fish. Such predator-specific vulnerability of benthic prey can be important in mediating trophic cascades in detritus-based stream food webs. Phenological events that generate temporal subsidies (e.g. salmon spawning run and arthropod emergence) can be synchronized (pulsed) or desynchronized (prolonged) within and among species, depending on the degree of spatial and temporal environmental heterogeneity. The effects of subsidy duration would thus be important to better understand ecological processes in spatially and temporally coupled ecosystems.


Assuntos
Ecossistema , Rios , Animais , Cadeia Alimentar , Invertebrados , Comportamento Predatório
3.
Mar Pollut Bull ; 156: 111269, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510409

RESUMO

Brunei Bay is one of the most important marine environments of East Malaysia (South China Sea), covering many productive ecosystems with activities including fisheries, tourism, and main shipping lanes for petroleum transfers. Evaluation of the sources and distributions of steroids in the surface sedimentary organic matter was carried out by gas chromatography-mass spectrometry (GC-MS). The concentrations of the total identified sterols (TIS) ranged between 0.81 and 12.69 µg g-1 dry weight, and the total sterones were between 0.11 and 5.66 µg g-1 dry weight. The coprostanol level was comparatively low (<0.10 µg g-1), and the multi-biomarker proxies indicated that the region did not exhibit significant contamination from sewage effluents. Principal component analysis (PCA) revealed the coastal environment of the study area was dominated by allochthonous (mainly terrestrial) organic matter input.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água/análise , Baías , Brunei , China , Ecossistema , Monitoramento Ambiental , Malásia
4.
Glob Chang Biol ; 25(8): 2619-2632, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31157944

RESUMO

Cross-ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate-related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015-2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post-bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral-dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community-wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.


Assuntos
Antozoários , Recifes de Corais , Animais , Biomassa , Ecossistema , Peixes , Humanos , Oceano Índico , Ilhas , Nutrientes , Ratos
5.
Biol Rev Camb Philos Soc ; 94(2): 517-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30246443

RESUMO

The transport of resource subsidies by animals has been documented across a range of species and ecosystems. Although many of these studies have shown that animal resource subsidies can have significant effects on nutrient cycling, ecosystem productivity, and food-web structure, there is a great deal of variability in the occurrence and strength of these effects. Here we propose a conceptual framework for understanding the context dependency of animal resource subsidies, and for developing and testing predictions about the effects of animal subsidies over space and time. We propose a general framework, in which abiotic characteristics and animal vector characteristics from the donor ecosystem interact to determine the quantity, quality, timing, and duration (QQTD) of an animal input. The animal input is translated through the lens of recipient ecosystem characteristics, which include both abiotic and consumer characteristics, to yield the QQTD of the subsidy. The translated subsidy influences recipient ecosystem dynamics through effects on both trophic structure and ecosystem function, which may both influence the recipient ecosystem's response to further inputs and feed back to influence the donor ecosystem. We present a review of research on animal resource subsidies across ecosystem boundaries, placed within the context of this framework, and we discuss how the QQTD of resource subsidies can influence trophic structure and ecosystem function in recipient ecosystems. We explore the importance of understanding context dependency of animal resource subsidies in increasingly altered ecosystems, in which the characteristics of both animal vectors and donor and recipient ecosystems may be changing rapidly. Finally, we make recommendations for future research on animal resource subsidies, and resource subsidies in general, that will increase our understanding and predictive capacity about their ecosystem effects.


Assuntos
Ecossistema , Migração Animal , Animais , Biomassa , Tamanho Corporal/fisiologia , Carbono/metabolismo , Mudança Climática , Nitrogênio/metabolismo , Fósforo/metabolismo , Densidade Demográfica , Estações do Ano , Fatores de Tempo
6.
Ecology ; 98(7): 1884-1895, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28418098

RESUMO

Environmental perturbations can strongly affect community processes and ecosystem functions by acting primarily as a subsidy that increases productivity, a stress that decreases productivity, or both, with the predominant effect potentially shifting from subsidy to stress as the overall intensity of the perturbation increases. While perturbations are often considered along a single axis of intensity, they consist of multiple components (e.g., magnitude, frequency, and duration) that may not have equivalent stress and/or subsidy effects. Thus, different combinations of perturbation components may elicit community and ecosystem responses that differ in strength and/or direction (i.e., stress or subsidy) even if they reflect a similar overall perturbation intensity. To assess the independent and interactive effects of perturbation components, we experimentally manipulated the magnitude, frequency, and duration of wrack deposition, a common stress-subsidy in a variety of coastal systems. The effects of wrack perturbation on salt marsh community and ecosystem properties were assessed both in the short-term (at the end of a 12-week experimental manipulation) and long-term (6 months after the end of the experiment). In the short-term, plants and associated benthic invertebrates exhibited primarily stress-based responses to wrack perturbation. The extent of these stress effects on density of the dominant plant Spartina alterniflora, total plant percent cover, invertebrate abundance, and sediment oxygen availability were largely determined by perturbation duration. Yet, higher nitrogen content of Spartina, which indicates a subsidy effect of wrack, was influenced primarily by perturbation magnitude in the short-term. In the longer term, perturbation magnitude determined the extent of both stress and subsidy effects of wrack perturbation, with lower subordinate plant percent cover and snail density, and higher Spartina nitrogen content in high wrack biomass treatments. However, stress effects on the marsh community were generally less pronounced 6 months after the wrack perturbation, indicating capacity for recovery. Our results demonstrate that individual perturbation components can determine the degree to which its effects on the community elicit primarily stress- and/or subsidy-based responses. Further, the nature and extent of stress-subsidy effects can change over time, depending on species' relative ability to tolerate and/or recover from perturbation.


Assuntos
Poaceae/fisiologia , Estresse Fisiológico , Áreas Alagadas , Animais , Biomassa , Ecossistema , Nitrogênio
7.
J Anim Ecol ; 85(5): 1136-46, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26972564

RESUMO

Spatial resource subsidies can alter bottom-up and top-down forces of community regulation across ecosystem boundaries. Most subsidies are temporally variable, and recent theory has suggested that consumer-resource dynamics can be stabilized if the peak timing of a subsidy is desynchronized with that of prey productivity in the recipient ecosystem. However, magnitude of consumer responses per se could depend on the subsidy timing, which may be a critical component for community dynamics and ecosystem processes. The aim of this study was to test (i) whether a recipient consumer (cutthroat trout) responds differently to a resource subsidy occurring early in its growing season than to a subsidy occurring late in the season and, if this is the case, (ii) whether the timing-dependent consumer response has cascading effects on communities and ecosystem functions in streams. To test those hypotheses, we conducted a large-scale field experiment, in which we directly manipulated the timing of augmentation of the terrestrial invertebrates that enter stream (i.e. peak timing of June-August vs. August-October), keeping constant the total amounts of the invertebrates entered. We found large increases in the individual growth rate and population biomass of the cutthroat trout, in response to the early resource pulse, but not to the late pulse. This timing-dependent consumer response cascaded down to reduce benthic invertebrates and leaf breakdown rate, and increased water nutrient concentrations. Furthermore, the early resource pulse resulted in higher maturity rate of the cutthroat trout in the following spring, demonstrating the importance of the subsidy timing on long-term community dynamics via the consumer's numerical response. Our results emphasize the need to acknowledge timing-dependent consumer responses in understanding the effects of subsidies on communities and ecosystem processes. Elucidating the mechanisms by which consumers effectively exploit pulsed subsidies is an important avenue to better understand community dynamics in spatially coupled ecosystems.


Assuntos
Biomassa , Cadeia Alimentar , Invertebrados/fisiologia , Oncorhynchus/crescimento & desenvolvimento , Rios , Animais , Organismos Aquáticos/fisiologia , Colúmbia Britânica , Ecossistema , Estações do Ano
8.
J Anim Ecol ; 83(4): 907-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24308701

RESUMO

Resource subsidies often weaken trophic cascades in recipient communities via consumers' functional response to the subsidies. Consumer populations are commonly stage-structured and may respond to the subsidies differently among the stages yet less is known about how this might impact the subsidy effects on the strength of trophic cascades in recipient systems. We show here, using a large-scale field experiment, that the stage structure of a recipient consumer would dampen the effects of terrestrial invertebrate subsidies on the strength of trophic cascade in streams. When a high input rate of the terrestrial invertebrates was available, both large and small fish stages switched their diet to the terrestrial subsidy, which weakened the trophic cascade in streams. However, when the input rate of the terrestrial invertebrates was at a moderate level, the terrestrial subsidy did not weaken the trophic cascade. This discrepancy was likely due to small fish stages being competitively excluded from feeding on the subsidy by larger stages of fish and primarily foraging on benthic invertebrates under the moderate input level. Although previous studies using single fish stages have clearly demonstrated that the terrestrial invertebrate input equivalent to our moderate input rate weakened the trophic cascade in streams, this subsidy effect might be overestimated given small fish stage may not switch their diet to the subsidy under competition with large fish stage. Given the ubiquity of consumer stage structure and interaction among consumer stages, the effects we saw might be widespread in nature, requiring future studies that explicitly involve consumer's stage structure into community ecology.


Assuntos
Comportamento Alimentar , Peixes/fisiologia , Cadeia Alimentar , Invertebrados/fisiologia , Animais , Japão , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA