Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
J Colloid Interface Sci ; 678(Pt B): 783-794, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39270381

RESUMO

Antimony selenide (Sb2Se3) has been considered as a prospective material for sodium-ion batteries (SIBs) because of its large theoretical capacity. Whereas, grievous volume expansion caused by the conversion-alloying reaction leads to fast capacity decay and inferior cycle stability. Herein, the confined Sb2Se3 nanorods in nitrogen-doped carbon (Sb2Se3/NC) with interfacial chemical bond is designed to further enhance sodium storage properties of Sb2Se3. The robust enhancing effect of interfacial SbOC bonds can significantly promote electron transfer, Na+ ions diffusion kinetics and alloying reaction reversibility, combining the synergistic effect of the unique confinement structure of N-doped carbon shells can efficiently alleviate the volume change to ensure the structural integrity. Moreover, in-situ X-ray diffraction reveals intercalation/de-intercalation, conversion/reversed conversion reaction and alloying/de-alloying reaction mechanisms, and the kinetics analysis demonstrates the diffusion-controlled to contribute high capacity. As a result, Sb2Se3/NC anode delivers a high reversible capacity of 612.6 mAh/g at 0.1 A/g with a retentive specific capacity of 471.4 mAh/g after 1000 cycles, and long-cycle durability of over 2000 cycle with the reversible capacities of 371.1 and 297.3 mAh/g at 1 and 2 A/g are achieved, respectively, and an good rate capability. This distinctive interfacial chemical bonds and confinement effect design shows potential applications in the improved conversion/alloying-type materials for SIBs.

2.
Angew Chem Int Ed Engl ; : e202413065, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39275906

RESUMO

Rationally designing a current collector that can maintain low lithium (Li) porosity and smooth morphology while enduring high-loading Li deposition is crucial for realizing the high energy density of Li metal batteries, but it is still challengeable. Herein, a Li2ZnCu3 alloy-modified Cu foil is reported as a stable current collector to fulfill the stable high-loading Li deposition. Benefiting from the in-situ alloying, the generated numerous Li2ZnCu3@Cu heterojunctions induce a homogeneous Li nucleation and dense growth even at an ultrahigh capacity of 12 mAh cm-2. Such a spatial structure endows the overall Li2ZnCu3@Cu electrode with the manipulated steric hindrance and outmost surface electric potential to suppress the side reactions during Li stripping and plating. The resultant Li||Li2ZnCu3@Cu asymmetric cell preserves an ultrahigh average Coulombic efficiency of 99.2% at 3 mA cm-2/6 mAh cm-2 over 200 cycles. Moreover, the Li-Li2ZnCu3@Cu||LiFePO4 cell maintains a cycling stability of 87.5% after 300 cycles. After coupling with the LiCoO2 cathode (4 mAh cm-2), the cell exhibits a high energy density of 407.4 Wh kg-1 with remarkable cycling reversibility at an N/P ratio of 3. All these findings present a doable way to realize the high-capacity, dendrite-free, and dense Li deposition for high-performance Li metal batteries.

3.
Heliyon ; 10(18): e37390, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309837

RESUMO

This study investigates the influence of cobalt (Co) alloying addition and heat treatment temperature on the phase transformation behaviour controlling the superelasticity and shape memory effect (SME) of Nickel-Titanium (Ni-Ti) alloys, commonly known as nitinol. The microstructural evolution upon heat treatment conducted at a temperature ranging from 440 to 560 °C was thoroughly analyzed via Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS). Increase in heat treatment temperatures from 470 °C up to 530 °C led to the dissolution of particles present in as-received (cold-worked) condition. It was determined that Co addition into the Ni-Ti alloy system resulted in a change in the nucleation and growth kinetics of Ti-rich precipitates, leading to the formation of larger and fewer particles during processing. Both binary and ternary alloys showed a decrease in austenite finish temperature (Af) with increasing heat treatment temperatures, however, the rate of decrease was found to be higher for Co containing ternary alloys. This is linked with faster structural relaxation when Co is present and evidenced by lattice size variation during heat treatment. It is highlighted that heat treatment methodology needs to be tailored to the specific alloy composition for controlling superelasticity and SME via alloy design.

4.
J Colloid Interface Sci ; 678(Pt C): 79-88, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39277955

RESUMO

Lithium-sulfur (Li-S) batteries have attracted much attention due to their high specific capacity. However, at high loads and rates, the polysulfides conversion rate and ion transport of batteries are slow, limiting their commercialization. This work reports zero-dimensional (0D) bimetallic MOF derivatives grown in situ on two-dimensional (2D) MXene by electrostatic adsorption (FeCo@Ti3C2). The 0D bimetallic structure effectively avoids the stacking of MXene while providing a dual catalytic site for polysulfides. The 2D structure of MXene also provides a large number of pathways for the rapid diffusion of lithium ions. This 0D-2D heterostructured heterogeneous catalyst with bimetallic synergistic active sites efficiently immobilizes and catalyzes polysulfides, providing a fast charge transfer pathway for the electrochemical reaction of lithium polysulfides. The Li-S battery with this multifunctional 0D-2D heterojunction structure catalyst has outstanding high rate capacity (703 mAh g-1 at 4 C at room temperature and 555 mAh g-1 at 2 C at 0 °C), fascinating capacity at high load (5.5 mAh cm-2 after 100 cycles at a high sulfur content of 8.2 mg cm-2). The study provides new ideas for the commercialization of high-efficiency Li-S batteries.

5.
Heliyon ; 10(17): e37392, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296168

RESUMO

A powder-metallurgy MoNbTaTiV refractory high-entropy alloy synthesized by mechanical alloying (MA) and spark plasma sintering was subjected to hot deformations at different temperatures and strain rates. The microstructural morphologies were characterized, and component element segregation was elucidated. With grain refinement and lattice strain increase, the large inhomogeneous milled powder became refined and homogeneous after the MA. Component element segregation was observed at relatively low deformation temperatures and high strain rates. As the deformation temperature increased and the strain rate decreased, the segregation gradually disappeared, which was attributed to dislocation movement.

6.
Materials (Basel) ; 17(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39336213

RESUMO

In order to explore the effect of alloying on the microstructures and mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloys (EHEAs), 0.1, 0.2, and 0.3 at.% V, Mo, and B were added to the AlCoCrFeNi2.1 alloy in this work. The effects of the elements and contents on the phase composition, microstructures, mechanical properties, and fracture mechanism were investigated. The results showed that the crystal structures of the AlCoCrFeNi2.1 EHEAs remained unchanged, and the alloys were still composed of FCC and BCC structures, whose content varied with the addition of alloying elements. After alloying, the aggregation of Co, Cr, Al, and Ni elements remained unchanged, and the V and Mo were distributed in both dendritic and interdendritic phases. The tensile strengths of the alloys all exceeded 1000 MPa when the V and Mo elements were added, and the Mo0.2 alloy had the highest tensile strength, of 1346.3 MPa, and fracture elongation, of 24.6%. The alloys with the addition of V and Mo elements showed a mixed ductile and brittle fracture, while the B-containing alloy presented a cleavage fracture. The fracture mechanism of Mo0.2 alloy is mainly crack propagation in the BCC lamellae, and the FCC dendritic lamellae exhibit the characteristics of plastic deformation.

7.
Materials (Basel) ; 17(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274650

RESUMO

TiAl alloys possess excellent properties, such as low density, high specific strength, high elastic modulus, and high-temperature creep resistance, which allows their use to replace Ni-based superalloys in some high-temperature applications. In this work, the traditional TiAl alloy Ti-48Al-2Nb-2Cr (Ti4822) was alloyed with additional Nb and fabricated using laser metal deposition (LMD), and the impacts of this additional Nb on the microstructure and mechanical and tribological properties of the as-fabricated alloys were investigated. The resulting alloys mainly consisted of the γ phase, trace ß0 and α2 phases. Nb was well distributed throughout the alloys, while Cr segregation resulted in the residual ß0 phase. Increasing the amount of Nb content increased the amount of the γ phase and reduced the amount of the ß0 phase. The alloy Ti4822-2Nb exhibited a room-temperature (RT) fracture strength under a tensile of 568 ± 7.8 MPa, which was nearly 100 MPa higher than that of the Ti4822-1Nb alloy. A further increase in Nb to an additional 4 at.% Nb had little effect on the fracture strength. Both the friction coefficient and the wear rate increased with the increasing Nb content. The wear mechanisms for all samples were abrasive wear with local plastic deformation and oxidative wear, resulting in the formation of metal oxide particles.

8.
Nano Lett ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324698

RESUMO

TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.

9.
Heliyon ; 10(16): e35999, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247351

RESUMO

High Entropy Alloys (HEAs) are currently a subject of significant research interest in the fields of materials science and engineering. They are rapidly evolving due to their exceptional properties, and there is considerable focus on expanding their application potential by developing HEA coatings on various substrate materials. This area of study holds promise for advancing technology and innovation in diverse industries. In this study, a novel equiatomic AlBeSiTiV Light Weight HEA was synthesized via mechanical alloying and was sprayed on the substrate SS316 by the thermal spray process. The microstructural characterization revealed that synthesized HEA had a major FCC phase and the average coating thickness was observed to be 150 µm. The average microhardness was measured to be 975 ± 13 HV for the coating which was five times than the substrate. The coated samples' wear resistance was found out using a pin-on-disc apparatus by varying the wear process parameters and Taguchi's L27 Orthogonal Array was used to interpret the parametric influence on wear rate. ANOVA and regression analysis revealed applied load to be the most significant factor followed by distance and velocity. The major wear mechanisms observed were adhesion abrasion and oxidation, and the formation of tribolayer was observed at higher velocity and distance.

10.
Molecules ; 29(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39274986

RESUMO

The interface connects the reinforced phase and the matrix of materials, with its microstructure and interfacial configurations directly impacting the overall performance of composites. In this study, utilizing seven atomic layers of Mg(0001) and Ti(0001) surface slab models, four different Mg(0001)/Ti(0001) interfaces with varying atomic stacking configurations were constructed. The calculated interface adhesion energy and electronic bonding information of the Mg(0001)/Ti(0001) interface reveal that the HCP2 interface configuration exhibits the best stability. Moreover, Si, Ca, Sc, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Sn, La, Ce, Nd, and Gd elements are introduced into the Mg/Ti interface layer or interfacial sublayer of the HCP2 configurations, and their interfacial segregation behavior is investigated systematically. The results indicate that Gd atom doping in the Mg(0001)/Ti(0001) interface exhibits the smallest heat of segregation, with a value of -5.83 eV. However, Ca and La atom doping in the Mg(0001)/Ti(0001) interface show larger heat of segregation, with values of 0.84 and 0.63 eV, respectively. This implies that the Gd atom exhibits a higher propensity to segregate at the interface, whereas the Ca and La atoms are less inclined to segregate. Moreover, the electronic density is thoroughly analyzed to elucidate the interfacial segregation behavior. The research findings presented in this paper offer valuable guidance and insights for designing the composition of magnesium-based composites.

11.
Adv Mater ; 36(39): e2400060, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126132

RESUMO

Band alignment engineering is crucial for facilitating charge separation and transfer in optoelectronic devices, which ultimately dictates the behavior of Van der Waals heterostructures (vdWH)-based photodetectors and light emitting diode (LEDs). However, the impact of the band offset in vdWHs on important figures of merit in optoelectronic devices has not yet been systematically analyzed. Herein, the regulation of band alignment in WSe2/Bi2Te3- xSex vdWHs (0 ≤ x ≤ 3) is demonstrated through the implementation of chemical vapor deposition (CVD). A combination of experimental and theoretical results proved that the synthesized vdWHs can be gradually tuned from Type I (WSe2/Bi2Te3) to Type III (WSe2/Bi2Se3). As the band alignment changes from Type I to Type III, a remarkable responsivity of 58.12 A W-1 and detectivity of 2.91×1012 Jones (in Type I) decrease in the vdWHs-based photodetector, and the ultrafast photoresponse time is 3.2 µs (in Type III). Additionally, Type III vdWH-based LEDs exhibit the highest luminance and electroluminescence (EL) external quantum efficiencies (EQE) among p-n diodes based on Transition Metal Dichalcogenides (TMDs) at room temperature, which is attributed to band alignment-induced distinct interfacial charge injection. This work serves as a valuable reference for the application and expansion of fundamental band alignment principles in the design and fabrication of future optoelectronic devices.

12.
Small ; : e2404194, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136198

RESUMO

Conversion and alloying-type transitional metal sulfides have attracted significant interests as anodes for Potassium-ion batteries (PIBs) and Sodium-ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high-volume expansions greatly limit the performance. Herein, Co1-xS/ZnS hollow nanocube-like heterostructure decorated on reduced graphene oxide (Co1-xS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post-heat vulcanization techniques. This unique composite can provide a more stable conductive network and shorten the diffusion length of ions, which exhibits a remarkable initial charge capacity of 638.5 mA h g-1 at 0.1 A g-1 for SIBs and 606 mA h g-1 at 0.1 A g-1 for PIBs, respectively; It is worth noting that the composite presents remarkable long stable cycle performance in PIBs, which initially delivered 274 mA h g-1 and sustained the charge capacity up to 245 mA h g-1 at high current density of 1 A g-1 after 2000 cycles. A series of in situ/ex situ detections and first principle calculations further validate the high potassium ions adsorption ability of Co1-xS/ZnS anode materials with high diffusion kinetics. This work will accelerate the fundamental construction of bimetallic sulfide hollow nanocubes heterostructure electrodes for energy storage applications.

13.
Sci Bull (Beijing) ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39174400

RESUMO

Alloying-type anode materials are considered promising candidates for next-generation alkali-ion batteries. However, they face significant challenges owing to severe volume variations and sluggish kinetics, which hinder their practical applications. To address these issues, we propose a universal synthetic strategy, which can realize the facile synthesis of various alloying-type anode materials composed of a porous carbon matrix with uniformly embedded nanoparticles (Sb, Bi, or Sn). Besides, we construct the interactions among active materials, electrolyte compositions, and the resulting interface chemistries. This understanding assists in establishing balanced kinetics and stability. As a result, the fabricated battery cells based on the above strategy demonstrate high reversible capacity (515.6 mAh g-1), long cycle life (200 cycles), and excellent high-rate capability (at 5.0 C). Additionally, it shows improved thermal stability at 45 and 60 °C. Moreover, our alloying-type anodes exhibit significant potential for constructing a 450 Wh kg-1 battery system. This proposed strategy could boost the development of alloying-type anode materials, aligning with the future demands for low-cost, high stability, high safety, wide-temperature, and fast-charging battery systems.

14.
Adv Sci (Weinh) ; 11(34): e2403530, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38975809

RESUMO

High Li-storage-capacity particles such as alloying-based anodes (Si, Sn, Ge, etc.) are core components for next-generation Li-ion batteries (LIBs) but are crippled by their intrinsic volume expansion issues. While pore pre-plantation represents a mainstream solution, seldom do this strategy fully satisfy the requirements in practical LIBs. One prominent issue is that porous particles reduce electrode density and negate volumetric performance (Wh L-1) despite aggressive electrode densification strategies. Moreover, the additional liquid electrolyte dosage resulting from porosity increase is rarely noticed, which has a significant negative impact on cell gravimetric energy density (Wh kg-1). Here, the concept of judicious porosity control is introduced to recalibrate existing particle design principles in order to concurrently boost gravimetric and volumetric performance, while also maintaining the battery's cycle life. The critical is emphasized but often neglected role that intraparticle pores play in dictating battery performance, and also highlight the superiority of closed pores over the open pores that are more commonly referred to in the literature. While the analysis and case studies focus on silicon-carbon composites, the overall conclusions apply to the broad class of alloying anode chemistries.

15.
Nanotechnology ; 35(43)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39074482

RESUMO

The efficiency of thermoelectric (TE) technology relies on the performance of TE materials. Substitution with heavy elements is an effective strategy in TE for enhancing phonon scattering without much affecting electrical transport properties. However, selecting suitable dopants to achieve a high TE figure-of-merit (ZT) poses a significant challenge. Thus, in this study, the efficacy of combined (Fe and Bi) co-substitution in CrSb2is investigated as a promising strategy to enhance ZT by lowering thermal conductivity. A series of co-substituted Cr1-xFexBiySb2-y(x= 0, 0.25, 0.50, 0.75, 1 andy= 0.10, 0.15, 0.20,0.25) samples were synthesized via furnace reaction followed by spark plasma sintering technique. Phase analysis and temperature dependence TE transport properties were systematically studied on synthesized samples. Furthermore, to analyze the impact of disorder induced by Bi/Fe substitution, electronic structure calculation was performed using the projector augmented-wave method. Notably, Cr0.75Fe0.25Bi0.15Sb1.85exhibited a low thermal conductivity of ∼2.5 W m-1K-1at 300 K, which reduced to half compared to that of pristine CrSb2(∼5 W m-1K-1). This reduction is attributed to the introduction of significant mass fluctuations and point defects along with the presence of Bi at grain boundaries by co-substitution. Consequently, a remarkable 90% enhancement inZT(∼0.021) at 350 K was achieved for Cr0.75Fe0.25Bi0.15Sb1.85compared to that of pristine CrSb2(ZT∼ 0.012). This study can provide valuable insights into the rational design of effective dopants in other TE materials also.

16.
ACS Appl Mater Interfaces ; 16(28): 36620-36627, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954756

RESUMO

Flexible thermoelectric generators can directly convert thermal energy harvested from the human body into electricity. The Ag2Se flexible film, a promising material for wearable thermoelectric generators, normally demonstrates an inferior electrical transport property due to its weakened in-plane mobility. In this study, the in-plane electrical transport properties of flexible Ag2Se films were optimized by alloying with additional sulfur. This optimization is achieved by leveraging the differences in elemental electronegativity and the preferred orientation of the Ag2Se films. The sulfur-alloyed Ag2Se thin film, with a nominal ratio of 3 atom %, can reach a maximum mobility of 1150 cm-2 V-1 s-1 at 300 K. So, the optimized room-temperature power factor increases to 1935 µW m-1 K-2. Furthermore, the Ag2Se film alloyed with 3 atom % sulfur exhibits excellent flexibility even after 1000 bending cycles with a radius of 5 mm, characterized by a relative resistance increment of less than 3%. In addition, the corresponding π-type flexible thermoelectric generator possesses a maximum power density of 51 W m-2 at a temperature difference of 50 K.

17.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063757

RESUMO

This paper presents corrosion resistance results of a 12Cr ferritic ODS steel (Fe-12Cr-2W-0.5Zr-0.3Y2O3) fabricated via a powder metallurgy route as a prospective applicant for fuel cladding materials. In a spent nuclear fuel reprocessing facility, nitric acid serves as the primary solvent in the PUREX method. Therefore, fundamental immersion and electrochemical tests were conducted in various nitric acid solutions to evaluate corrosion degradation behavior. Additionally, polarization tests were also performed in 0.61 M of sodium chloride solutions (seawater-like atmosphere) as a more general, all-purpose procedure that produces valid comparisons for most metal alloys. For comparison, martensitic X46Cr13 steel was also examined under the same conditions. In general, the corrosion resistance of the 12Cr ODS steel was better than its martensitic counterpart despite a lower nominal chromium content. Potentiodynamic polarization plots exhibited a lower corrosion current and higher breakdown potentials in chloride solution in the case of the ODS steel. It was found that the corrosion rate during immersion tests was exceptionally high in diluted (0.1-3 M) boiling nitric acid media, followed by its sharp decrease in more concentrated solutions (>4 M). The results of the polarization plots also exhibited a shift toward more noble corrosion potential as the concentrations increased from 1 M to 4 M of HNO3. The results on corrosion resistance were supported by LSCM and SEM observations of surface topology and corrosion products.

18.
Nanomaterials (Basel) ; 14(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057895

RESUMO

Ti/IrO2-Ta2O5 electrodes are extensively utilized in the electrochemical industries such as copper foil production, cathodic protection, and wastewater treatment. However, their performance degrades rapidly under high current densities and severe oxygen evolution conditions. To address this issue, we have developed a composite anode of Ti/Ta-Ti/IrO2-Ta2O5 with a Ta-Ti alloy interlayer deposited on a Ti substrate by double-glow plasma surface alloying, and the IrO2-Ta2O5 surface coating prepared by the traditional thermal decomposition method. This investigation indicates that the electrode with Ta-Ti alloy interlayer reduces the agglomerates of precipitated IrO2 nanoparticles and refines the grain size of IrO2, thereby increasing the number of active sites and enhancing the electrocatalytic activity. Accelerated lifetime tests demonstrate that the Ti/Ta-Ti/IrO2-Ta2O5 electrode exhibits a much higher stability than the Ti/IrO2-Ta2O5 electrode. The significant improvement in electrochemical stability is attributed to the Ta-Ti interlayer, which offers high corrosion resistance and effective protection for the titanium substrate.

19.
Nanomaterials (Basel) ; 14(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38998760

RESUMO

A Ni2MnSn Heusler alloy was obtained as a single B2 phase after 12 h of mechanical milling. The influence of prolonged milling on the phase stability was analysed for milling times up to 50 h, related to mean crystallite size, lattice strain, and electrical resistivity. The nature of the powders in the milled range was found to be nanocrystalline, with a mean crystallite size of about 33 ± 2 nm. An evaluation of the internal stresses induced by milling was performed, a linear behaviour was found, and a coefficient of the internal stress increase with milling time was proposed. Particle size distributions of milled samples were analysed, and the morphology of the powders was visualised by scanning electron microscopy. The elemental distribution of milled samples was quantified by energy-dispersive X-ray spectroscopy. Electrical resistivity measurements were performed on compacted samples, and their behaviour with milling time was analysed.

20.
ACS Appl Mater Interfaces ; 16(29): 38073-38082, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984812

RESUMO

Recently, the earth-abundant tin sulfide (SnS) has emerged as a promising thermoelectric material due to its phonon and electron structure similar to that of tin selenide (SnSe). However, compared with SnSe, limited progress has been achieved in the thermoelectric property enhancement of SnS. Textured SnS polycrystals with an enhanced thermoelectric performance have been developed in this work. The high carrier mobility benefited from the enhanced texture through the repressing strategy of spark plasma sintering, improving the electrical conductivity. In addition, Sn atom deficiencies in the texture sample led to an increased hole concentration, further boosting the electrical conductivity and power factor. The power factor exceeded 4.10 µW/cm·K2 at 423 K and 5.50 µW/cm·K2 at 850 K. The phonon scattering was strengthened by adjusting the multiscale microstructures including dislocations, defect clusters, etc., leading to an ultralow lattice thermal conductivity of 0.23 W/m·K at 850 K. A figure of merit zT > 1.3 at 850 K and an average zTave of 0.58 in the temperature range 373-850 K were achieved in the SnS polycrystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA