Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Neurobiol Aging ; 133: 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38381471

RESUMO

Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved. However, immunohistochemical staining of crushed sciatic nerves revealed that more macrophages of the pro-inflammatory but not immunosuppressive phenotype persisted in damaged 12-month-old knockout nerves. These pro-inflammatory macrophages were more efficient at engulfing myelin debris. CRYAB thus appears to play a role in resolving pro-inflammatory macrophage responses after damage to the older PNS.


Assuntos
Bainha de Mielina , Traumatismos dos Nervos Periféricos , Animais , Camundongos , Envelhecimento , Axônios , Colesterol , Macrófagos , Camundongos Knockout
2.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37259226

RESUMO

Enterovirus 71 (EV71) can cause severe hand-foot-and-mouth disease with neurological complications. It has evolved multiple mechanisms to compromise the host type I interferon (IFN-I) response. In neuronal cells, EV71-mediated IFN-I antagonism may be associated with neural precursor cell-expressed developmentally downregulated 4-like (Nedd4L), the E3 ubiquitin ligase that can interact with alphaB-crystallin (CRYAB) in the regulation of Nav1.5 stability. Here, we investigated the effect of CRYAB stability on IFN-ß promoter activity in neuronal SH-SY5Y cells infected with EV71, and its relations to Nedd4 L and extracellular signal-regulated kinases (ERK). Results showed that EV71 infection significantly caused CRYAB degradation via the Nedd4L-proteasome pathway, which required ERK-mediated phosphorylation of Serine 45 in CRYAB. Subsequently, it was observed that siRNA- or EV71-mediated CRYAB reduction limited Poly(dAT)-activated IFN-ß promoter, and CRYAB stabilisation by U0126-mediated inhibition of ERK activation remarkably enhanced the activity of IFN-ß promoter upon EV71 challenge. Collectively, we elucidate a novel mechanism by which ERK activation contributes to EV71 immune escape via CRYAB/IFN-ß axis in SH-SY5Y cells, indicating that perturbing ERK activation is desirable for anti-EV71 therapy.


Assuntos
Cristalinas , Neuroblastoma , Animais , Humanos , MAP Quinases Reguladas por Sinal Extracelular , Fosforilação , Ubiquitina-Proteína Ligases , Cadeia B de alfa-Cristalina
3.
In Vivo ; 36(1): 132-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972708

RESUMO

BACKGROUND/AIM: AlphaB-crystallin plays a pivotal role in many diseases. However, the involvement of alphaB-crystallin in retinal pigment epithelial (RPE) cells with diabetes stimuli remains unknown. The aim of this study is to examine the alterations of RPE cells and alphaB-crystallin expression in diabetic models in vivo and in vitro. MATERIALS AND METHODS: Diabetic conditions in mice were induced by streptozotocin (STZ). The thickness of the RPE/choroid complex was measured by optical coherence tomography (OCT). Periodic acid-Schiff (PAS) staining was used to investigate the choriocapillaris in histological sections of murine eyeballs and oxidative stress was evaluated using immunofluorescence with anti-4-hydroxynonenal (HNE) antibody. AlphaB-crystallin expression was examined in the RPE/choroid complex using ELISA. Real-Time PCR was performed to evaluate the alphaB-crystallin expression in cultured human RPE cells with high glucose or following advanced glycation end-products (AGE) stimulation. RESULTS: In diabetic mice, OCT-based RPE/choroidal layers were thickened 2 months after STZ stimulation, where PAS-positive dilated choriocapillaris was noted. Immunoreactivity of 4-HNE was strongly observed in the RPE layer, from which a significant number of RPE cells was lost. Meanwhile, alphaB-crystallin expression in 2-month STZ mice was significantly lower compared to controls. In accordance with these results, in vitro data showed that the alphaB-crystallin expression was also significantly lower in RPE cells with high glucose or following AGE stimulation compared to untreated cells. CONCLUSION: In both types of diabetic models the expression of alphaB-crystallin was found to be downregulated in RPE cells and was associated with increased levels of oxidative stress.


Assuntos
Diabetes Mellitus Experimental , Cadeia B de alfa-Cristalina , Animais , Regulação para Baixo , Células Epiteliais/metabolismo , Camundongos , Pigmentos da Retina , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
4.
J Neuroinflammation ; 18(1): 82, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761953

RESUMO

BACKGROUND: Inflammation constitutes both positive and negative aspects to recovery following peripheral nerve injury. Following damage to the peripheral nervous system (PNS), immune cells such as macrophages play a beneficial role in creating a supportive environment for regrowing axons by phagocytosing myelin and axonal debris. However, a prolonged inflammatory response after peripheral nerve injury has been implicated in the pathogenesis of negative symptoms like neuropathic pain. Therefore, the post-injury inflammation must be carefully controlled to prevent secondary damage while allowing for regeneration. CRYAB (also known as alphaB-crystallin/HSPB5) is a small heat shock protein that has many protective functions including an immunomodulatory role in mouse models of multiple sclerosis, spinal cord injury, and stroke. Because its expression wanes and rebounds in the early and late periods respectively after PNS damage, and CRYAB null mice with sciatic nerve crush injury display symptoms of pain, we investigated whether CRYAB is involved in the immune response following PNS injury. METHODS: Sciatic nerve crush injuries were performed in age-matched Cryab knockout (Cryab-/-) and wildtype (WT) female mice. Nerve segments distal to the injury site were processed by immunohistochemistry for macrophages and myelin while protein lysates of the nerves were analyzed for cytokines and chemokines using Luminex and enzyme-linked immunosorbent assay (ELISA). Peritoneal macrophages from the two genotypes were also cultured and polarized into pro-inflammatory or anti-inflammatory phenotypes where their supernatants were analyzed for cytokines and chemokines by ELISA and protein lysates for macrophage antigen presenting markers using western blotting. RESULTS: We report that (1) more pro-inflammatory CD16/32+ macrophages are present in the nerves of Cryab-/- mice at days 14 and 21 after sciatic nerve crush-injury compared to WT counterparts, and (2) CRYAB has an immunosuppressive effect on cytokine secretion [interleukin (IL)-ß, IL-6, IL-12p40, tumor necrosis factor (TNF)-α] from pro-inflammatory macrophages in vitro. CONCLUSIONS: CRYAB may play a role in curbing the potentially detrimental pro-inflammatory macrophage response during the late stages of peripheral nerve regeneration.


Assuntos
Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Cadeia B de alfa-Cristalina/biossíntese , Animais , Feminino , Expressão Gênica , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Compressão Nervosa/métodos , Traumatismos dos Nervos Periféricos/genética , Cadeia B de alfa-Cristalina/genética
5.
Cell Stress Chaperones ; 27(2): 177-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235182

RESUMO

Our cluster analysis of the Cancer Genome Atlas for co-expression of HSP27 and CRYAB in breast cancer patients identified three patient groups based on their expression level combination (high HSP27 + low CRYAB; low HSP27 + high CRYAB; similar HSP27 + CRYAB). Our analyses also suggest that there is a statistically significant inverse relationship between HSP27 and CRYAB and known clinicopathological markers in breast cancer. Screening an unbiased 248 breast cancer patient tissue microarray (TMA) for the protein expression of HSP27 and phosphorylated HSP27 (HSP27-82pS) with CRYAB also identified three patient groups based on HSP27 and CRYAB expression levels. TMA24 also had recorded clinical-pathological parameters, such as ER and PR receptor status, patient survival, and TP53 mutation status. High HSP27 protein levels were significant with ER and PR expression. HSP27-82pS associated with the best patient survival (Log Rank test). High CRYAB expression in combination with wild-type TP53 was significant for patient survival, but a different patient outcome was observed when mutant TP53 was combined with high CRYAB expression. Our data suggest that HSP27 and CRYAB have different epichaperome influences in breast cancer, but more importantly evidence the value of a cluster analysis that considers their coexpression. Our approach can deliver convergence for archival datasets as well as those from recent treatment and patient cohorts and can align HSP27 and CRYAB expression to important clinical-pathological features of breast cancer.


Assuntos
Neoplasias da Mama , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias da Mama/genética , Análise por Conglomerados , Feminino , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/análise , Humanos , Chaperonas Moleculares/análise , Cadeia B de alfa-Cristalina/metabolismo
6.
J Biol Chem ; 296: 100161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33288678

RESUMO

Small heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches. Therefore, we have utilized a single-molecule fluorescence-based approach to observe the chaperone action of human alphaB-crystallin (αBc, HSPB5). Using this approach we have, for the first time, determined the stoichiometries of complexes formed between αBc and a model client protein, chloride intracellular channel 1. By examining the dispersity and stoichiometries of these complexes over time, and in response to different concentrations of αBc, we have uncovered unique and important insights into a two-step mechanism by which αBc interacts with misfolded client proteins to prevent their aggregation.


Assuntos
Canais de Cloreto/química , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Cadeia B de alfa-Cristalina/química , Sítios de Ligação , Carbocianinas/química , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Soluções , Coloração e Rotulagem/métodos , Ácidos Sulfônicos/química , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
7.
Immunology ; 155(1): 72-84, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29532462

RESUMO

Neutrophils are essential in the fight against invading pathogens. They utilize antimicrobial effector mechanisms, such as phagocytosis, release of proteases and other antimicrobial products, robust oxidative bursts and neutrophil extracellular traps to combat infections. Neutrophils also modulate immune responses through the production of eicosanoids, cytokines and chemokines, as well as via direct communication with other immune cells. This system of high-intensity offense against pathogens is exquisitely balanced through regulation to limit damage to host tissue. Unfortunately, the control of neutrophils is not failproof. In cases of sterile injury, autoimmunity and even during an infection, neutrophils can cause tissue destruction and become detrimental to the host. For that reason, there is a need to find means to regulate the aberrant activation of these cells. We found that alphaB-crystallin (αBC), a heat-shock protein known to have anti-inflammatory abilities, affects certain properties of mouse neutrophils that subsequently influence the pro-inflammatory state of antigen-presenting cells (APCs). More specifically, αBC mediated small but significant increases in the levels of IL-10 and matrix metalloproteinase 8, and altered hydrogen peroxide secretion by stimulated neutrophils. Further, the heat-shock protein influenced the communication between neutrophils and dendritic cells by decreasing the production of pro-inflammatory cytokines, specifically IL-12p40, by the APCs. αBC could thus contribute to dampening neutrophil inflammatory responses by impacting the effect of neutrophils on other immune cells.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Subunidade p40 da Interleucina-12/biossíntese , Neutrófilos/imunologia , Cadeia B de alfa-Cristalina/imunologia , Animais , Células Cultivadas , Feminino , Subunidade p40 da Interleucina-12/imunologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Oncotarget ; 8(43): 74767-74780, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088822

RESUMO

Protein quality control (PQC) plays a key role in maintaining cardiomyocyte function and homeostasis, and malfunction in PQC is implicated in various forms of heart diseases. Molecular chaperones serve as the primary checkpoint for PQC; however, their roles in the pathogenesis of viral myocarditis, an inflammation of the myocardium caused by viral infection, are largely unknown. AlphaB-crystallin (CryAB) is the most abundant chaperone protein in the heart. It interacts with desmin and cytoplasmic actin to prevent protein misfolding and aggregation and to help maintain cytoskeletal integrity and cardiac function. Here we showed that coxsackievirus infection induced desminopathy-like phenotype of the myocardium, as characterized by the accumulation of protein aggregates and the disruption of desmin organization. We further demonstrated that CryAB was phosphorylated during early and downregulated at later stages of infection. Moreover, we showed that phosphorylated CryAB had a shorter half-life and was targeted to the ubiquitin-proteasome system for degradation. Lastly, we found that overexpression of CryAB significantly attenuated viral protein production and progeny release, indicating an anti-viral function for CryAB. Together, our results suggest a mechanism by which coxsackieviral infection induces CryAB degradation and loss-of-function, resulting in desmin aggregation, ultimately contributing to compromised cytoskeletal integrity and viral cardiomyopathy.

9.
Cell Stress Chaperones ; 22(4): 627-638, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28391594

RESUMO

Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and ß-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.


Assuntos
Proteínas de Choque Térmico Pequenas/química , Cadeia B de alfa-Cristalina/química , Animais , Proteínas de Choque Térmico Pequenas/metabolismo , Humanos , Modelos Moleculares , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica , Cadeia B de alfa-Cristalina/metabolismo
10.
Acta Neuropathol Commun ; 5(1): 27, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359321

RESUMO

Rosenthal fibers (RFs) are cytoplasmic, proteinaceous aggregates. They are the pathognomonic feature of the astrocyte pathology in Alexander Disease (AxD), a neurodegenerative disorder caused by heterozygous mutations in the GFAP gene, encoding glial fibrillary acidic protein (GFAP). Although RFs have been known for many years their origin and significance remain elusive issues. We have used mouse models of AxD based on the overexpression of human GFAP (transgenic, TG) and a point mutation in mouse GFAP (knock-in, KI) to examine the formation of RFs and to find astrocyte changes that correlate with the appearance of RFs. We found RFs of various sizes and shapes. The smallest ones appear as granular depositions on intermediate filaments. These contain GFAP and the small heat shock protein, alphaB-crystallin. Their aggregation appears to give rise to large RFs. The appearance of new RFs and the growth of previously formed RFs occur over time. We determined that DAPI is a reliable marker of RFs and in parallel with Fluoro-Jade B (FJB) staining defined a high variability in the appearance of RFs, even in neighboring astrocytes. Although many astrocytes in AxD with increased levels of GFAP and with or without RFs change their phenotype, only some cells with large numbers of RFs show a profound reconstruction of cellular processes, with a loss of fine distal processes and the appearance of large, lobulated nuclei, likely due to arrested mitosis. We conclude that 1) RFs appear to originate as small, osmiophilic masses containing both GFAP and alphaB-crystallin deposited on bundles of intermediate filaments. 2) RFs continue to form within AxD astrocytes over time. 3) DAPI is a reliable marker for RFs and can be used with immunolabeling. 4) RFs appear to interfere with the successful completion of astrocyte mitosis and cell division.


Assuntos
Doença de Alexander/patologia , Astrócitos/patologia , Citoplasma/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alexander/metabolismo , Animais , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Pré-Escolar , Citoplasma/metabolismo , Feminino , Corantes Fluorescentes , Proteína Glial Fibrilar Ácida/genética , Humanos , Imuno-Histoquímica , Indóis , Lactente , Masculino , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mitose/fisiologia , Mutação Puntual , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Cadeia B de alfa-Cristalina/metabolismo
11.
Neurobiol Aging ; 53: 138-149, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28185662

RESUMO

In an effort to identify factors that contribute to age-related deficits in the undamaged and injured peripheral nervous system (PNS), we noted that Brady and colleagues found that mice null for a small heat shock protein called alphaB-crystallin (αBC) developed abnormalities early in life that are reminiscent of aging pathologies. Because of our observation that αBC protein levels markedly reduce as wild-type mice age, we investigated whether the crystallin plays a role in modulating age-related deficits in the uninjured and damaged PNS. We show here that the presence of αBC correlates with maintenance of myelin sheath thickness, reducing macrophage presence, sustaining lipid metabolism, and promoting remyelination following peripheral nerve injury in an age-dependent manner. More specifically, animals null for αBC displayed a higher frequency of thinly myelinated axons, enhanced presence of Iba1+ macrophages, and fewer immunoreactive profiles of the cholesterol biosynthesis enzyme, squalene monooxygenase, before and after sciatic nerve crush injury. These findings thus suggest that αBC plays a protective and beneficial role in the aging PNS.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Expressão Gênica , Bainha de Mielina/patologia , Sistema Nervoso Periférico/patologia , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/fisiologia , Envelhecimento/fisiologia , Animais , Proteínas de Choque Térmico , Metabolismo dos Lipídeos , Macrófagos/patologia , Camundongos , Bainha de Mielina/fisiologia , Regeneração Nervosa , Sistema Nervoso Periférico/lesões
12.
Proc Natl Acad Sci U S A ; 114(9): E1707-E1716, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28137843

RESUMO

AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury.


Assuntos
Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Remielinização/fisiologia , Cadeia B de alfa-Cristalina/metabolismo , Animais , Axônios/metabolismo , Axônios/fisiologia , Feminino , Proteínas de Choque Térmico/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiopatologia , Receptor ErbB-2/metabolismo , Células de Schwann/fisiologia
13.
Clin Exp Ophthalmol ; 45(4): 379-384, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27928876

RESUMO

BACKGROUND: AlphaB-crystallin has been shown to have angiogenic properties. The purpose of this study was to determine the levels of alphaB-crystallin in the vitreous fluid of patients with proliferative diabetic retinopathy and to confirm the association between the expression level of alphaB-crystallin and vascular endothelial growth factor. METHODS: Vitreous samples were collected before vitrectomy from 46 eyes of 46 consecutive patients with proliferative diabetic retinopathy, and 19 patients without diabetes mellitus had vitrectomy for idiopathic macular hole. The concentrations of alphaB-crystallin and vascular endothelial growth factor were measured via enzyme-linked immunosorbent assay. RESULTS: The vitreous level (mean ± SD) of alphaB-crystallin was significantly higher in patients with proliferative diabetic retinopathy (317.3 ± 151.7 ng/mL) than in control patients (idiopathic macular hole, 8.3 ± 6.1 ng/mL) (P < 0.0001). The vitreous concentration of vascular endothelial growth factor was also significantly higher in patients with proliferative diabetic retinopathy (860.1 ± 566.4 pg/mL) than in control patients (9 pg/mL) (P < 0.0001). Meanwhile, both the expression levels of alphaB-crystallin and vascular endothelial growth factor were significantly higher in eyes with active proliferative diabetic retinopathy than in those with inactive proliferative diabetic retinopathy. Also, the vitreous concentration of alphaB-crystallin correlated significantly with that of vascular endothelial growth factor in vitreous fluid of proliferative diabetic retinopathy ([correlation coefficient], R = 0.78, P < 0.001). CONCLUSIONS: These results suggest a significant increase of alphaB-crystallin in the vitreous fluid of patients with proliferative diabetic retinopathy and present a crucial association between alphaB-crystallin and vascular endothelial growth factor with angiogenic activity in proliferative diabetic retinopathy.


Assuntos
Retinopatia Diabética/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Biomarcadores/metabolismo , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/cirurgia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Vitrectomia
14.
Int J Ophthalmol ; 9(8): 1100-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588262

RESUMO

AIM: To examine phosphorylation of alphaB-crystallin (p-αBC), a vascular endothelial growth factor (VEGF) chaperone, and immunohistochemically investigate relationship between p-αBC, VEGF and phosphorylated p38-mitogen-activated protein kinase (p-p38 MAPK) in the epiretinal membrane of human proliferative diabetic retinopathy (PDR). METHODS: Eleven epiretinal membranes of PDR surgically excised were included in this study. Two normal retinas were also collected from enucleation tissues due to choroidal melanoma. Paraformaldehyde-fixed, paraffin-embedded tissue sections were processed for immunohistochemistry with anti-p-αBC, VEGF, CD31, and p-p38 MAPK antibodies. RESULTS: Immunoreactivity for p-αBC was observed in all of the epiretinal membranes examined, where phosphorylation on serine (Ser) 59 showed strongest immunoreactivity in over 70% of the membranes. The immunolocalization of p-αBC was detected in the CD31-positive endothelial cells, and co-localized with VEGF and p-p38 MAPK in PDR membranes. Immunoreactivity for p-αBC, however, was undetectable in endothelial cells of the normal retinas, where p-p38 MAPK immunoreactivity was less marked than PDR membranes. CONCLUSION: Phosphorylation of αBC, in particular, phosphorylation on Ser59 by p-p38 MAPK may play a potential role as a molecular chaperon for VEGF in the pathogenesis of epiretinal membranes in PDR.

15.
Neuroscience ; 316: 130-42, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718604

RESUMO

In the present study, we reveal myelin-specific expression and targeting of mRNA and biochemical pools of HspB5 in the mouse CNS. Our observations are based on in situ hybridization, electron microscopy and co-localization with 2',3'-Cyclic-Nucleotide 3'-Phosphodiesterase (CNPase), reinforcing this myelin-selective expression. HspB5 mRNA might be targeted to these structures based on its presence in discrete clusters resembling RNA granules and the presence of a putative RNA transport signal. Further, sub-cellular fractionation of myelin membranes reveals a distinct sub-compartment-specific association and detergent solubility of HspB5. This is akin to other abundant myelin proteins and is consistent with HspB5's association with cytoskeletal/membrane assemblies. Oligodendrocytes have a pivotal role in supporting axonal function via generating and segregating the ensheathing myelin. This specialization places extreme structural and metabolic demands on this glial cell type. Our observations place HspB5 in oligodendrocytes which may require selective and specific chaperone capabilities to maintain normal function and neuronal support.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Bainha de Mielina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Envelhecimento , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/ultraestrutura , Biologia Computacional , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/ultraestrutura , RNA Mensageiro/metabolismo , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/ultraestrutura
16.
Biochim Biophys Acta ; 1860(1 Pt B): 167-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26415747

RESUMO

BACKGROUND: αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW: The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS: Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE: Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Envelhecimento/metabolismo , Cardiomiopatias/metabolismo , Cristalinas/química , Cristalinas/metabolismo , Doenças Musculares/metabolismo , Estresse Fisiológico , Animais , Cardiomiopatias/patologia , Cristalinas/ultraestrutura , Humanos , Modelos Biológicos , Doenças Musculares/patologia , Fosforilação , Relação Estrutura-Atividade
17.
Neurobiol Aging ; 36(4): 1686-1691, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683516

RESUMO

Parkinson's disease (PD) is one of the most devastating neurodegenerative disorders. The underlying mechanisms of the characteristic neurodegeneration in the substantia nigra (SN) are still not fully understood. To better understand the molecular events occurring in the SN of PD brain, we used the culture-derived isotope tag-based quantitative proteomics to compare the protein expression profiles in the nigral tissue of PD patients and control subjects. We identified a total of 11 differentially expressed proteins, including alphaB-crystallin (Cryab). Both the levels and pattern of Cryab expression in the SN were validated. It was revealed that Cryab was markedly upregulated in the SN of PD brain. Cryab expression was also upregulated in reactive astrocytes and microglia in a neurotoxin-induced mouse PD model. Moreover, we showed increased expression of Cryab in cytoplasmic inclusions in a subset of glial cells in Parkinsonian brain. Thus, we identified Cryab that is highly expressed in the SN of PD brain and may be involved in the glial pathology during dopaminergic neuron degeneration in PD.


Assuntos
Expressão Gênica , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Regulação para Cima , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Corpos de Inclusão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/citologia , Neuroglia/metabolismo , Substância Negra/citologia
18.
Proc Natl Acad Sci U S A ; 111(48): E5178-86, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404307

RESUMO

Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated αB-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of α-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.


Assuntos
Adaptação Fisiológica , Autofagia , Miocárdio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Coração/efeitos dos fármacos , Coração/fisiologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Immunoblotting , Imuno-Histoquímica , Camundongos Transgênicos , Microscopia Eletrônica , Mutação , Miocárdio/citologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , Ratos Sprague-Dawley , Vorinostat , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
19.
BMC Clin Pathol ; 14: 28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987308

RESUMO

BACKGROUND: alphaB-crystallin is a small heat shock protein that has recently been characterized as an oncoprotein correlating with the basal core phenotype and with negative prognostic factors in breast carcinomas. The purpose of this study was to evaluate alphaB-crystallin with respect to clinicopathological parameters and the outcome of patients with operable high-risk breast cancer. METHODS: A total of 940 tumors were examined, derived from an equal number of patients who had participated in two randomized clinical trials (paclitaxel-containing regimen in 793 cases). Immunohistochemistry for ER, PgR, HER2, Ki67, CK5, CK14, CK17, EGFR, alphaB-crystallin, BRCA1 and p53 was performed. BRCA1 mutation data were available in 89 cases. RESULTS: alphaß-crystallin was expressed in 170 cases (18.1%) and more frequently in triple-negative breast carcinomas (TNBC) (45% vs. 14.5% non-TNBC, p < 0.001). alphaB-crystallin protein expression was significantly associated with high Ki67 (Pearson chi-square test, p < 0.001), p53 (p = 0.002) and basal cytokeratin protein expression (p < 0.001), BRCA1 mutations (p = 0.045) and negative ER (p < 0.001) and PgR (p < 0.001). Its overexpression, defined as >30% positive neoplastic cells, was associated with adverse overall survival (Wald's p = 0.046). However, alphaB-crystallin was not an independent prognostic factor upon multivariate analysis. No interaction between taxane-based therapy and aß-crystallin expression was observed. CONCLUSIONS: In operable high-risk breast cancer, alphaB-crystallin protein expression is associated with poor prognostic features indicating aggressive tumor behavior, but it does not seem to have an independent impact on patient survival or to interfere with taxane-based therapy. TRIAL REGISTRATIONS: ACTRN12611000506998 (HE10/97 trial) and ACTRN12609001036202 (HE10/00 trial).

20.
Mult Scler ; 19(14): 1867-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23736536

RESUMO

BACKGROUND: Suppression of activation of pathogenic CD4(+) T cells is a potential therapeutic intervention in multiple sclerosis (MS). We previously showed that a small heat shock protein, CRYAB, reduced T cell proliferation, pro-inflammatory cytokine production and clinical signs of experimental allergic encephalomyelitis, a model of MS. OBJECTIVE: We assessed whether the ability of CRYAB to reduce the activation of T cells translated to the human disease. METHODS: CD4(+) T cells from healthy controls and volunteers with MS were activated in vitro in the presence or absence of a CRYAB peptide (residues 73-92). Parameters of activation (proliferation rate, cytokine secretion) and tolerance (anergy, activation-induced cell death, microRNAs) were evaluated. RESULTS: The secretion of pro-inflammatory cytokines by CD4(+) T cells was decreased in the presence of CRYAB in a subset of relapsing-remitting multiple sclerosis (RRMS) participants with mild disease severity while no changes were observed in healthy controls. Further, there was a correlation for higher levels of miR181a microRNA, a marker upregulated in tolerant CD8(+) T cells, in CD4(+) T cells of MS patients that displayed suppressed cytokine production (responders). CONCLUSION: CRYAB may be capable of suppressing the activation of CD4(+) T cells from a subset of RRMS patients who appear to have less disability but similar age and disease duration.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fragmentos de Peptídeos/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA