Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(8): 2167-2175, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39419802

RESUMO

Soil organic carbon (SOC) is essential for maintaining soil fertility and promoting sustainable agricultu-ral development. We investigated the impact of long-term tillage practices on soil organic carbon storage (SOCS) and its components in dryland farming areas of the black soil region, based on a 39-year tillage practice experiment. We compared the effects of different tillage practices (conventional rotary and ridge tillage, CT; no-tillage, NT; subsoiling tillage, ST; moldboard plowing, MP) on SOCS, active organic carbon components, and microbial necromass carbon (MNC) content in the 0-40 cm soil layer. The results showed that, compared to CT, NT significantly increased the contents of SOCS, SOC, dissolved organic carbon (DOC), microbial biomass carbon (MBC), easily oxidizable organic carbon (EOC), and MNC in the 0-20 cm soil layer. Both ST and MP significantly improved the contents of SOCS, SOC, and EOC in 0-20 and 20-40 cm soil layers compared to CT and increased MBC content in the 20-40 cm soil layer. Additionally, MP treatment significantly improved the contents of DOC, particulate organic carbon, and MNC in the 20-40 cm soil layer compared to other treatments. ST and MP significantly reduced the contribution rate of MNC to SOC in both soil layers compared to CT and NT treatments. Results of structural equation modeling showed that enhancing the mean weight diameter of soil aggregates, field capacity, and total phosphorus content, along with increasing the activities of ß-glucosidase, amylase, and lignin peroxidase, could promote MNC accumulation. MP treatment facilitated the uniform distribution of SOC, active organic carbon, and MNC in the 0-40 cm soil layer, which was more conducive to the fixation of SOC in farmland in the black soil region.


Assuntos
Agricultura , Carbono , Compostos Orgânicos , Solo , Solo/química , Carbono/análise , Compostos Orgânicos/análise , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , China , Fatores de Tempo
2.
Int J Biol Macromol ; 280(Pt 2): 135747, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304040

RESUMO

MurK is a MurNAc- and GlcNAc-specific amino sugar kinase, phosphorylates MurNAc and GlcNAc at the 6-hydroxyl group in an ATP-dependent manner, and contributes to the recovery of both amino sugars during the cell wall turnover in Clostridium acetobutylicum. Herein, we determined the crystal structures of MurK in complex with MurNAc, GlcNAc, and glucose, respectively. MurK represents the V-shaped fold, which is divided into a small N-terminal domain and a large C-terminal domain. The catalytic pocket is located within the deep cavity between the two domains of the MurK monomer. We mapped the significant enzyme-substrate interactions, identified key residues involved in the catalytic activity of MurK, and found that residues Asp77 and Arg78 from the ß4-α2-loop confer structural flexibilities to specifically accommodate GlcNAc and MurNAc, respectively. Moreover, structural comparison revealed that MurK adopts closed-active conformation induced by the N-acetyl moiety from GlcNAc/MurNAc, rather than closed-inactive conformation induced by glucose, to carry out its catalytic reaction. Taken together, our study provides structural and functional insights into the molecular mechanism of MurK for the phosphorylation of both MurNAc and GlcNAc, sugar substrate specificity, and conformational changes upon sugar substrate binding.

3.
Sci Total Environ ; 951: 175749, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39187085

RESUMO

Soil organic matter has been well acknowledged as a natural solution to mitigate climate change and to maintain agricultural productivity. Microbial necromass is an important contributor to soil organic carbon (SOC) storage, and serves as a resource pool for microbial utilization. The trade-off between microbial births/deaths and resource acquisition might influence the fate of microbial necromass in the SOC pool, which remains poorly understood. We coupled soil microbial assembly with microbial necromass contribution to SOC on a long-term, no-till (NT) farm that received maize (Zea mays L.) stover mulching in amounts of 0 %, 33 %, 67 %, and 100 % for 8 y. We characterized soil microbial assembly using the Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model (iCAMP), and microbial necromass using its biomarker amino sugars. We found that 100 % maize stover mulching (NT100) was associated with significantly lower amino sugars (66.4 mg g-1 SOC) than the other treatments (>70 mg g-1 SOC). Bacterial and fungal communities responded divergently to maize stover mulching: bacterial communities were positive for phylogenetic diversity, while fungal communities were positive for taxonomic richness. Soil bacterial communities influenced microbial necromass contribution to SOC through determinism on certain phylogenetic groups and bacterial bin composition, while fungal communities impacted SOC accumulation through taxonomic richness, which is enhanced by the positive contribution of dispersal limitation-dominated saprotrophic guilds. The prevalence of homogeneous selection and dispersal limitation on microbial cell wall-degrading bacteria, specifically Chitinophagaceae, along with increased soil fungal richness and interactions, might induce the decreased microbial necromass contribution to SOC under NT100. Our findings shed new light on the role of microbial assembly in shaping the dynamics of microbial necromass and SOC storage. This advances our understanding of the biological mechanisms that underpin microbial necromass associated with SOC storage, with implications for sustainable agriculture and mitigation of climate change.


Assuntos
Carbono , Microbiologia do Solo , Solo , Zea mays , Solo/química , Microbiota , Agricultura/métodos , Fungos , Sequestro de Carbono , Bactérias/classificação , Mudança Climática
4.
Microorganisms ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39203353

RESUMO

The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates.

5.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(7): 387-413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085064

RESUMO

Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.


Assuntos
Escherichia coli , Glicolipídeos , Proteínas de Membrana , Glicolipídeos/metabolismo , Glicolipídeos/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Diglicerídeos/química
6.
Chembiochem ; 25(17): e202400459, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38924281

RESUMO

Supramolecular hydrogels can be obtained via self-assembly of small molecules in aqueous environments. In this study, we describe the development of oxidation-responsive supramolecular hydrogels comprising glucosamine derivatives with an aryl sulfide group. We demonstrate that hydrogen peroxide can induce a gel-sol transition through the oxidation of the sulfide group to the corresponding sulfoxide. Furthermore, we show that this oxidation responsiveness can be extended to photo-responsiveness with the aid of a photosensitizer.


Assuntos
Glucosamina , Hidrogéis , Peróxido de Hidrogênio , Oxirredução , Sulfetos , Hidrogéis/química , Hidrogéis/síntese química , Glucosamina/química , Glucosamina/análogos & derivados , Sulfetos/química , Peróxido de Hidrogênio/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química
7.
Sci Total Environ ; 925: 171752, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494032

RESUMO

Plant- and microbial-derived organic carbon, two components of the soil organic carbon (SOC) pool in terrestrial ecosystems, are regulated by increased atmospheric nitrogen (N) deposition. However, the spatial patterns and driving factors of the responses of plant- and microbial-derived SOC to N deposition in forests are not clear, which hinders our understanding of SOC sequestration. In this study, we explored the spatial patterns of plant- and microbial-derived SOC, and their responses to N addition and elucidated their underlying mechanisms in forest soils receiving N addition at four sites with various soil and climate conditions. Plant- and microbial-derived SOC were quantified using lignin phenols and amino sugars, respectively. N addition increased the total microbial residues by 20.5% on average ranging from 9.4% to 34.0% in temperate forests but not in tropical forests, and the increase was mainly derived from fungal residues. Lignin phenols increased more in temperate forests (average of 63.8%) than in tropical forests (average of 15.7%) following N addition. The ratio of total amino sugars to lignin phenols was higher in temperate forests than in tropical forests and decreased with N addition in temperate forests. N addition mainly regulated soil microbial residues by affecting pH, SOC, exchangeable Ca2+, gram-negative bacteria biomass, and the C:N ratio, while it mainly had indirect effects on lignin phenols by altering SOC, soil C:N ratio, and gram-negative bacteria biomass. Overall, our findings suggested that N deposition caused a greater increase in plant-derived SOC than in microbial-derived SOC and that plant-derived SOC would have a more important role in sequestering SOC under increasing N deposition in forest ecosystems, particularly in temperate forests.


Assuntos
Ecossistema , Traqueófitas , Carbono , Solo/química , Nitrogênio/análise , Lignina , Florestas , Microbiologia do Solo , Amino Açúcares , Fenóis
8.
Sci Total Environ ; 916: 170259, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253096

RESUMO

Microbial interactions determine ecosystem carbon (C) and nutrient cycling, yet it remains unclear how interguild fungal interactions modulate microbial residue contribution to soil C pools (SOC) during forest succession. Here, we present a region-wide investigation of the relative dominance of saprophytic versus symbiotic fungi in litter and soil compartments, exploring their linkages to soil microbial residue pools and potential drivers along a chronosequence of secondary Chinese pine (Pinus tabulaeformis) forests on the Loess Plateau. Despite minor changes in C and nitrogen (N) stocks in the litter or soil layers across successional stages, we found significantly lower soil phosphorus (P) stocks, higher ratios of soil C: N, soil N: P and soil C: P but lower ratios of litter C: N and litter C: P in old (>75 years) than young stands (<30 years). Pine stand development altered the saprotroph: symbiotroph ratios of fungal communities to favor the soil symbiotrophs versus the litter saprotrophs. The dominance of saprotrophs in litter is positively related to microbial necromass contribution to SOC, which is negatively related to the dominance of symbiotrophs in soils. Antagonistic interguild fungal competition in litter and soil layers, in conjunction with increased fungal but decreased bacterial necromass contribution to SOC, jointly contribute to unchanged total necromass contribution to SOC with stand development. The saprotroph: symbiotroph ratios in litter and soil layers are mainly driven by soil P stocks and stand parameters (e.g., stand age and slope), respectively, while substrate stoichiometries primarily regulate microbial necromass accumulation and fungal: bacterial necromass ratios. These results provide novel insights into how microbial interactions at local spatial scales modulate temporal changes in SOC pools, with management implications for mitigating regional land degradation.


Assuntos
Ecossistema , Pinus , Solo/química , Florestas , Fósforo , Carbono/química , Microbiologia do Solo , Bactérias
9.
J Environ Manage ; 351: 119859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128213

RESUMO

The priming effect stands as a critical factor influencing the balance of soil organic carbon (SOC). Following vegetation restoration, the carbon (C) pool stability in Platycladus orientalis forests (PO) varies, and the priming effect resulting from exogenous C addition also differs significantly. Here, we selected PO with restoration ages of 10, 15, and 30 years in the rocky mountainous area in northern China and conducted measurements of soil properties, microbial communities, microbial necromass C (MNC), SOC fractions, and the priming effect characteristics to explore the main influencing factors of the priming effect, especially the microbiological mechanisms. Our results showed that the ratio of mineral-associated organic C to particulate organic C increased. The characteristics of the priming effect showed the same pattern, and there was a significant positive correlation between the C pool stability and the priming effect. The diversity of the fungal communities increased with increasing vegetation restoration age, and the content and proportion of fungal necromass C (FNC) also increased synchronously, reaching the maximum value in the soil of PO that had been restored for 30 years. In addition, the soil water content and total nitrogen indirectly affected the priming effect by influencing the microbial communities. In summary, the results suggested that vegetation restoration can enhance the C pool stability by promoting an increase in soil FNC, thereby producing a positive priming effect. This can help deepen our understanding of the SOC mineralization changes induced by fresh C input following vegetation restoration and provides a theoretical basis for better explaining the C cycle between soil and atmosphere under the vegetation restoration models in the future.


Assuntos
Carbono , Solo , Carbono/análise , Microbiologia do Solo , Florestas , China , Minerais
10.
Sci Total Environ ; 904: 166713, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657548

RESUMO

Rice cultivation has been demonstrated to have the ability to improve saline-sodic soil. Whether this human activity can influence the accumulation of soil organic carbon (SOC) in saline-sodic soil remains unclear. In this study, the impact of rice cultivation across different planting durations (1, 5, 10, 27 years and abandoned land) on the carbon (C) levels, derived from plant residues and microbial necromass, were assessed. Compared to the control, plant residues and microbial necromass greatly contributed to the carbon accumulation. For the short-term of rice cultivation (1-10 years), the C content originated from both microbial and plant residues gradually accumulated. In the prolonged cultivation phase (27Y), plant residues and microbial necromasses contributed 40.82 % and 21.03 % of the total SOC, respectively. Additionally, rice cultivation significantly reduced the pH by 13.58-22.51 %, electrical conductivity (EC) by 60.06-90.30 %, and exchangeable sodium percentage (ESP) by 60.68-78.39 %. In contrast, total nitrogen (TN), total phosphorus (TP), SOC, particulate organic C, mineral-bound organic C, and microbial biomass all saw statistical increases. The activities of extracellular enzymes in paddy soils, such as peroxidase, phenol oxidase, and leucine aminopeptidase, were significantly reduced, and the decomposition of lignin, phenol, and amino sugars by soil microorganisms was consequently suppressed. The partial least squares path modeling results demonstrated that rice cultivation affected the accumulation of plant and microbial components via the corresponding chemical properties (pH, EC, and ESP), nutrient content (TN, TP, and SOC), enzyme activity (LAP, PER, and POX), microbial biomass, and plant biomass. These findings are crucial for understanding the organic carbon sequestration potential of sodic saline soils.


Assuntos
Oryza , Solo , Humanos , Solo/química , Carbono , Biomassa , Lignina , Minerais , Microbiologia do Solo
11.
Glob Chang Biol ; 29(18): 5445-5459, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424182

RESUMO

To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump "efficacy"), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump "efficacy" for MNC production. The total C added to biochar and straw plots were estimated as 27.3-54.5 and 41.4 Mg C ha-1 , respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low "efficacy". Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%-102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Matéria Orgânica Dissolvida , Carvão Vegetal , Microbiologia do Solo
12.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768504

RESUMO

Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid fraction in human milk after lactose and lipids. HMOs are in the forefront of research since they have been proven to possess beneficial health effects, especially on breast-fed neonates. Although HMO research is a trending topic nowadays, readily available analytical methods suitable for the routine investigation of HMOs are still incomplete. NMR spectroscopy provides detailed structural information that can be used to indicate subtle structural differences, particularly for isomeric carbohydrates. Herein, we propose an NMR-based method to identify the major isomeric HMOs containing GlcNAc and/or Neu5Ac building blocks utilizing their amide functionality. Experimental conditions were optimized (H2O:D2O 9:1 v/v solvent at pH 3.0) to obtain 1H-15N HSQC and 1H-15N HSQC-TOCSY NMR spectra of the aforementioned building blocks in HMOs. Four isomeric HMO pairs, LNT/LNnT, 3'SL/6'SL, LNFP II/LNFP III, and LSTa/LSTb, were investigated, and complete NMR resonance assignments were provided. In addition, 1H and 15N NMR resonances were found to be indicative of various linkages, thereby facilitating the distinction of isomeric tri-, tetra-, and pentasaccharide HMOs. The rapid growth of HMO products (from infant formulas and dietary supplements to cosmetics) undoubtedly requires expanding the range of applicable analytical methods. Thus, our work provides a 15N NMR-based method to advance this challenging field of carbohydrate analysis.


Assuntos
Aleitamento Materno , Leite Humano , Lactente , Recém-Nascido , Feminino , Humanos , Leite Humano/química , Oligossacarídeos/química , Isomerismo , Espectroscopia de Ressonância Magnética
13.
EMBO J ; 42(2): e112574, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36504162

RESUMO

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ribonucleoproteínas/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética
14.
Front Chem ; 10: 865026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783215

RESUMO

We presented a facile and scalable route for the synthesis of di-azido sugars via one-pot double inversion of the mono-benzoyl sugars by TBAN3 and studied the dependency pattern between solvent and protecting groups as well as the configuration of the neighboring and leaving groups. Moreover, we developed a chemical synthetic strategy for pseudaminic acid precursors (11 steps in 49%). Furthermore, we discussed the configuration of nonulosonic acid precursors for specificity of PseI and PmNanA enzymatic synthesis, permitting us to synthesize new nonulosonic acid derivatives for accessing Pse isomers.

15.
Chem Asian J ; 17(14): e202200350, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35485806

RESUMO

Transformation of glycals to 2,3-di-substituted-3-dexoy-glycals were achieved by sequential C2 alkenylation of pseudoglycals followed by capture of nucleophiles at C3 position. Anomeric linked N-(glycosyloxy) acetamides group assisted innate C2-H activation of pseudoglycals under palladium catalysis is achieved. The synthesized C2 alkenylated products were further attacked by thio/amino nucleophiles at C3 position under basic conditions in stereo-selective fashion to generate 2,3-branched glycals with the elimination of directing groups and translocation of double bond. Different control experiments were conducted to establish the role of directing groups in C-H functionalization of pseudoglycals and reason for selectivity.


Assuntos
Acetamidas , Paládio , Catálise , Paládio/química
16.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4247-4253, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951265

RESUMO

Microbial residues play important roles in the formation and stabilization of soil organic matter. The responses of soil microbial residues to wetland reclamation, however, remain unclear. In this study, we collected soil samples from a native wetland dominated by Calamagrostis angustifolia as well as three agricultural lands cultivated for 5, 15, and 25 years to examine the effects of wetland reclamation on the content of microbial residues (amino sugar analysis). Results showed that soil amino sugar contents were significantly reduced after wetland reclamation, with a positive relationship between the reduction and the duration of reclamation. After 25 years of reclamation, the content of glucosamine, galactosamine, and muramic acid in agricultural soils decreased by 38.0%, 38.1%, and 35.9%, respectively, compared to the natural wetland. The reduction of muramic acid (25.8%) was stronger than glucosamine (14.9%) after 5 years of reclamation, indicating that bacterial-derived microbial residues were more sensitive to wetland reclamation than fungal-derived counterparts in the short term. Total amino sugars were decreased by 21.1%, 34.0%, and 38.0% after 5, 15, and 25 years of wetland reclamation, respectively. The proportion of total amino sugars in soil organic matter was significantly decreased from 4.8% in natural wetland to 4.4% after 25 years of reclamation, indicating that long-term wetland reclamation accelerated the depletion of microbial-derived organic components, and thus changed the composition of soil organic matter. Such changes may affect long-term stabilization of soil organic matter and ecosystem functioning.


Assuntos
Solo , Áreas Alagadas , Amino Açúcares , China , Ecossistema , Microbiologia do Solo
17.
Microorganisms ; 9(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835318

RESUMO

Staphylococcus xylosus forms biofilm embedded in an extracellular polymeric matrix. As extracellular DNA (eDNA) resulting from cell lysis has been found in several staphylococcal biofilms, we investigated S. xylosus biofilm in vitro by a microscopic approach and identified the mechanisms involved in cell lysis by a transcriptomic approach. Confocal laser scanning microscopy (CLSM) analyses of the biofilms, together with DNA staining and DNase treatment, revealed that eDNA constituted an important component of the matrix. This eDNA resulted from cell lysis by two mechanisms, overexpression of phage-related genes and of cidABC encoding a holin protein that is an effector of murein hydrolase activity. This lysis might furnish nutrients for the remaining cells as highlighted by genes overexpressed in nucleotide salvage, in amino sugar catabolism and in inorganic ion transports. Several genes involved in DNA/RNA repair and genes encoding proteases and chaperones involved in protein turnover were up-regulated. Furthermore, S. xylosus perceived osmotic and oxidative stresses and responded by up-regulating genes involved in osmoprotectant synthesis and in detoxification. This study provides new insight into the physiology of S. xylosus in biofilm.

18.
Carbohydr Res ; 509: 108430, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34488002

RESUMO

N-sugar substituted chiral aziridines were synthesized via Gabriel-Cromwell reaction. Novel pure diastereomers of aziridine derivatives (4 diastereomers) were readily obtained in high yields and their structures were confirmed by means of 1H NMR, 13C NMR, FT-IR, Mass and optical rotations. This is, to the best of our knowledge, the unique example of N-sugar aziridine synthesis. Diastereomeric effects for prostate (PC3) and cervix (HeLa) cancers were screened and it has been observed that the epimers bearing the same sugars showed different results against PC3 and HeLa cancer cells. The novel sugar aziridines were investigated as promising prodrug candidates for prostate cancer (PC3) therapy. Moreover, the drug likeness calculations (Lipinski's rule, physicochemical properties, lipophilicity, solubility, pharmacokinetics and bioavailability radar) have indicated that the sugar aziridines can be good candidates as oral drugs.


Assuntos
Aziridinas
19.
Microb Pathog ; 150: 104714, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33383148

RESUMO

An endophytic fungal antagonist Trichoderma longibrachiatum EF5 exhibited biocontrol activity against a soil-borne fungal pathogen Macrophomina phaseolina. Under dual co-culture, T. longibrachiatum EF5 showed 58% inhibition against M. phaseolina. Crude soluble metabolites (SMs) extracted from EF5 exhibited biocontrol activity (61%), which is more significant than the cell-free extract. Dual culture of both T. longibrachiatum EF5 and M. phaseolina displayed entangled mycelial structures and retarded hyphal growth. The metabolites responsible for antibiosis and pathogenic activity profiled through GC-MS revealed a total of 131 SMs from axenic culture and upon the interaction of T. longibrachiatum EF5 and M. phaseolina. Interestingly, potential plant-growth-promoting and antimicrobial compounds such as 1- pentanol, 1-hexanol, myristonyl pantothenate, bisabolol, d-Alanine, and diethyl trisulphide were unique with T. longibrachiatum EF5. Few compounds that were not observed or produced minimally under axenic culture were increased during their interaction (e.g., 1,6-anhydro-á-d-Glucopyranose and 5-heptyl dihydro-2(3H)-Furanone), suggesting antimicrobial action against the pathogen. This study also unraveled the induction of amino sugar metabolism when T. longibrachiatum EF5 interacts with M. phaseolina, which is responsible for colonization and counterfeiting the pathogen. Hence T. longibrachiatum EF5 could be a potential biocontrol agent employed for defense priming and plant growth promotion.


Assuntos
Trichoderma , Amino Açúcares , Ascomicetos , Hypocreales , Doenças das Plantas , Solo
20.
Ying Yong Sheng Tai Xue Bao ; 31(9): 3060-3066, 2020 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-33345507

RESUMO

Fertilization is an effective management to maintain and increase soil organic carbon (SOC) level in agroecosystems. Both microbial metabolism and plant component retention control SOC sequestration. Here, we used amino sugars and lignin as biomarkers to investigate the responses of distribution of microbial necromass and plant debris in a long-term cultivated soil (30 years) and SOC accumulation to different fertilization regime. The results showed that, compared with unfertilized treatment, inorganic fertilizer application (N fertilizer-only or the combination of organic or inorganic fertilizers) increased crop production and soil amino sugar accumulation, but did not affect the concentrations of lignin and SOC, indicating that inorganic fertilizer stimulated the assimilation of microbial substrate and accelerated the turnover of SOC and lignin in the plough layer. Compared with inorganic fertilizer treatment, long-term organic fertilizer application promoted SOC accumulation (38.3%), but did not affect amino sugar concentration in SOC, which indicated that soil could reach a 'saturation' state with respect to microbial residue accumulation. In contrast, the application of organic fertilizer increased the proportion of lignin in SOC,indicating that the contribution of plant residues to SOC persistence was enhanced. Compared with the manure-only treatment, organic-inorganic combined application mainly increased the contribution of amino sugar to SOC accumulation. Our findings indicated that long-term fertilization could affect SOC dynamics through modulating the accumulation processes of microbial necromass and plant debris.


Assuntos
Lignina , Solo , Agricultura , Carbono , Fertilização , Fertilizantes , Esterco , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA