Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.500
Filtrar
1.
FEMS Microbiol Ecol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289000

RESUMO

The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation, and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.

2.
Data Brief ; 57: 110902, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39314892

RESUMO

Rainbow trout (Oncorhynchus mykiss) is a dominant aquaculture species of the Salmonidae family, native only to the North Pacific. Recently, the gut microbiome has been shown to reflect the health status and responses to environmental changes in farmed fish. In this analysis we investigated the microbiome composition of the intestinal tract in 20 wild-caught rainbow trout specimens sampled in Alaska, USA. The targeted 16S rRNA gene (V3-V4 region) was sequenced on the Illumina NovaSeq 6000 platform. After quality control, demultiplexing and adapter trimming reads were analyzed using the DADA2 pipeline to obtain Amplicon Sequencing Variants (ASVs) which were subsequently taxonomically assigned. We found two phyla dominating the gut ecosystem present in every sample, Firmicutes and Fusobacteria, followed by lower abundances of Cyanobacteria, Proteobacteria and Bacteroidetes. At the genus level, we found high relative abundances of Cetobacterium and Clostridium sensu stricto 1. Interestingly, we did not identify often dominant genera Mycoplasma, Pseudomonas or Weisella which were prevalent in numerous studies previously, in cultured rainbow trout. Wild fish are exposed to a plethora of unpredictable environmental challenges, ranging from fluctuating water temperatures to variable food availability, as opposed to controlled conditions in production facilities. Examining and comparing the gut ecosystem of wild and reared individuals holds great potential in optimizing management practices for commercially important species. Microbiome studies can provide novel ways to enhance the overall welfare of fish, strengthen disease prevention and increase sustainability in aquaculture production.

3.
Sci Total Environ ; 953: 175972, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39233079

RESUMO

Eukaryotic microbes play key ecological roles in riverine ecosystems. Amplicon sequencing has greatly facilitated the identification and characterization of eukaryotic microbial communities. Currently, 18S rRNA gene V4 and V9 hypervariable regions are widely used for sequencing eukaryotic microbes. Identifying optimal regions for the profiling of size-fractional eukaryotic microbial communities is critical for microbial ecological studies. In this study, we spanned three rivers with typical natural-human influenced transition gradients to evaluate the performance of the 18S rRNA gene V4 and V9 hypervariable regions for sequencing size-fractional eukaryotic microbes (>180 µm, 20-180 µm, 5-20 µm, 3-5 µm, 0.8-3 µm). Our comparative analysis revealed that amplicon results depend on the specific species and microbial size. The V9 region was most effective for detecting a broad taxonomic range of species. The V4 region was superior to the V9 region for the identification of microbes in the minor 3 µm and at the family and genus levels, especially for specific microbial groups, such as Labyrinthulomycetes. However, the V9 region was more effective for studies of diverse eukaryotic groups, including Archamoebae, Heterolobosea, and Microsporidia, and various algae, such as Haptophyta, Florideophycidae, and Bangiales. Our results highlight the importance of accounting for potential misclassifications when employing both V4 and V9 regions for the identification of microbial sequences. The use of optimal regions for amplification could enhance the utility of amplicon sequencing in environmental studies. The insights gained from this work will aid future studies that employ amplicon-based identification approaches for the characterization of eukaryotic microbial communities and contribute to our understanding of microbial ecology within aquatic systems.


Assuntos
Eucariotos , RNA Ribossômico 18S , Rios , RNA Ribossômico 18S/genética , Rios/microbiologia , Eucariotos/genética , Microbiota/genética , Ecossistema , Monitoramento Ambiental/métodos
4.
Animals (Basel) ; 14(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39272317

RESUMO

After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought that bacterial genera colonizing the calf intestinal tract can cause inflammation and thus affect their host's performance via immunomodulation. This study explored how the faecal microbiota of newborn dairy calves were related to inflammatory markers during the first three weeks of life, and if the abundance of specific genera was associated with first-lactation performance. Ninety-five female Holstein calves were studied. Once a week, serum and faecal samples were collected, serum concentrations of serum amyloid A, haptoglobin, tumour necrosis factor-α, and interleukin-6 were measured, and faecal microbiota composition was examined by 16S rRNA gene amplicon sequencing. Faecal Gallibacterium abundance in the first week of age and Collinsella abundance in the second week were negatively associated with inflammatory response as well as with calving-conception interval. Peptostreptococcus abundance in the second week of life was positively associated with inflammatory response and calving-conception interval, and negatively with average daily weight gain. In the third week, Dorea abundance was positively, Bilophila abundance was negatively associated with inflammatory response, and both genera were negatively associated with age at first calving. These bacterial genera may be able to influence the inflammatory response and through this, possibly the future performance of the dairy heifer. Deciphering such microbiota-host interactions can help improve calf management to benefit production and welfare.

5.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273604

RESUMO

The rhizosphere is the hotspot for microbial enzyme activities and contributes to carbon cycling. Precipitation is an important component of global climate change that can profoundly alter belowground microbial communities. However, the impact of precipitation on conifer rhizospheric microbial populations has not been investigated in detail. In the present study, using high-throughput amplicon sequencing, we investigated the impact of precipitation on the rhizospheric soil microbial communities in two Norway Spruce clonal seed orchards, Lipová Lhota (L-site) and Prenet (P-site). P-site has received nearly double the precipitation than L-site for the last three decades. P-site documented higher soil water content with a significantly higher abundance of Aluminium (Al), Iron (Fe), Phosphorous (P), and Sulphur (S) than L-site. Rhizospheric soil metabolite profiling revealed an increased abundance of acids, carbohydrates, fatty acids, and alcohols in P-site. There was variance in the relative abundance of distinct microbiomes between the sites. A higher abundance of Proteobacteria, Acidobacteriota, Ascomycota, and Mortiellomycota was observed in P-site receiving high precipitation, while Bacteroidota, Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadota, and Basidiomycota were prevalent in L-site. The higher clustering coefficient of the microbial network in P-site suggested that the microbial community structure is highly interconnected and tends to cluster closely. The current study unveils the impact of precipitation variations on the spruce rhizospheric microbial association and opens new avenues for understanding the impact of global change on conifer rizospheric microbial associations.


Assuntos
Microbiota , Picea , Rizosfera , Microbiologia do Solo , Picea/microbiologia , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Solo/química , Chuva , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Mudança Climática
6.
Food Chem X ; 23: 101743, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257489

RESUMO

Black tea is highly favored by consumers worldwide, with enzymatic reactions being recognized as a pivotal factor influencing tea quality. The role of microorganisms in shaping the composition of black tea has emerged as a focus of research due to their involvement in enzyme catalysis and metabolic processes. In this study, full-length amplicon sequencing combined with qPCR more accurately reflected microbial profile, and Pantoea, Pseudomonas, Paucibacter, and Cladosporium were identified as the main microbial genera. Moreover, by comprehensively analyzing color, aroma, and taste components over time in black tea samples, correlations were established between the dominant genus and various quality factors. Notably, peroxidase activity levels, total soluble sugar content, and tea pigments concentration exhibited significant associations with the dominant genus. Consequently, this microbiological perspective facilitated the exploration of driving factors for improving black tea quality while establishing a theoretical foundation for quality control in industrial production.

7.
PeerJ ; 12: e18099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301056

RESUMO

The microbiota of hydrothermal vents has been widely implicated in the dynamics of oceanic biogeochemical cycling. Lithotrophic organisms utilize reduced chemicals in the vent effluent for energy, which fuels carbon fixation, and their metabolic byproducts can then support higher trophic levels and high-biomass ecosystems. However, despite the important role these microorganisms play in our oceans, they are difficult to study. Most are resistant to culturing in a lab setting, so culture-independent methods are necessary to examine community composition. Targeted amplicon surveying has become the standard practice for assessing the structure and diversity of hydrothermal vent microbial communities. Here, the performance of primer pairs targeting the V3V4 and V4V5 variable regions of the SSU rRNA gene was assessed for use on environmental samples from microbial mats surrounding Kama'ehuakanaloa Seamount, an iron-dominated hydrothermal vent system. Using the amplicon sequence variant (ASV) approach to taxonomic identification, the structure and diversity of microbial communities were elucidated, and both primer pairs generated robust data and comparable alpha diversity profiles. However, several distinct differences in community composition were identified between primer sets, including differential relative abundances of both bacterial and archaeal phyla. The primer choice was determined to be a significant driver of variation among the taxonomic profiles generated. Based on the higher quality of the raw sequences generated and on the breadth of abundant taxa found using the V4V5 primer set, it is determined as the most efficacious primer pair for whole-community surveys of microbial mats at Kama'ehuakanaloa Seamount.


Assuntos
Archaea , Bactérias , Fontes Hidrotermais , Microbiota , Fontes Hidrotermais/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Microbiota/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Primers do DNA/genética , RNA Ribossômico 16S/genética
8.
Environ Pollut ; 362: 124936, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265768

RESUMO

Pathogens in coastal waters cause infectious diseases and endanger public sanitation safety in humans and animals worldwide. To avoid these risks, timely detection of human-associated pathogens in waters is crucial. In this study, the decay kinetics of the molecular markers for human-associated pathogens, including enteric bacteria (Escherichia coli, Enterococcus, and Bacteroides), non-enteric bacteria (Staphylococcus aureus), crAssphage, and polyomavirus, were monitored over time at different temperatures and background microbes in seawater microcosms. The results indicated that temperature and native marine microbes were the main influential factors in attenuating bacterial pathogens. Remarkably, the effect of native microorganisms was more evidentially striking. Furthermore, Enterococcus was a more reliable and suitable fecal indicator bacterium than E. coli for the marine environment. The decay of crAssphage was like that of polyomavirus, indicating that it may be a good indicator of enterovirus in seawater. More importantly, the 16S amplicon sequencing data highlighted the decay kinetics of multiple bacterial pathogens in parallel with the dynamic changes of the whole bacterial communities. This study provides valuable information for public health risk management and a new approach to understanding the fate of bacteria in the coastal environment.

9.
J Med Virol ; 96(9): e29922, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295292

RESUMO

This study retrospectively analyzed the genetic characteristics of influenza A H3N2 (A/H3N2) viruses circulating in New South Wales (NSW), the Australian state with the highest number of influenza cases in 2022, and explored the phylodynamics of A/H3N2 transmission within Australia during this period. Sequencing was performed on 217 archived specimens, and A/H3N2 evolution and spread within Australia were analyzed using phylogenetic and phylodynamic methods. Hemagglutinin genes of all analyzed NSW viruses belonged to subclade 3C.2a1b.2a.2 and clustered together with the 2022 vaccine strain. Complete genome analysis of NSW viruses revealed highly frequent interclade reassortments between subclades 3C.2a1b.2a.2 and 3C.2a1b.1a. The estimated earliest introduction time of the dominant subgroup 3C.2a1b.2a.2a.1 in Australia was February 22, 2022 (95% highest posterior density: December 19, 2021-March 13, 2022), following the easing of Australian travel restrictions, suggesting a possible international source. Phylogeographic analysis revealed that Victoria drove the transmission of A/H3N2 viruses across the country during this season, while NSW did not have a dominant role in viral dissemination to other regions. This study highlights the importance of continuous surveillance and genomic characterization of influenza viruses in the postpandemic era, which can inform public health decision-making and enable early detection of novel strains with pandemic potential.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Filogenia , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Humana/transmissão , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , COVID-19/prevenção & controle , Austrália/epidemiologia , New South Wales/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Filogeografia , Estações do Ano , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus Reordenados/genética , Vírus Reordenados/classificação
10.
Artigo em Inglês | MEDLINE | ID: mdl-39302529

RESUMO

PURPOSE: Non-optimal vaginal microbiota lacking lactobacilli and comprising a wide array of anaerobic bacteria, typified by community state type (CST) IV, have been associated with adverse gynecological and pregnancy outcomes. Here, we investigate the stability of the vaginal microbiota sampled every 6 months over 18 months and how samples distantly collected combined with exposures could provide insight on future microbiota compositional changes. METHODS: Vaginal microbiota dynamics were analyzed in 241 female students aged 18-24 years and negative for Chlamydia trachomatis and Neisseria gonorrhoeae. The vaginal microbiota was characterized using 16S rRNA gene amplicon sequencing and assigned to CSTs. Vaginal microbiota longitudinal profiles were determined through hierarchical clustering. RESULTS: At baseline, 11.2% of participants had a CST IV, 40.5% a CST I (Lactobacillus crispatus-dominated), and 38.1% a CST III (Lactobacillus iners-dominated). A total of 345 CST transitions were observed over the study period. Pain during sexual intercourse was associated with a higher probability of transition from CST III to CST IV, while self-reported yeast infection was associated with a higher probability of transition from CST IV to CST I. Over the study period, 32.0% participants displayed a stable CST trajectory. Composition of the vaginal microbiota of a single sample predicted with good accuracy the CST trajectory over the following 18 months. CONCLUSION: Vaginal longitudinal CST patterns over 18 months could be clustered into three main groups of trajectories. Performing molecular characterization at a single time point could contribute to improved preventive care and optimization of young women's reproductive and sexual health. CLINICALTRIALS: gov Identifier: NCT02904811. Registration date: September 19, 2016.

11.
J Anim Breed Genet ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39228372

RESUMO

Commercial livestock producers need to prioritize genetic progress for health and efficiency traits to address productivity, welfare, and environmental concerns but face challenges due to limited pedigree information in extensive multi-sire breeding scenarios. Utilizing pooled DNA for genotyping and integrating seminal microbiome information into genomic models could enhance predictions of male fertility traits, thus addressing complexities in reproductive performance and inbreeding effects. Using the Angus Australia database comprising genotypes and pedigree data for 78,555 animals, we simulated percentage of normal sperm (PNS) and prolificacy of sires, resulting in 713 sires and 27,557 progeny in the final dataset. Publicly available microbiome data from 45 bulls was used to simulate data for the 713 sires. By incorporating both genomic and microbiome information our models were able to explain a larger proportion of phenotypic variation in both PNS (0.94) and prolificacy (0.56) compared to models using a single data source (e.g., 0.36 and 0.41, respectively, using only genomic information). Additionally, models containing both genomic and microbiome data revealed larger phenotypic differences between animals in the top and bottom quartile of predictions, indicating potential for improved productivity and sustainability in livestock farming systems. Inbreeding depression was observed to affect fertility traits, which makes the incorporation of microbiome information on the prediction of fertility traits even more actionable. Crucially, our inferences demonstrate the potential of the semen microbiome to contribute to the improvement of fertility traits in cattle and pave the way for the development of targeted microbiome interventions to improve reproductive performance in livestock.

12.
Microb Ecol ; 87(1): 113, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259393

RESUMO

It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.


Assuntos
Bactérias , Genótipo , Espécies Introduzidas , Microbiota , Rizosfera , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Centaurea/microbiologia , Centaurea/genética , Raízes de Plantas/microbiologia , California , Solo/química
13.
Porcine Health Manag ; 10(1): 33, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267163

RESUMO

BACKGROUND: There is a higher risk for nematode infections associated with outdoor-reared pigs. Next to Ascaris suum, Oesophagostomum dentatum and Trichuris suis, there is the potential of infections with other nodular worm species, Hyostrongylus rubidus, Stongyloides ransomi and Metastrongylus spp. lungworms. Next-generation sequencing methods describing the nemabiome have not yet been established for porcine nematodes. METHODS: FLOTAC was used for faecal egg counts of porcine gastrointestinal nematodes and lungworms in piglets, fatteners and adults individually. A nemabiome analyses based on ITS-2 gene region metabarcoding was used to differentiate strongyle species. Additionally, questionnaire data was analysed using mixed-effect regression to identify potential risk factors associated with parasite occurrences and egg shedding intensity. RESULTS: On 15 of 17 farms nematode eggs were detected. Ascaris suum, strongyles and T. suis were detected on 82%, 70% and 35% of the 17 farms, respectively. Lungworms were detected on one out of four farms with access to pasture. Strongyloides ransomi was not detected. 32% (CI 28-36%), 27% (24-31%), 5% (4-7%) and 3% (0.9-8%) of the samples where tested positive for strongyles, A. suum, T. suis and lungworms, respectively. The nemabiome analysis revealed three different strongyle species, with O. dentatum being the most common (mean 93.9%), followed by O. quadrispinulatum (5.9%) and the hookworm Globocephalus urosubulatus (0.1%). The bivariate and multivariate risk factor analyses showed among others that cleaning once a week compared to twice a week increased the odds significantly for being infected with A. suum (OR 78.60) and strongyles (2077.59). Access to pasture was associated with higher odds for A. suum (43.83) and strongyles (14.21). Compared to shallow litter systems, deep litter and free range systems resulted in significant higher odds for strongyles (85.74, 215.59, respectively) and T. suis (200.33, 623.08). CONCLUSIONS: Infections with A. suum, O. dentatum, O. quadrispinulatum, T. suis, Metastrongylus spp. and G. urosubulatus are present in German outdoor-reared pigs. This is the first report of G. urosubulatus in domestic pigs in Europe. Metabarcoding based on the ITS-2 region is a suitable tool to analyse the porcine nemabiome. Furthermore, management practices have the potential of reducing the risk of parasite infections.

14.
Environ Sci Technol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258328

RESUMO

As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.

15.
Appl Environ Microbiol ; 90(9): e0135924, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39171904

RESUMO

The Altai Mountains (ALE) and the Greater Khingan Mountains (GKM) in northern China are forest regions dominated by coniferous trees. These geographically isolated regions provide an ideal setting for studying microbial biogeographic patterns. In this study, we employed high-throughput techniques to obtain DNA sequences of soil myxomycetes, bacteria, and fungi and explored the mechanisms underlying the assembly of both local and cross-regional microbial communities in relation to environmental factors. Our investigation revealed that the environmental heterogeneity in ALE and GKM significantly affected the succession and assembly of soil bacterial communities at cross-regional scales. Specifically, the optimal environmental factors affecting bacterial Bray-Curtis similarity were elevation and temperature seasonality. The spatial factors and climate change impact on bacterial communities under the geographical barriers surpassed that of local soil microenvironments. The assembly pattern of bacterial communities transitions from local drift to cross-regional heterogeneous selection. Environmental factors had a relatively weak influence on myxomycetes and fungi. Both soil myxomycetes and fungi faced considerable dispersal limitation at local and cross-regional scales, ultimately leading to weak geographical distribution patterns.IMPORTANCEThe impact of environmental selection and dispersal on the soil microbial spatial distribution is a key concern in microbial biogeography, particularly in large-scale geographical patterns. However, our current understanding remains limited. Our study found that soil bacteria displayed a distinct cross-regional geographical distribution pattern, primarily influenced by environmental selection. Conversely, the cross-regional geographical distribution patterns of soil myxomycetes and fungi were relatively weak. Their composition exhibited a weak association with the environment at local and cross-regional scales, with assembly primarily driven by dispersal limitation.


Assuntos
Bactérias , Fungos , Microbiota , Microbiologia do Solo , China , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Mixomicetos/genética , Mixomicetos/classificação , Mudança Climática , Florestas
16.
Antimicrob Agents Chemother ; 68(9): e0157623, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136465

RESUMO

The emergence of drug-resistant Plasmodium falciparum parasites in sub-Saharan Africa will substantially challenge malaria control. Here, we evaluated the frequency of common drug resistance markers among adolescents from Northern Uganda with asymptomatic infections. We used an established amplicon deep sequencing strategy to screen dried blood spot samples collected from 2016 to 2017 during a reported malaria epidemic within the districts of Kitgum and Pader in Northern Uganda. We screened single-nucleotide polymorphisms within: kelch13 (Pfk13), dihydropteroate synthase (Pfdhps), multidrug resistance-1 (Pfmdr1), dihydrofolate reductase (Pfdhfr), and apical membrane antigen (Pfama1) genes. Within the study population, the median age was 15 years (14.3-15.0, 95% CI), and 54.9% (78/142) were Plasmodium positive by 18S rRNA qPCR, which were subsequently targeted for sequencing analysis. We observed a high frequency of resistance markers particularly for sulfadoxine-pyrimethamine (SP), with no wild-type-only parasites observed for Pfdhfr (N51I, C59R, and S108N) and Pfdhps (A437G and K540E) mutations. Within Pfmdr1, mixed infections were common for NF/NY (98.5%). While for artemisinin resistance, in kelch13, there was a high frequency of C469Y (34%). Using the pattern for Pfama1, we found a high level of polygenomic infections with all individuals presenting with complexity of infection greater than 2 with a median of 6.9. The high frequency of the quintuple SP drug-resistant parasites and the C469Y artemisinin resistance-associated mutation in asymptomatic individuals suggests an earlier high prevalence than previously reported from symptomatic malaria surveillance studies (in 2016/2017). Our data demonstrate the urgency for routine genomic surveillance programs throughout Africa and the value of deep sequencing.


Assuntos
Antimaláricos , Infecções Assintomáticas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Humanos , Uganda/epidemiologia , Adolescente , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Estudos Retrospectivos , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Resistência a Medicamentos/genética , Feminino , Infecções Assintomáticas/epidemiologia , Masculino , Mutação , Proteínas de Protozoários/genética , Combinação de Medicamentos , Polimorfismo de Nucleotídeo Único/genética , Prevalência , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética
17.
FEBS Open Bio ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097990

RESUMO

Syrian hamsters (Mesocricetus auratus) have been increasingly used as rodent models in recent years, especially for SARS-CoV-2 since the pandemic. However, the physiology of this animal model is not yet well-understood, even less when considering the digestive tract. Generally, the gastrointestinal microbiome influences the immune system, drug metabolism, and vaccination efficacy. However, a detailed understanding of the gastrointestinal microbiome of hamsters is missing. Therefore, we analyzed 10 healthy 11-week-old RjHan:AURA hamsters fed a pelleted standard diet. Their gastrointestinal content was sampled (i.e., forestomach, glandular stomach, ileum, cecum, and colon) and analyzed using 16S rRNA gene amplicon sequencing. Results displayed a distinct difference in the bacterial community before and after the cecum, possibly due to the available nutrients and digestive functions. Next, we compared hamsters with the literature data of young-adult C57BL/6J mice, another important animal model. We sampled the same gastrointestinal regions and analyzed the differences in the microbiome between both rodents. Surprisingly, we found strong differences in their specific gastrointestinal bacterial communities. For instance, Lactobacillaceae were more abundant in hamsters' forestomach and ileum, while Muribaculaceae dominated in the mouse forestomach and ileum. Similarly, in mouse cecum and colon, Muribaculaceae were dominant, while in hamsters, Lachnospiraceae and Erysipelotrichaceae dominated the bacterial community. Molecular strains of Muribaculaceae in both rodent species displayed some species specificity. This comparison allows a better understanding of the suitability of the Syrian hamster as an animal model, especially regarding its comparability to other rodent models. Thereby, this work contributes to the characterization of the hamster model and allows better experimental planning.

18.
Animals (Basel) ; 14(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39199930

RESUMO

Gastrointestinal disorders are common and debilitating in horses, but their diagnosis is often difficult and invasive. Fecal samples offer a non-invasive alternative to assessing the gastrointestinal health of horses by providing information about the gut microbiota and inflammation. In this study, we used 16S sequencing to compare the fecal bacterial diversity and composition of 27 healthy horses and 49 horses diagnosed with inflammatory bowel disease (IBD). We also measured fecal calprotectin concentration, a marker of intestinal inflammation, in healthy horses and horses with IBD. We found that microbiota composition differed between healthy horses and horses with IBD, although less than five percent of the variation in microbiota composition was explained by individual health status and age. Several differentially abundant bacterial taxa associated with IBD, age, or body condition were depleted from the most dominant Firmicutes phylum and enriched with the Bacteroidota phylum. An artificial neural network model predicted the probability of IBD among the test samples with 100% accuracy. Our study is the first to demonstrate the association between gut microbiota composition and chronic forms of IBD in horses and highlights the potential of using fecal samples as a non-invasive source of biomarkers for equine IBD.

19.
Microbiol Spectr ; : e0051624, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166864

RESUMO

Since the discovery of complete ammonia oxidizers (comammox) within the genus Nitrospira, their distribution and abundance across habitats have been intensively studied to better understand their ecological significance. Many primers targeting their ammonia monooxygenase subunit A gene (amoA) have been designed to detect and quantify comammox bacteria and to describe their community structure. We identified 38 published primers, but only few had high coverage and specificity for all known comammox Nitrospira or one of the two described subclades. For each target group, we comprehensively evaluated selected primer pairs using in silico analyses, endpoint PCRs, qPCRs, and amplicon sequencing on samples from various environments. Endpoint PCRs and qPCRs showed that the most commonly used primer pairs (comaA-244F/659R, comaB-244F/659R, and Ntsp-amoA162F/359R) produced several bands, which likely inflated quantifications via qPCR. In contrast, the recently published primer combinations CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R resulted mostly in a single band. Furthermore, amplicon sequencing demonstrated that these primer combinations also captured the highest richness of comammox Nitrospira. Taken together, our results indicate that few existing comammox amoA primer combinations have both high specificity and coverage and that the choice of these high-specificity and high-coverage primer pairs substantially impacts the accurate detection, quantification, and community description of comammox bacteria. We, therefore, recommend using the CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R primer pairs.IMPORTANCEBacteria that can fully convert ammonia via nitrite to nitrate, the complete ammonia oxidizers (comammox), were recently discovered and are found in many natural and engineered environments. PCR-based tools to study their abundance and diversity were rapidly developed, resulting in a plethora of primers available, many of which are widely used. The presence of comammox bacteria in an environment can, however, only be correctly determined if the used primers detect all members of this group while not detecting any other guilds. This study assesses the coverage and specificity of existing primers targeting comammox bacteria using both computational and standard molecular techniques, revealing large differences in their performance. The uniform usage of well-performing primers across studies could aid in generating comparable and generalizable data to better understand the importance of comammox bacteria in the environment.

20.
Microb Ecol ; 87(1): 107, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162854

RESUMO

Cigars and cigarillos are emerging as popular tobacco alternatives to cigarettes. However, these products may be equally harmful to human health than cigarettes and are associated with similar adverse health effects. We used 16S rRNA gene amplicon sequencing to extensively characterize the microbial diversity and investigate differences in microbial composition across 23 different products representing three different cigar product categories: filtered cigar, cigarillo, and large cigar. High throughput sequencing of the V4 hypervariable region of the 16 s rRNA gene revealed 2124 Operational Taxonomic Units (OTUs). Our findings showed that the three categories of cigars differed significantly in observed richness and Shannon diversity, with filtered cigars exhibiting lower diversity compared to large cigars and cigarillos. We also found a shared and unique microbiota among different product types. Firmicutes was the most abundant phylum in all product categories, followed by Actinobacteria. Among the 16 genera shared across all product types were Bacillus, Staphylococcus, Pseudomonas, and Pantoea. Nine genera were exclusively shared by large cigars and cigarillos and an additional thirteen genera were exclusive to filtered cigars. Analysis of individual cigar products showed consistent microbial composition across replicates for most large cigars and cigarillos while filtered cigars showed more inter-product variability. These findings provide important insights into the microbial diversity of the different cigar product types.


Assuntos
Bactérias , Biodiversidade , Microbiota , RNA Ribossômico 16S , Produtos do Tabaco , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala , DNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA