Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Plant Sci ; 15: 1445365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224843

RESUMO

Asteraceae, the largest family of angiosperms, has attracted widespread attention for its exceptional medicinal, horticultural, and ornamental value. However, researches on Asteraceae plants face challenges due to their intricate genetic background. With the continuous advancement of sequencing technology, a vast number of genomes and genetic resources from Asteraceae species have been accumulated. This has spurred a demand for comprehensive genomic analysis within this diverse plant group. To meet this need, we developed the Asteraceae Genomics Database (AGD; http://cbcb.cdutcm.edu.cn/AGD/). The AGD serves as a centralized and systematic resource, empowering researchers in various fields such as gene annotation, gene family analysis, evolutionary biology, and genetic breeding. AGD not only encompasses high-quality genomic sequences, and organelle genome data, but also provides a wide range of analytical tools, including BLAST, JBrowse, SSR Finder, HmmSearch, Heatmap, Primer3, PlantiSMASH, and CRISPRCasFinder. These tools enable users to conveniently query, analyze, and compare genomic information across various Asteraceae species. The establishment of AGD holds great significance in advancing Asteraceae genomics, promoting genetic breeding, and safeguarding biodiversity by providing researchers with a comprehensive and user-friendly genomics resource platform.

2.
Expert Rev Proteomics ; 21(7-8): 271-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39152734

RESUMO

INTRODUCTION: Metaproteomics offers insights into the function of complex microbial communities, while it is also capable of revealing microbe-microbe and host-microbe interactions. Data-independent acquisition (DIA) mass spectrometry is an emerging technology, which holds great potential to achieve deep and accurate metaproteomics with higher reproducibility yet still facing a series of challenges due to the inherent complexity of metaproteomics and DIA data. AREAS COVERED: This review offers an overview of the DIA metaproteomics approaches, covering aspects such as database construction, search strategy, and data analysis tools. Several cases of current DIA metaproteomics studies are presented to illustrate the procedures. Important ongoing challenges are also highlighted. Future perspectives of DIA methods for metaproteomics analysis are further discussed. Cited references are searched through and collected from Google Scholar and PubMed. EXPERT OPINION: Considering the inherent complexity of DIA metaproteomics data, data analysis strategies specifically designed for interpretation are imperative. From this point of view, we anticipate that deep learning methods and de novo sequencing methods will become more prevalent in the future, potentially improving protein coverage in metaproteomics. Moreover, the advancement of metaproteomics also depends on the development of sample preparation methods, data analysis strategies, etc. These factors are key to unlocking the full potential of metaproteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Humanos , Microbiota
3.
Front Public Health ; 12: 1381328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799686

RESUMO

Predicting, issuing early warnings, and assessing risks associated with unnatural epidemics (UEs) present significant challenges. These tasks also represent key areas of focus within the field of prevention and control research for UEs. A scoping review was conducted using databases such as PubMed, Web of Science, Scopus, and Embase, from inception to 31 December 2023. Sixty-six studies met the inclusion criteria. Two types of models (data-driven and mechanistic-based models) and a class of analysis tools for risk assessment of UEs were identified. The validation part of models involved calibration, improvement, and comparison. Three surveillance systems (event-based, indicator-based, and hybrid) were reported for monitoring UEs. In the current study, mathematical models and analysis tools suggest a distinction between natural epidemics and UEs in selecting model parameters and warning thresholds. Future research should consider combining a mechanistic-based model with a data-driven model and learning to pursue time-varying, high-precision risk assessment capabilities.


Assuntos
Epidemias , Modelos Teóricos , Humanos , Medição de Risco/métodos
4.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38518223

RESUMO

We previously constructed TheCellVision.org, a central repository for visualizing and mining data from yeast high-content imaging projects. At its inception, TheCellVision.org housed two high-content screening (HCS) projects providing genome-scale protein abundance and localization information for the budding yeast Saccharomyces cerevisiae, as well as a comprehensive analysis of the morphology of its endocytic compartments upon systematic genetic perturbation of each yeast gene. Here, we report on the expansion of TheCellVision.org by the addition of two new HCS projects and the incorporation of new global functionalities. Specifically, TheCellVision.org now hosts images from the Cell Cycle Omics project, which describes genome-scale cell cycle-resolved dynamics in protein localization, protein concentration, gene expression, and translational efficiency in budding yeast. Moreover, it hosts PIFiA, a computational tool for image-based predictions of protein functional annotations. Across all its projects, TheCellVision.org now houses >800,000 microscopy images along with computational tools for exploring both the images and their associated datasets. Together with the newly added global functionalities, which include the ability to query genes in any of the hosted projects using either yeast or human gene names, TheCellVision.org provides an expanding resource for single-cell eukaryotic biology.


Assuntos
Mineração de Dados , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mineração de Dados/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular
5.
Exp Hematol Oncol ; 13(1): 29, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449024

RESUMO

Mesenchymal stem cells (MSCs) possess multipotent properties that make them promising candidates for immunomodulation and regenerative medicine. However, MSC heterogeneity poses challenges to their research reproducibility and clinical application. The emergence of single-cell RNA sequencing (scRNA-seq) technology has enabled a thorough examination of MSC heterogeneity, underscoring the necessity for a specialized platform to systematically analyze the published datasets derived from MSC scRNA-seq experiments. However, large-scale integration and in-depth exploration of MSC scRNA-seq datasets to comprehensively depict their developmental patterns, relationships, and knowledge are still lacking. Here, we present MSCsDB ( http://mscsdb.jflab.ac.cn:18088/index/ ), an interactive database that has been constructed using high-quality scRNA-seq datasets from all published sources on MSCs. MSCsDB provides a one-stop interactive query for regulon activities, gene ontology enrichment, signature gene visualization and transcription factor regulon analysis. Additionally, the dedicated module within MSCsDB was developed to facilitate the evaluation of MSC quality, thereby promoting the standardization of MSC subtype usage. Notably, MSCsDB enables users to analyze their MSCs scRNA-seq data directly, yielding visually appealing outputs of exceptional quality that can be conveniently downloaded via email. Furthermore, MSCsDB integrates the current comprehensive MSC atlas taxonomy, which includes 470,000 cells and 5 tissues from 26 subjects, as publicly available references. These references provide molecular characterization and phenotypic prediction for annotating MSC subsets. In summary, MSCsDB serves as a user-friendly and contemporary data repository for human MSCs, offering a dedicated platform that enables users to effectively conduct comprehensive analyses on their individual MSCs scRNA-seq data.

6.
Comput Biol Med ; 171: 108230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442554

RESUMO

Interpreting single-cell chromatin accessibility data is crucial for understanding intercellular heterogeneity regulation. Despite the progress in computational methods for analyzing this data, there is still a lack of a comprehensive analytical framework and a user-friendly online analysis tool. To fill this gap, we developed a pre-trained deep learning-based framework, single-cell auto-correlation transformers (scAuto), to overcome the challenge. Following DNABERT's methodology of pre-training and fine-tuning, scAuto learns a general understanding of DNA sequence's grammar by being pre-trained on unlabeled human genome via self-supervision; it is then transferred to the single-cell chromatin accessibility analysis task of scATAC-seq data for supervised fine-tuning. We extensively validated scAuto on the Buenrostro2018 dataset, demonstrating its superior performance on chromatin accessibility prediction, single-cell clustering, and data denoising. Based on scAuto, we further developed an interactive web server for single-cell chromatin accessibility data analysis. It integrates tutorial-style interfaces for those with limited programming skills. The platform is accessible at http://zhanglab.icaup.cn. To our knowledge, this work is expected to help analyze single-cell chromatin accessibility data and facilitate the development of precision medicine.


Assuntos
Cromatina , DNA , Humanos , Análise de Sequência de DNA , Genoma Humano , Análise de Dados
7.
J Clin Transl Sci ; 8(1): e13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384898

RESUMO

Objectives: To compare how clinical researchers generate data-driven hypotheses with a visual interactive analytic tool (VIADS, a visual interactive analysis tool for filtering and summarizing large datasets coded with hierarchical terminologies) or other tools. Methods: We recruited clinical researchers and separated them into "experienced" and "inexperienced" groups. Participants were randomly assigned to a VIADS or control group within the groups. Each participant conducted a remote 2-hour study session for hypothesis generation with the same study facilitator on the same datasets by following a think-aloud protocol. Screen activities and audio were recorded, transcribed, coded, and analyzed. Hypotheses were evaluated by seven experts on their validity, significance, and feasibility. We conducted multilevel random effect modeling for statistical tests. Results: Eighteen participants generated 227 hypotheses, of which 147 (65%) were valid. The VIADS and control groups generated a similar number of hypotheses. The VIADS group took a significantly shorter time to generate one hypothesis (e.g., among inexperienced clinical researchers, 258 s versus 379 s, p = 0.046, power = 0.437, ICC = 0.15). The VIADS group received significantly lower ratings than the control group on feasibility and the combination rating of validity, significance, and feasibility. Conclusion: The role of VIADS in hypothesis generation seems inconclusive. The VIADS group took a significantly shorter time to generate each hypothesis. However, the combined validity, significance, and feasibility ratings of their hypotheses were significantly lower. Further characterization of hypotheses, including specifics on how they might be improved, could guide future tool development.

8.
BMC Genomics ; 25(1): 96, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262929

RESUMO

BACKGROUND: Angelica sinensis (Danggui), a renowned medicinal orchid, has gained significant recognition for its therapeutic effects in treating a wide range of ailments. Genome information serves as a valuable resource, enabling researchers to gain a deeper understanding of gene function. In recent times, the availability of chromosome-level genomes for A. sinensis has opened up vast opportunities for exploring gene functionality. Integrating multiomics data can allow researchers to unravel the intricate mechanisms underlying gene function in A. sinensis and further enhance our knowledge of its medicinal properties. RESULTS: In this study, we utilized genomic and transcriptomic data to construct a coexpression network for A. sinensis. To annotate genes, we aligned them with sequences from various databases, such as the NR, TAIR, trEMBL, UniProt, and SwissProt databases. For GO and KEGG annotations, we employed InterProScan and GhostKOALA software. Additionally, gene families were predicted using iTAK, HMMER, OrholoFinder, and KEGG annotation. To facilitate gene functional analysis in A. sinensis, we developed a comprehensive platform that integrates genomic and transcriptomic data with processed functional annotations. The platform includes several tools, such as BLAST, GSEA, Heatmap, JBrowse, and Sequence Extraction. This integrated resource and approach will enable researchers to explore the functional aspects of genes in A. sinensis more effectively. CONCLUSION: We developed a platform, named ASAP, to facilitate gene functional analysis in A. sinensis. ASAP ( www.gzybioinformatics.cn/ASAP ) offers a comprehensive collection of genome data, transcriptome resources, and analysis tools. This platform serves as a valuable resource for researchers conducting gene functional research in their projects, providing them with the necessary data and tools to enhance their studies.


Assuntos
Angelica sinensis , Genômica , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Pesquisa em Genética
9.
Bioessays ; 46(2): e2300114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38058114

RESUMO

Bioimage analysis plays a critical role in extracting information from biological images, enabling deeper insights into cellular structures and processes. The integration of machine learning and deep learning techniques has revolutionized the field, enabling the automated, reproducible, and accurate analysis of biological images. Here, we provide an overview of the history and principles of machine learning and deep learning in the context of bioimage analysis. We discuss the essential steps of the bioimage analysis workflow, emphasizing how machine learning and deep learning have improved preprocessing, segmentation, feature extraction, object tracking, and classification. We provide examples that showcase the application of machine learning and deep learning in bioimage analysis. We examine user-friendly software and tools that enable biologists to leverage these techniques without extensive computational expertise. This review is a resource for researchers seeking to incorporate machine learning and deep learning in their bioimage analysis workflows and enhance their research in this rapidly evolving field.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Software , Aprendizado de Máquina
10.
Trends Cell Biol ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38030542

RESUMO

The growth of artificial intelligence (AI) has led to an increase in the adoption of computer vision and deep learning (DL) techniques for the evaluation of microscopy images and movies. This adoption has not only addressed hurdles in quantitative analysis of dynamic cell biological processes but has also started to support advances in drug development, precision medicine, and genome-phenome mapping. We survey existing AI-based techniques and tools, as well as open-source datasets, with a specific focus on the computational tasks of segmentation, classification, and tracking of cellular and subcellular structures and dynamics. We summarise long-standing challenges in microscopy video analysis from a computational perspective and review emerging research frontiers and innovative applications for DL-guided automation in cell dynamics research.

11.
Front Bioinform ; 3: 1153800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304402

RESUMO

We present a general purpose visual analysis system that can be used for exploring parameters of a variety of computer models. Our proposed system offers key components of a visual parameter analysis framework including parameter sampling, deriving output summaries, and an exploration interface. It also provides an API for rapid development of parameter space exploration solutions as well as the flexibility to support custom workflows for different application domains. We evaluate the effectiveness of our system by demonstrating it in three domains: data mining, machine learning and specific application in bioinformatics.

12.
medRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37333271

RESUMO

Objectives: To compare how clinical researchers generate data-driven hypotheses with a visual interactive analytic tool (VIADS, a visual interactive analysis tool for filtering and summarizing large data sets coded with hierarchical terminologies) or other tools. Methods: We recruited clinical researchers and separated them into "experienced" and "inexperienced" groups. Participants were randomly assigned to a VIADS or control group within the groups. Each participant conducted a remote 2-hour study session for hypothesis generation with the same study facilitator on the same datasets by following a think-aloud protocol. Screen activities and audio were recorded, transcribed, coded, and analyzed. Hypotheses were evaluated by seven experts on their validity, significance, and feasibility. We conducted multilevel random effect modeling for statistical tests. Results: Eighteen participants generated 227 hypotheses, of which 147 (65%) were valid. The VIADS and control groups generated a similar number of hypotheses. The VIADS group took a significantly shorter time to generate one hypothesis (e.g., among inexperienced clinical researchers, 258 seconds versus 379 seconds, p = 0.046, power = 0.437, ICC = 0.15). The VIADS group received significantly lower ratings than the control group on feasibility and the combination rating of validity, significance, and feasibility. Conclusion: The role of VIADS in hypothesis generation seems inconclusive. The VIADS group took a significantly shorter time to generate each hypothesis. However, the combined validity, significance, and feasibility ratings of their hypotheses were significantly lower. Further characterization of hypotheses, including specifics on how they might be improved, could guide future tool development.

13.
Work ; 76(3): 1047-1060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125603

RESUMO

BACKGROUND: Work-related low back pain (LBP) increases the workforce disability and healthcare costs. This study evaluated the LBD risk level associated with handling the ACGIH TLVs in lifting tasks corresponding to various horizontal and vertical zones. OBJECTIVE: The aim of this study was to compare the low-risk ACGIH TLV to risk outcomes from various validated lifting assessment methods, including the OSU LBD Risk Model, NIOSH Lifting Equation, and LiFFT. METHODS: Twenty-four subjects were recruited for this study to perform various lifting conditions. The various ergonomic assessment methods were then used to obtain the risk assessment outcomes. RESULTS: The selected assessment methods showed that the ACGIH-defined TLVs are associated with less than high-risk for LBD for all the assessed tasks. The findings showed a moderate agreement (Kendall's W = 0.477) among the various assessment methods risk outcomes. The highest correlation (ρ= 0.886) was observed between the NIOSH Lifting Equation and LiFFT methods risk assessment outcomes. CONCLUSION: The findings showed that ACGIH-defined TLVs possesses less than high-risk for LBD. The outcomes of the selected ergonomic assessment methods moderately agree to each other.


Assuntos
Remoção , Dor Lombar , Estados Unidos , Humanos , Remoção/efeitos adversos , Níveis Máximos Permitidos , Ergonomia/métodos , Dor Lombar/etiologia , National Institute for Occupational Safety and Health, U.S.
14.
Front Bioinform ; 3: 1178926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151482

RESUMO

Protein annotation errors can have significant consequences in a wide range of fields, ranging from protein structure and function prediction to biomedical research, drug discovery, and biotechnology. By comparing the domains of different proteins, scientists can identify common domains, classify proteins based on their domain architecture, and highlight proteins that have evolved differently in one or more species or clades. However, genome-wide identification of different protein domain architectures involves a complex error-prone pipeline that includes genome sequencing, prediction of gene exon/intron structures, and inference of protein sequences and domain annotations. Here we developed an automated fact-checking approach to distinguish true domain loss/gain events from false events caused by errors that occur during the annotation process. Using genome-wide ortholog sets and taking advantage of the high-quality human and Saccharomyces cerevisiae genome annotations, we analyzed the domain gain and loss events in the predicted proteomes of 9 non-human primates (NHP) and 20 non-S. cerevisiae fungi (NSF) as annotated in the Uniprot and Interpro databases. Our approach allowed us to quantify the impact of errors on estimates of protein domain gains and losses, and we show that domain losses are over-estimated ten-fold and three-fold in the NHP and NSF proteins respectively. This is in line with previous studies of gene-level losses, where issues with genome sequencing or gene annotation led to genes being falsely inferred as absent. In addition, we show that insistent protein domain annotations are a major factor contributing to the false events. For the first time, to our knowledge, we show that domain gains are also over-estimated by three-fold and two-fold respectively in NHP and NSF proteins. Based on our more accurate estimates, we infer that true domain losses and gains in NHP with respect to humans are observed at similar rates, while domain gains in the more divergent NSF are observed twice as frequently as domain losses with respect to S. cerevisiae. This study highlights the need to critically examine the scientific validity of protein annotations, and represents a significant step toward scalable computational fact-checking methods that may 1 day mitigate the propagation of wrong information in protein databases.

15.
Methods Mol Biol ; 2649: 289-301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258869

RESUMO

Antimicrobial resistance (AMR) is one of the threats to our world according to the World Health Organization (WHO). Resistance is an evolutionary dynamic process where host-associated microbes have to adapt to their stressful environments. AMR could be classified according to the mechanism of resistance or the biome where resistance takes place. Antibiotics are one of the stresses that lead to resistance through antibiotic resistance genes (ARGs). The resistome could be defined as the collection of all ARGs in an organism's genome or metagenome. Currently, there is a growing body of evidence supporting that the environment is the largest source of ARGs, but to what extent the environment does contribute to the antimicrobial resistance evolution is a matter of investigation. Monitoring the ARGs transfer route from the environment to humans and vice versa is a nature-to-nature feedback loop where you cannot set an accurate starting point of the evolutionary event. Thus, tracking resistome evolution and transfer to and from different biomes is crucial for the surveillance and prediction of the next resistance outbreak.Herein, we review the overlap between clinical and environmental resistomes and the available databases and computational analysis tools for resistome analysis through ARGs detection and characterization in bacterial genomes and metagenomes. Till this moment, there is no tool that can predict the resistance evolution and dynamics in a distinct biome. But, hopefully, by understanding the complicated relationship between the environmental and clinical resistome, we could develop tools that track the feedback loop from nature to nature in terms of evolution, mobilization, and transfer of ARGs.


Assuntos
Antibacterianos , Bactérias , Humanos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Genoma Bacteriano , Metagenoma , Genes Bacterianos , Metagenômica
17.
BMC Genomics ; 24(1): 164, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016293

RESUMO

BACKGROUND: Gastrodia elata (tianma), a well-known medicinal orchid, is widely used to treat various kinds of diseases with its dried tuber. In recent years, new chromosome-level genomes of G.elata have been released in succession, which offer an enormous resource pool for understanding gene function. Previously we have constructed GelFAP for gene functional analysis of G.elata. As genomes are updated and transcriptome data is accumulated, collection data in GelFAP cannot meet the need of researchers. RESULTS: Based on new chromosome-level genome and transcriptome data, we constructed co-expression network of G. elata, and then we annotated genes by aligning with sequences from NR, TAIR, Uniprot and Swissprot database. GO (Gene Ontology) and KEGG (Kyoto Encylopaedia of Genes and Genomes) annotations were predicted by InterProScan and GhostKOALA software. Gene families were further predicted by iTAK (Plant Transcription factor and Protein kinase Identifier and Classifier), HMMER (hidden Markov models), InParanoid. Finally, we developed an improved platform for gene functional analysis in G. elata (GelFAP v2.0) by integrating new genome, transcriptome data and processed functional annotation. Several tools were also introduced to platform including BLAST (Basic Local Alignment Search Tool), GSEA (Gene Set Enrichment Analysis), Heatmap, JBrowse, Motif analysis and Sequence extraction. Based on this platform, we found that the flavonoid biosynthesis might be regulated by transcription factors (TFs) such as MYB, HB and NAC. We also took C4H and GAFP4 as examples to show the usage of our platform. CONCLUSION: An improved platform for gene functional analysis in G. elata (GelFAP v2.0, www.gzybioinformatics.cn/Gelv2 ) was constructed, which provides better genome data, more transcriptome resources and more analysis tools. The updated platform might be preferably benefit researchers to carry out gene functional research for their project.


Assuntos
Gastrodia , Gastrodia/genética , Fenótipo
18.
Comput Struct Biotechnol J ; 21: 2018-2034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968017

RESUMO

The cell as a system of many components, governed by the laws of physics and chemistry drives molecular functions having an impact on the spatial organization of these systems and vice versa. Since the relationship between structure and function is an almost universal rule not only in biology, appropriate methods are required to parameterize the relationship between the structure and function of biomolecules and their networks, the mechanisms of the processes in which they are involved, and the mechanisms of regulation of these processes. Single molecule localization microscopy (SMLM), which we focus on here, offers a significant advantage for the quantitative parametrization of molecular organization: it provides matrices of coordinates of fluorescently labeled biomolecules that can be directly subjected to advanced mathematical analytical procedures without the need for laborious and sometimes misleading image processing. Here, we propose mathematical tools for comprehensive quantitative computer data analysis of SMLM point patterns that include Ripley distance frequency analysis, persistent homology analysis, persistent 'imaging', principal component analysis and co-localization analysis. The application of these methods is explained using artificial datasets simulating different, potentially possible and interpretatively important situations. Illustrative analyses of real complex biological SMLM data are presented to emphasize the applicability of the proposed algorithms. This manuscript demonstrated the extraction of features and parameters quantifying the influence of chromatin (re)organization on genome function, offering a novel approach to study chromatin architecture at the nanoscale. However, the ability to adapt the proposed algorithms to analyze essentially any molecular organizations, e.g., membrane receptors or protein trafficking in the cytosol, offers broad flexibility of use.

19.
Heliyon ; 9(1): e12887, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36820178

RESUMO

The functioning of the heart rhythm can exhibit a wide variety of dynamic behaviours under certain conditions. In the case of rhythm disorders or cardiac arrhythmias, the natural rhythm of the heart is usually involved in the sinoatrial node, the atrioventricular node, the atria of the carotid sinus, etc. The study of heart related disorders requires an important analysis of its rhythm because the regularity of cardiac activity is conditioned by a large number of factors. The cardiac system is made up of a combination of nodes ranging from the sinus node, the atrioventricular node to its Purkinje bundles, which interact with each other via communicative aspects. Due to the nature of their respective dynamics, the above are treated as self-oscillating elements and modelled by nonlinear oscillators. By modelling the cardiac conduction system as a model of three nonlinear oscillators coupled by delayed connections and subjected to external stimuli depicting the behavior of a pacemaker, its dynamic behavior is studied in this paper by nonlinear analysis tools. From an electrocardiogram (ECG) assessment, the heart rhythm reveals normal and pathological rhythms. Three forms of ventricular fibrillation, ventricular flutter, ventricular tachycardia and atrial fibrillation are observed. The results are confirmed by the respective maximum Lyapunov exponents. Considering the cardiac nodes as microchips, using microcontroller simulation technology, the cardiac conduction system was modelled as a network of four ATmega 328P microcontrollers. A similarity with the results obtained numerically can be observed.

20.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36778343

RESUMO

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and enable development of spatial biomarkers to predict patient response to immunotherapy and other therapeutics. However, spatial biomarker discovery is often carried out on a single patient cohort or imaging technology, limiting statistical power and increasing the likelihood of technical artifacts. In order to analyze multiple patient cohorts profiled on different platforms, we developed methods for comparative data analysis from three disparate multiplex imaging technologies: 1) cyclic immunofluorescence data we generated from 102 breast cancer patients with clinical follow-up, in addition to publicly available 2) imaging mass cytometry and 3) multiplex ion-beam imaging data. We demonstrate similar single-cell phenotyping results across breast cancer patient cohorts imaged with these three technologies and identify cellular abundance and proximity-based biomarkers with prognostic value across platforms. In multiple platforms, we identified lymphocyte infiltration as independently associated with longer survival in triple negative and high-proliferation breast tumors. Then, a comparison of nine spatial analysis methods revealed robust spatial biomarkers. In estrogen receptor-positive disease, quiescent stromal cells close to tumor were more abundant in good prognosis tumors while tumor neighborhoods of mixed fibroblast phenotypes were enriched in poor prognosis tumors. In triple-negative breast cancer (TNBC), macrophage proximity to tumor and B cell proximity to T cells were greater in good prognosis tumors, while tumor neighborhoods of vimentin-positive fibroblasts were enriched in poor prognosis tumors. We also tested previously published spatial biomarkers in our ensemble cohort, reproducing the positive prognostic value of isolated lymphocytes and lymphocyte occupancy and failing to reproduce the prognostic value of tumor-immune mixing score in TNBC. In conclusion, we demonstrate assembly of larger clinical cohorts from diverse platforms to aid in prognostic spatial biomarker identification and validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA