RESUMO
Glutathione S-transferases (GSTs) are proteases with multiple physiological functions and play an important role in plant responses to abiotic stresses. Nevertheless, there is a paucity of systematic research on GST genes in Prunus genus. Here, 330 GST genes in four Prunus species were identified for the first time and classified into eight subgroups based on protein sequence and conserved structure, among which Tau subfamily genes had the largest number. The amino acid lengths of GST-encoded proteins in the four species ranged from 66 to 1152 aa, most of which were soluble proteins and located in the cytoplasm and chloroplasts. The GST family was propelled by tandem duplications, yet robust purifying selection constrained its divergence. Conserved motif and domain analysis revealed that the majority of PmGSTs exhibited a highly conserved GST-N structure. The expression pattern of PmGSTs exhibited tissue specificity and spatiotemporal specificity. qRT-PCR validated the transcriptome results and 11 genes were differentially expressed in varieties with different flower and stem colors. In addition, we discovered an anthocyanin-related gene PmGSTF2, which can effectively restore the anthocyanin and proanthocyanidin deficiency-related phenotypes of the Arabidopsis tt19 mutant. Recombinant PmGSTF2 enhanced the water solubility of cyanidin and cyanidin-3-O-glucoside in vitro. Moreover, PmMYBa1 could directly bind to the promoter of PmGSTF2 and activate its expression. The findings revealed that GSTs were preserved in Prunus species and that PmGSTF2 was critical in regulating anthocyanin accumulation.
RESUMO
Waxy corn is a special type of maize primarily consumed as a fresh vegetable by humans. Nitrogen (N) plays an essential role in regulating the growth progression, maturation, yield, and quality of waxy maize. A reasonable N application rate is vital for boosting the accumulation of both N and carbon (C) in the grains, thereby synergistically enhancing the grain quality. However, the impact of varying N levels on the dynamic changes in N metabolism, carbohydrate formation, and anthocyanin synthesis in purple waxy corn kernels, as well as the regulatory relationships among these processes, remains unclear. To explore the effects of varying N application rates on the N metabolism, carbohydrate formation, and anthocyanin synthesis in kernels during grain filling, a two-year field experiment was carried out using the purple waxy maize variety Jinnuo20 (JN20). This study examined the different N levels, specifically 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha-1. The results of the analysis revealed that, for nearly all traits measured, the N application rate of N2 was the most suitable. Compared to the N0 treatment, the accumulation and content of anthocyanins, total nitrogen, soluble sugars, amylopectin, and C/N ratio in grains increased by an average of 35.62%, 11.49%, 12.84%, 23.74%, 13.00%, and 1.87% under N2 treatment over five filling stages within two years, respectively, while the harmful compound nitrite content only increased by an average of 30.2%. Correspondingly, the activities of related enzymes also significantly increased and were maintained under N2 treatment compared to N0 treatment. Regression and correlation analysis results revealed that the amount of anthocyanin accumulation was highly positively correlated with the activities of phenylalanine ammonia-lyase (PAL) and flavanone 3-hydroxylase (F3H), but negatively correlated with anthocyanidin synthase (ANS) and UDP-glycose: flavonoid-3-O-glycosyltransferase (UFGT) activity, nitrate reductase (NR), and glutamine synthetase (GS) showed significant positive correlations with the total nitrogen content and lysine content, and a significant negative correlation with nitrite, while soluble sugars were negatively with ADP-glucose pyrophosphorylase (AGPase) activity, and amylopectin content was positively correlated with the activities of soluble starch synthase (SSS), starch branching enzyme (SBE), and starch debranching enzyme (SDBE), respectively. Furthermore, there were positive or negative correlations among the detected traits. Hence, a reasonable N application rate improves purple waxy corn kernel nutritional quality by regulating N metabolism, as well as carbohydrate and anthocyanin biosynthesis.
RESUMO
MAIN CONCLUSION: Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.
Assuntos
Antocianinas , Citrus sinensis , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Antocianinas/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/fisiologia , Vitis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Clorofila/metabolismo , Temperatura Baixa , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismoRESUMO
The purple leaves of Brassica napus are abundant in anthocyanins, which are renowned for their role in conferring distinct colors, stress tolerance, and health benefits, however the genetic basis of this trait in B. napus remains largely unelucidated. Herein, the purple leaf B. napus (PL) exhibited purple pigments in the upper epidermis and a substantial increase in anthocyanin accumulation, particularly of cyanidin, compared to green leaf B. napus (GL). The genetic control of the purple leaf trait was attributed to a semi-dominant gene, pl, which was mapped to the end of chromosome A03. However, sequencing of the fragments amplified by the markers linked to pl indicated that they were all mapped to chromosome B05 from B. juncea. Within this B05 chromosomal segment, the BjMYB113 gene-specific marker showed perfect co-segregation with the purple leaf trait in the F2 population, suggesting that the BjMYB113 introgression from B. juncea was the candidate gene for the purple leaf trait in B. napus. To further verify the function of candidate gene, CRISPR/Cas9 was performed to knock out the BjMYB113 gene in PL. The three myb113 mutants exhibited evident green leaf phenotype, absence of purple pigments in the adaxial epidermis, and a significantly reduced accumulation of anthocyanin compared to PL. Additionally, the genes involved in positive regulatory (TT8), late anthocyanin biosynthesis (DFR, ANS, UFGT), as well as transport genes (TT19) were significantly suppressed in the myb113 mutants, further confirming that BjMYB113 was response for the anthocyanin accumulation in purple leaf B. napus. This study contributes to an advanced understanding of the regulation mechanism of anthocyanin accumulation in B. napus.
Assuntos
Antocianinas , Brassica napus , Mostardeira , Pigmentação , Folhas de Planta , Brassica napus/genética , Brassica napus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Antocianinas/metabolismo , Mostardeira/genética , Mostardeira/metabolismo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Introgressão Genética , Genes de Plantas , Mapeamento Cromossômico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Retroelementos , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Retroelementos/genética , Etilenos/metabolismo , Etilenos/biossíntese , Temperatura Baixa , Citrus/genética , Citrus/metabolismoRESUMO
MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.
Assuntos
Arabidopsis , Brassica napus , Fosfatos Açúcares , Trealose , Antocianinas , Arabidopsis/genética , Brassica napus/genética , Carbono , Flavonoides , Nitrogênio , Trealose/análogos & derivados , Técnicas do Sistema de Duplo-HíbridoRESUMO
The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Raios Ultravioleta , Arabidopsis/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Lipoxigenase/metabolismo , Lipoxigenase/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , LipoxigenasesRESUMO
Lilium is a genus of important ornamental plants with many colouring pattern variations. Lilium auratum is the parent of Oriental hybrid lilies. A typical feature of L. auratum is the presence of red-orange special raised spots named papillae on the interior tepals. Unlike the usual raised spots, the papillae are slightly rounded or connected into sheets and usually have hairy tips. To elucidate the potential genes regulating papillae development in L. auratum, we performed high-throughput sequencing of its tepals at different stages. Genes involved in the flavonoid biosynthesis pathway were significantly enriched during the colouration of the papillae, and CHS, F3H, F3'H, FLS, DFR, ANS, and UFGT were significantly upregulated. To identify the key genes involved in the papillae development of L. auratum, we performed weighted gene coexpression network analysis (WGCNA) and further analysed four modules. In total, 51, 24, 1, and 6 hub genes were identified in four WGCNA modules, MEbrown, MEyellow, MEpurple, and MEred, respectively. Then, the coexpression networks were constructed, and important genes involved in trichome development and coexpressed with anthocyanin biosynthesis genes, such as TT8, TTG1, and GEM, were identified. These results indicated that the papillae are essentially trichomes that accumulate anthocyanins. Finally, we randomly selected 12 hub genes for qRT-PCR analysis to verify the accuracy of our RNA-Seq analysis. Our results provide new insights into the papillae development in L. auratum flowers.
Assuntos
Lilium , Lilium/metabolismo , Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
KEY MESSAGE: PbMYB1L enhances the cold tolerance and anthocyanin accumulation of transgenic Arabidopsis by regulating the expression of genes related to the cold-responsive genes pathway and anthocyanin synthesis pathway. MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development. In the present study, we identified a novel R2R3-MYB transcription factor, PbMYB1L, from the peel of 'Red Zaosu' pear (Pyrus bretschneideri), which was induced by cold stress and acted as a positive regulator in anthocyanin biosynthesis. Notably, the transgenic Arabidopsis lines exhibited enhanced tolerance to cold stress. Compared to the Arabidopsis wild-type plants, the transgenic lines displayed longer primary roots and reduced reactive oxygen species (ROS) levels including O2-, hydrogen peroxide (H2O2), and malondialdehyde (MDA). Furthermore, significant upregulation of key cold-responsive genes AtCBF1, AtCBF2, AtCBF3, AtCBF4, and AtKIN1 was observed in the transgenic plants under cold stress conditions compared to wild type. Arabidopsis plants overexpressing PbMYB1L had significant anthocyanin accumulation in leaves after cold treatment with quantitative results indicating higher expression of anthocyanin structural genes compared to wild type. These findings suggest that PbMYB1L not only plays a vital role in conferring cold tolerance but also acts as a crucial regulator of anthocyanin biosynthesis.
Assuntos
Arabidopsis , Pyrus , Fatores de Transcrição/genética , Pyrus/genética , Antocianinas , Arabidopsis/genética , Peróxido de HidrogênioRESUMO
This study was to investigate the effects of different nonthermal treatments on quality attributes, anthocyanin profiles, and gene expressions related to anthocyanin biosynthesis during low-temperature storage, including pulsed light (PL), magnetic energy (ME), and ultrasound (US). Among these treatments, 1 min US treatment was the most effective method for improving fruit quality and increasing total anthocyanin contents (by 29.89 ± 3.32%) as well as individual anthocyanins during low-temperature storage of 28 days. This treatment resulted in high color intensity, intact cellular architectures, and positive sensory evaluation. In contrast, PL and ME treatments displayed negative effects on quality improvement, leading to the destruction of cell architectures and inhibiting anthocyanin levels. Furthermore, qPCR analysis revealed that the structural genes (C4H, CHS1, CHS2, CHI, F3H, ANS, and GST) related to anthocyanin biosynthesis and transport were the target genes and upregulated in response to the cavitation effect of US treatment.
Assuntos
Antocianinas , Citrus sinensis , Antocianinas/metabolismo , Citrus sinensis/química , Frutas/química , Regulação da Expressão Gênica de Plantas , Temperatura BaixaRESUMO
Anthocyanin accumulation is responsible for the coloration of apple fruit, and their accumulation depends on the expression of anthocyanin biosynthesis-related genes. Light is an environmental stimulus that induces fruit color by regulating genes involved in the anthocyanin biosynthesis pathway. In this study, the roles of light and genetic factors on fruit coloration and anthocyanin accumulation in apple fruit were investigated. Three genes in the anthocyanin biosynthesis pathway, MdCHS, MdANS, and MdUFGT1, were synthesized and cloned into a viral-based expression vector system for transient expression in 'Ruby S' apple fruits. Apple fruits were agroinfiltrated with expression vectors harboring MdCHS, MdANS, and MdUFGT1. Agroinfiltrated apple fruits were then either kept in the dark (bagged fruits) or exposed to light (exposed fruits). The agroinfiltrated fruits showed significantly different coloration patterns, transcript expression levels, and anthocyanin accumulation compared to the control fruits. Moreover, these parameters were higher in exposed fruits than in bagged fruits. For stable expression, MdCHS was introduced into a binary vector under the control of the rice α-amylase 3D (RAmy3D) promoter. The ectopic overexpression of MdCHS in transgenic rice calli showed a high accumulation of anthocyanin content. Taken together, our findings suggest that light, together with the overexpression of anthocyanin biosynthesis genes, induced the coloration and accumulation of anthocyanin content in apple fruits by upregulating the expression of the genes involved in the anthocyanin biosynthesis pathway.
Assuntos
Malus , Oryza , Antocianinas/genética , Frutas/genética , Malus/genéticaRESUMO
Ascorbic acid (AsA) is a crucial water-soluble antioxidant in strawberry fruit, but limited research is currently available on the identification and functional validation of key genes involved in AsA metabolism in strawberries. This study analyzed the FaMDHAR gene family identification, which includes 168 genes. Most of the products of these genes are predicted to exist in the chloroplast and cytoplasm. The promoter region is rich in cis-acting elements related to plant growth and development, stress and light response. Meanwhile, the key gene FaMDHAR50 that positively regulates AsA regeneration was identified through comparative transcriptome analysis of 'Benihoppe' strawberry (WT) and its natural mutant (MT) with high AsA content (83 mg/100 g FW). The transient overexpression experiment further showed that overexpression of FaMDHAR50 significantly enhanced the AsA content by 38% in strawberry fruit, with the upregulated expression of structural genes involved in AsA biosynthesis (FaGalUR and FaGalLDH) and recycling and degradation (FaAPX, FaAO and FaDHAR) compared with that of the control. Moreover, increased sugar (sucrose, glucose and fructose) contents and decreased firmness and citric acid contents were observed in the overexpressed fruit, which were accompanied by the upregulation of FaSNS, FaSPS, FaCEL1 and FaACL, as well as the downregulation of FaCS. Additionally, the content of pelargonidin 3-glucoside markedly decreased, while cyanidin chloride increased significantly. In summary, FaMDHAR50 is a key positive regulatory gene involved in AsA regeneration in strawberry fruit, which also plays an important role in the formation of fruit flavor, apperance and texture during strawberry fruit ripening.
Assuntos
Ácido Ascórbico , Fragaria , Ácido Ascórbico/metabolismo , Fragaria/metabolismo , Transcriptoma , Frutas/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Abscisic acid (ABA) and nitric oxide (NO) are involved in mediating abiotic stress-induced plant physiological responses. Nitraria tangutorum Bobr is a typical salinized desert plant growing in an arid environment. In this study, we investigated the effects of ABA and NO on N.tangutorum seedlings under alkaline stress. Alkali stress treatment caused cell membrane damage, increased electrolyte leakage, and induced higher production of reactive oxygen species (ROS), which caused growth inhibition and oxidative stress in N.tangutorum seedlings. Exogenous application of ABA (15µm) and Sodium nitroprusside (50µm) significantly increased the plant height, fresh weight, relative water content, and degree of succulency in N.tangutorum seedlings under alkali stress. Meanwhile, the contents of ABA and NO in plant leaves were significantly increased. ABA and SNP can promote stomatal closure, decrease the water loss rate, increase leaf surface temperature and the contents of osmotic regulator proline, soluble protein, and betaine under alkali stress. Meanwhile, SNP more significantly promoted the accumulation of chlorophyll a/b and carotenoids, increased quantum yield of photosystem II (φPSII) and electron transport rate (ETRII) than ABA, and decreased photochemical quenching (qP), which improved photosynthetic efficiency and accelerated the accumulation of soluble sugar, glucose, fructose, sucrose, starch, and total sugar. However, compared with exogenous application of SNP in the alkaline stress, ABA significantly promoted the transcription of NtFLS/NtF3H/NtF3H/NtANR genes and the accumulation of naringin, quercetin, isorhamnetin, kaempferol, and catechin in the synthesis pathway of flavonoid metabolites, and isorhamnetin content was the highest. These results indicate that both ABA and SNP can reduce the growth inhibition and physiological damage caused by alkali stress. Among them, SNP has a better effect on the improvement of photosynthetic efficiency and the regulation of carbohydrate accumulation than ABA, while ABA has a more significant effect on the regulation of flavonoid and anthocyanin secondary metabolite accumulation. Exogenous application of ABA and SNP also improved the antioxidant capacity and the ability to maintain Na+/K+ balance of N. tangutorum seedlings under alkali stress. These results demonstrate the beneficial effects of ABA and NO as stress hormones and signaling molecules that positively regulate the defensive response of N. tangutorum to alkaline stress.
RESUMO
To explore the optimal early harvest time similar to the ripe fruit qualities, the effects of storage temperatures on maturity indexes, weight losses, colour parameters, anthocyanin profiles, volatile and taste components of blood oranges at six different maturity levels were investigated. Total anthocyanin contents of cold-treated fruits increased to or exceed that of ripe fruits (0.24 ± 0.12 mg/100 g), and fruits harvested from 260 d and 280 d after anthesis shared similar individual anthocyanin profiles to ripe fruits during storage at 8 °C for 30 d and 20 d (III-30 d and IV-20 d groups), respectively. Moreover, comparative analyses of e-nose and e-tongue demonstrated the distances of volatile components and scores of taste attributes including sourness, saltiness, bitterness, sweetness, and umami in III-30 d and IV-20 d groups were close to that of ripe fruits, indicating that the fruits could be sold about 20 to 30 d ahead of the season.
Assuntos
Citrus sinensis , Antocianinas/análise , Temperatura , Paladar , Temperatura Baixa , Frutas/químicaRESUMO
The storage roots of purple-fleshed sweetpotato rich in anthocyanins are considered nutrient-rich foods with health effects. However, the molecular mechanism underlying anthocyanin biosynthesis and regulation remains to be revealed. In this study, IbMYB1-2 was isolated from purple-fleshed sweetpotato "Xuzishu8". The phylogenetic and sequence analysis indicated that IbMYB1-2 belongs to the SG6 subfamily with a conserved bHLH motif. Subcellular localization analysis and transcriptional activity assay revealed that IbMYB1-2 is a key transcriptional activator and is specific to the nucleus. Agrobacterium rhizogenes-mediated overexpression of IbMYB1-2 in sweetpotato through in vivo root transgenic system led to an increase in anthocyanins in the root of sweetpotato. qRT-PCR and transcriptome analysis depicted that the transcript levels of IbMYB1-2, IbbHLH42, and eight structural genes that are associated with the synthesis of anthocyanin were upregulated in overexpressed IbMYB1-2 transgenic roots. Dual-luciferase reporter (DLR) assay and yeast one-hybrid (Y1H) assay demonstrated IbMYB1-2 binding to the promoter regions of IbbHLH42 and other anthocyanin biosynthetic genes, including IbCHS, IbCHI, IbF3H, IbDFR, IbANS, IbGSTF12, IbUGT78D2, and IbUF3GT. Moreover, IbbHLH42 was shown to be an active enhancer for the formation of MYB-bHLH-WD40 (MBW) complex, which strongly supports the promoter activities of the IbCHS, IbANS, IbUGT78D2, and IbGSTF12 genes to induce anthocyanin accumulation. Taken together, our findings not only revealed the underlying regulatory molecular mechanism of IbMYB1-2 for anthocyanin accumulation in the storage roots of sweetpotato but also uncovered a potential mechanism by which IbbHLH42 modulated anthocyanin biosynthesis through a positive feedback regulatory loop.
Assuntos
Antocianinas , Ipomoea batatas , Antocianinas/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Reação em Cadeia da Polimerase , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Ethylene is positively correlated with the anthocyanin accumulation in postharvest plum fruit, but the regulation mechanism has not been fully clarified. In this work, the 'Friar' plum fruit under different storage temperatures (0, 10 and 25 °C) and treatments (100.0 µL L-1 ethylene and 1.0 µL L-1 1-MCP) were applied to study the relationship between anthocyanin accumulation and ethylene signal pathway. The fruits stored at 10 °C had higher ethylene production rate and more anthocyanin in flesh than those stored at 0 °C and 25 °C. Ten ethylene biosynthesis associated genes and forty-one ethylene signal transduction related genes were obtained from the previous transcriptome data. Among them, the expression levels of ethylene biosynthesis associated genes (PsACS1, PsACS4 and PsACO1), and ethylene signal transduction related genes (PsERS1s, PsETR2, PsERF1a, and PsERF12) were markedly higher in the fruits stored at 10 °C than those at 0 °C and 25 °C. Exogenous ethylene treatment enhanced while 1-MCP treatment inhibited the anthocyanin accumulation in the flesh under storage at 10 °C. In addition, exogenous ethylene treatment markedly increased the expression levels of PsACS1, PsACS4, PsACO1, PsETR2, PsERF1a, and PsERF12 in the flesh once it turning red, as well as the anthocyanin biosynthesis related genes (PsPAL, PsCHS, PsF3H, PsDRF, PsANS, PsUFGT and PsMYB10), whereas 1-MCP treatment manifested the contrary effects. Correlation analysis indicated that there was a significant positive correlation between genes expression related to ethylene signal pathway and anthocyanin biosynthesis, except for PsERF11. In conclusion, ethylene signal pathway is involved in the flesh reddening by up-regulating the anthocyanin biosynthesis related genes.
RESUMO
The flowering cherries (genus Prunus, subgenus Cerasus) are popular ornamental trees in China, Japan, Korea, and elsewhere. Prunus campanulata Maxim. is an important species of flowering cherry native to Southern China, which is also distributed in Taiwan, the Ryukyu Islands of Japan, and Vietnam. It produces bell-shaped flowers with colors ranging from bright pink to crimson during the Chinese Spring Festival from January to March each year. We selected the P. campanulata cultivar "Lianmeiren", with only 0.54% of heterozygosity, as the focus of this study, and generated a high-quality chromosome-scale genome assembly of P. campanulata by combining Pacific Biosciences (PacBio) single-molecule sequencing, 10× Genomics sequencing, and high-throughput chromosome conformation capture (Hi-C) technology. We first assembled a 300.48 Mb genome assembly with a contig N50 length of 2.02 Mb. In total, 28,319 protein-coding genes were predicted from the genome, 95.8% of which were functionally annotated. Phylogenetic analyses indicated that P. campanulata diverged from a common ancestor of cherry approximately 15.1 million years ago. Comparative genomic analyses showed that the expanded gene families were significantly involved in ribosome biogenesis, diterpenoid biosynthesis, flavonoid biosynthesis, and circadian rhythm. Furthermore, we identified 171 MYB genes from the P. campanulata genome. Based on the RNA-seq of five organs at three flowering stages, expression analyses revealed that the majority of the MYB genes exhibited tissue-specific expression patterns, and some genes were identified as being associated with anthocyanin accumulation. This reference sequence is an important resource for further studies of floral morphology and phenology, and comparative genomics of the subgenera Cerasus and Prunus.
Assuntos
Prunus avium , Prunus , Antocianinas , Prunus/genética , Filogenia , Genoma , Cromossomos , Prunus avium/genéticaRESUMO
5-Aminolevulinic acid (ALA), an essential biosynthetic precursor of tetrapyrrole compounds, promotes the anthocyanin accumulation in many plant species. However, the underlying mechanism of ALA-induced accumulation is not yet fully understood. In this study, we identified an important regulator of the anthocyanin accumulation, MdMYB110a, which plays an important role in the ALA-induced anthocyanin accumulation. MdMYB110a activated the expression of MdGSTF12 by binding to its promoter. Additionally, two interacting MdMYB110a proteins, MdWD40-280 and MdHsfB3a, were isolated and confirmed as positive regulators of the ALA-induced anthocyanin accumulation. Both MdWD40-280 and MdHsfB3a enhanced the ability of MdMYB110a to transcribe MdGSTF12. A yeast one-hybrid assay revealed that MdWD40-280 did not bind to most structural genes in the anthocyanin biosynthetic and transport pathways, thus promoting anthocyanin accumulation by MdWD40-280 to depend on MdMYB110a. However, MdHsfB3a could bind to both the MdDFR and MdANS promoters, thereby directly regulating anthocyanin biosynthesis. Collectively, these results provide new insight into the mechanism of ALA-induced anthocyanin accumulation.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Aminolevulínico/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Flavonoids, the largest group of polyphenolic secondary metabolites present in all land plants, play essential roles in many biological processes and defense against abiotic stresses. In the flavonoid biosynthesis pathway, flavones synthase I (FNSI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), and anthocyanidin synthase (ANS) all belong to 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs) family, which catalyzes the critical oxidative reactions to form different flavonoid subgroups. Here, a novel 2-ODD gene was cloned from Antarctic moss Pohlia nutans (Pn2-ODD1) and its functions were investigated both in two model plants, Physcomitrella patens and Arabidopsis thaliana. Heterologous expression of Pn2-ODD1 increased the accumulation of anthocyanins and flavonol in Arabidopsis. Meanwhile, the transgenic P. patens and Arabidopsis with expressing Pn2-ODD1 exhibited enhanced tolerance to salinity and drought stresses, with larger gametophyte sizes, better seed germination, and longer root growth. Heterologous expression of Pn2-ODD1 in Arabidopsis also conferred the tolerance to UV-B radiation and oxidative stress by increasing antioxidant capacity. Therefore, we showed that Pn2-ODD1 participated in the accumulation of anthocyanins and flavonol in transgenic plants, and regulated the tolerance to abiotic stresses in plants, contributing to the adaptation of P. nutans to the polar environment.
RESUMO
'Xinqihong' is a recently selected and well-colored red pear (Pyrus bretschneideri Rehd.) cultivar that is popular in the marketplace owing to the bright red color and high quality of the fruit. The red pigmentation is strongly associated with the light signal. However, its responses to bagging treatment and to light exposure after shading are unknown. In this study, the fruit were treated with three types of fruit bags. 'Xinqihong' fruit colored rapidly in response to light stimulation. A white fruit bag was optimal for bagging of 'Xinqihong' fruit. To ensure satisfactory red pigmentation, the fruit required exposure to 30 days of light after bag removal. A transcriptome analysis was conducted to screen light-signal-related genes and identify their possible functions. PbCRY1 activated the promoter of PbHY5.2 and enhanced its expression. PbHY5.2 activated the promoter activity of PbUFGT and induced anthocyanin synthesis, and also showed self-activation characteristics. Both PbCRY2 and PbPHY1 induced anthocyanin accumulation. Thus, blue-light receptors played an important role in anthocyanin synthesis. This study provides a theoretical basis for the bagging cultivation of new varieties of 'Xinqihong', and lays a foundation for the study of the mechanisms of red pear fruit coloring in response to light signals.