Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Microb Pathog ; 195: 106864, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153575

RESUMO

The leaves of Piper betle L., known as betel leaf, have immense medicinal properties. It possesses potent antimicrobial efficacies and can be a valuable tool to combat drug-resistant microorganisms. Quorum sensing (QS) inhibition is one of the best strategies to combat drug resistance. The present study investigates the anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract against two bacterial strains, Chromobacterium violaceum and Pseudomonas aeruginosa. The extract produced substantial QS-inhibition zones in a biosensor strain of C. violaceum (CV026), indicating interference with quorum-sensing signals. The Results demonstrated significant inhibition in biofilm formation and different QS-regulated virulence factors (violacein, exopolysaccharides, pyocyanin, pyoverdine, elastase) in both C. violaceum and P. aeruginosa at sub-MIC concentrations of the extract and tetracycline, an antibiotic with known anti-QS activity. The quantitative real-time PCR (qRT-PCR) revealed decreased gene expression in different QS-related genes in C. violaceum (cviI, cviR, and vioA) and P. aeruginosa (lasI, lasR, lasB, rhlI, rhlR, and rhlA) strains after treatment. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified the significant phytocompounds, mainly derivatives of chavicol and eugenol, in the extract. Of these compounds, chavicol acetate (affinity: -7.00 kcal/mol) and acetoxy chavicol acetate (affinity: -7.87 kcal/mol) showed the highest potential to bind with the CviR and LasR protein, respectively, as evident from the in-silico molecular docking experiment. The findings of this endeavour highlight the promising role of Piper betle L. as a source of natural compounds with anti-quorum sensing properties against pathogenic bacteria, opening avenues for developing novel therapeutic agents to combat bacterial infections.

2.
Microb Pathog ; 193: 106787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992510

RESUMO

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.


Assuntos
Agrobacterium tumefaciens , Antibacterianos , Metronidazol , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Percepção de Quorum , Agrobacterium tumefaciens/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Metronidazol/farmacologia , Metronidazol/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Géis/química , Sinergismo Farmacológico , Liberação Controlada de Fármacos
3.
Biofilm ; 8: 100205, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38988475

RESUMO

Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 µg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 µg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.

4.
J Toxicol Environ Health A ; 87(20): 824-835, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-38984907

RESUMO

Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.


Assuntos
Biofilmes , Mentha piperita , Óleos Voláteis , Percepção de Quorum , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Mentha piperita/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Percepção de Quorum/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antibacterianos/farmacologia
5.
Biomed Mater ; 19(5)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39025122

RESUMO

The majority of research on nanomaterials has been concentrated on metal nanoparticles since they are easily made and manipulated. Nanomaterials have shown a wide range of applications in biology. Nevertheless, their bioactivity declines due to their extreme susceptibility to and novel Se@ZIF-8 by chemical method. The sizes and morphologies of Se (0) and Se@ZIFchemical and physical stimuli. The goal of encapsulating these nanomaterials in a matrix is gradually being pursued, which boosts their affordability, stability, and usability. Metal-organic frameworks, often known as MOFs, have the potential to be the best platforms for encapsulating metal nanoparticles due to their well-defined frameworks, persistent porosity, and flexibility in modification. In this investigation, we report the synthesis and optimization of polyvinylpyrrolidone-stabilized Se(0) nanoparticles -8 were affected by the ratios of Se/Zn2+and [hmim]/Zn2+used. The optimized Se@ZIF-8 nanoparticles exhibited a particle size and zeta potential of 319 nm and -34 mv respectively. Transmission electron microscopy displayed spherical morphology for Se(0) nanoparticles, whereas the surface morphology of novel Se@ZIF-8 nanoparticles was drastically changed to hexagonal shaped structures with smooth surface morphologies in scanning electron microscopy (SEM). The DTA, TG/DTG, XRD analysis confirmed the presence of novel Se incorporated ZIF-8 nanoparticulate framework. The synthesized novel Se@ZIF-8 nanoparticles showed efficient antibacterial activity as evidenced by low MIC values. Interestingly, these Se@ZIF-8 NPs not only inhibited biofilm formation inS. marcescens,but also effectively eradicated mature biofilms by degrading the eDNA of the EPS layer. It was validated by confocal laser scanning microscopy and SEM analysis. It was observed that Se@ZIF-8 targeted the Quroum Sensing pathway and reduced its associated virulence factors production. This work opens up a different approach of Se@ZIF-8 nanoparticles as novel antibiotics to treat biofilm-associated infections caused byS. marcescensand offer a solution for antimicrobial resistance.


Assuntos
Antibacterianos , Biofilmes , Estruturas Metalorgânicas , Percepção de Quorum , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Tamanho da Partícula , Selênio/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Teste de Materiais , Povidona/química , Zinco/química , Zinco/farmacologia , Microscopia Eletrônica de Transmissão , Imidazóis
6.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794143

RESUMO

The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing the challenge of treating infections due to antibacterial resistance involves the use of plant metabolites. In recent years, there has been increasing recognition of different phytochemicals as potential modulators. In our study, we evaluated the synergistic effect of chloroform and methanol extracts from Inula species against key virulence factors, including biofilm formation, violacein production, and swarming motility. Each of the 11 examined plant extracts demonstrated the ability to reduce biofilms and pigment synthesis in C. violaceum. Two of the extracts from I. britannica exhibited significant anti-biofilm and anti-quorum-sensing effects with over 80% inhibition. Their inhibitory effect on violacein synthesis indicates their potential as anti-QS agents, likely attributed to their high concentration of terpenoids (triterpenoids, sesquiterpene lactones, and diterpenoids). Scanning electron microscopy revealed a notable reduction in biofilm biomass, along with changes in biofilm architecture and cell morphology. Additionally, fluorescence microscopy revealed the presence of metabolically inactive cells, indicating the potent activity of the extracts during treatment. These new findings underscore the effectiveness of the plant extracts from the genus Inula as potential anti-virulent agents against C. violaceum. They also propose a promising strategy for preventing or treating its biofilm formation.

7.
Chem Biol Interact ; 396: 111027, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735452

RESUMO

Antibiotic resistance poses a significant challenge in modern medicine, urging the exploration of innovative approaches to combat bacterial infections. Biofilms, complex bacterial communities encased in a protective matrix, contribute to resistance by impeding antibiotic efficacy and promoting genetic exchange. Understanding biofilm dynamics is crucial for developing effective antimicrobial therapies against antibiotic resistance. This study explores the potential of flavone to combat biofilm-induced antibiotic resistance by employing in-vitro biochemical, cell biology, and Insilico (MD simulation), approaches. Flavone exhibited potent antibacterial effects with a low minimum inhibitory concentration by inducing intracellular reactive oxygen species. Flavones further inhibited the formation of biofilms by 50-60 % and disrupted the pre-formed biofilms by reducing the extracellular polysaccharide substance protective layer formed on the biofilm by 80 %. Quorum sensing (QS) plays a crucial role in bacterial pathogenicity and flavone significantly attenuated the production of QS-induced virulence factors like urease, protease, lipase, hemolysin and prodigiosin pigment in a dose-dependent manner. Further Insilico molecular docking studies along with molecular dynamic simulations run for 100 ns proved the stable binding affinity of flavone with QS-specific proteins which are crucial for biofilm formation. This study demonstrates the therapeutic potential of flavone to target QS-signaling pathway to combat S.marcescens biofilms.


Assuntos
Antibacterianos , Biofilmes , Flavonas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Percepção de Quorum , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Flavonas/farmacologia , Flavonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Dinâmica Molecular , Espécies Reativas de Oxigênio/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
8.
Nat Prod Res ; : 1-10, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613421

RESUMO

A novel polycyclic quinazoline alkaloid (1) along with one new natural quinoline alkaloid (2) and two known quinoline alkaloids (3,4) were isolated from the marine-derived fungus Trichoderma longibrachiatum QD01. Structural determinations of those isolates were established by comprehensive spectroscopic analyses and literature comparison. Single-crystal X-ray diffraction analysis of novel compound verified its structure and stereochemistry, representing the first characterised crystal structure of a trimeric-type of tetrahydroquinazoline. Compound 4 exhibited potential antibacterial and anti-quorum sensing activity against C. violaceum and C. violaceum CV026. The sub-MIC of 4 observably decreased the violacein production in C. violaceum CV026 by 55% on 15 µg/mL. Furthermore, molecular docking results revealed that 4 has stronger binding interactions with CviR receptor than ligand C6-HSL with lower binding energy of -8.68 kcal/mol. Hydrogen bond and π-π interactions formed by Trp84, Tyr88, Trp111, and Phe126 were predicted to play an important role in the inhibition against C. violaceum CV026.

9.
Microb Pathog ; 191: 106664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679245

RESUMO

Pseudomonas aeruginosa causes life-threatening diseases and is resistant to almost all conventional antibiotics. The quorum sensing (QS) system of P. aeruginosa contributes to many pathogenic factors some of which are pigment production, motility, and biofilm. The disruption of quorum sensing system may be an impactful strategy to deal with infections. The present study investigates the anti-quorum sensing property of a bioactive molecule extracted from marine epibiotic bacteria present on the surface of seaweeds. Among all the isolates tested against monitor strain Chromobacterium violaceum (MTCC 2656), the one with the highest activity was identified as Bacillus zhangzhouensis SK4. The culture supernatant was extracted with chloroform which was then partially purified by TLC and column chromatography. The probable anti-QS compound was identified as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl ester) by GC-MS and NMR analysis. The treatment of P. aeruginosa MCC 3457 with the lead compound resulted in the reduced production of pyocyanin, rhamnolipids, exopolysaccharide, biofilm, and motility. The observations of light and scanning electron microscopy also supported the biofilm inhibition. The lead compound showed synergism with the meropenem antibiotic and significantly reduced MIC. The molecular docking and pharmacokinetics study predicted 1, 2-benzenedicarboxylic acid, bis (2-methylpropyl ester), a phthalate derivative as a good drug candidate. The molecular dynamics study was also performed to check the stability of the lead compound and LasR complex. Further, lead compounds did not exhibit any cytotoxicity when tested on human embryonic kidney cells. As per our knowledge, this is the first report on the anti-QS activity of B. zhangzhouensis SK4, indicating that epibiotic bacteria can be a possible source of novel compounds to deal with the multidrug resistance phenomenon.


Assuntos
Antibacterianos , Bacillus , Biofilmes , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Fatores de Virulência , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus/efeitos dos fármacos , Bacillus/química , Bacillus/metabolismo , Chromobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Piocianina/metabolismo , Proteínas de Bactérias/metabolismo , Glicolipídeos/farmacologia , Glicolipídeos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo
10.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506718

RESUMO

Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.


Assuntos
Acinetobacter baumannii , Sais , Biofilmes , Fenóis/farmacologia , Antibacterianos/farmacologia
11.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338303

RESUMO

The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.


Assuntos
Meliteno , Percepção de Quorum , Meliteno/farmacologia , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/química , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa/fisiologia
12.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414257

RESUMO

Quorum sensing enables cell-cell communication in bacteria and regulates biofilm formation. Biofilm production promotes pathogenicity of Escherichia coli and causes infections. However, antibiotic resistance limits conventional treatment efficacy against biofilm infections. Quorum quenching offers an alternative by disrupting quorum sensing signals. Allicin, extracted from garlic, possesses antimicrobial and anti-quorum sensing properties. This study employed molecular docking and dynamics simulations to investigate allicin's interaction with the E. coli quorum sensing system, specifically targeting the cytoplasmic SidA receptor protein. SidA binds to N-acyl-homoserine lactone ligands and regulates quorum sensing in E. coli. The crystal structure of SidA was obtained from the PDB. Molecular docking revealed that allicin competitively binds to the ligand-binding pocket of SidA. Simulations analyzed the effects of allicin binding on SidA stability and affinity for N-acyl-homoserine lactones over 200 ns. Parameters like RMSD, RMSF, and hydrogen bonding indicated SidA was more stable when bound to allicin compared to unbound. Binding free energies suggested allicin reduced SidA's affinity for native ligands. Therefore, allicin binding to SidA alters its conformation and inhibits interaction with N-acyl-homoserine lactones, disrupting quorum sensing signaling and biofilm production in E. coli.Communicated by Ramaswamy H. Sarma.

13.
Biofouling ; 40(1): 26-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286789

RESUMO

Chronic rhinosinusitis (CRS) is long-term inflammation of the sinuses that can be caused by infection due to antibiotic-resistant bacteria. Biofilm developed by microbes is postulated to cause antibiotic treatment failure. Thus, the anti-biofilm activities of seven Thai herbal essential oils (EOs) against antibiotic-resistant bacteria isolated from CRS patients was investigated. Lemongrass (Cymbopogon citratus L.) EO showed the most effective antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus epidermidis grown as biofilm. GC-MS analysis found that myrcene was the major bioactive compound. Pretreatment with lemongrass EO significantly inhibited biofilm formation of all bacterial strains in more than 50% of cases. Furthermore, confocal microscopy analysis revealed the biofilm-disrupting activity of lemongrass EO against the biofilm matrix of all these bacterial species and also increased P. aeruginosa swarming motility with no toxicity to human cells. These results suggest that lemongrass EO has promising clinical applications as an anti-biofilm agent for CRS patients.


Assuntos
Cymbopogon , Óleos Voláteis , Rinossinusite , Humanos , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Bactérias
14.
Front Microbiol ; 14: 1297843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098670

RESUMO

Background: Quorum sensing is bacteria's ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens. Methods: The literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data. Results: From 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future. Conclusion: This bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions.

15.
Toxics ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999531

RESUMO

The worldwide increase in antibiotic resistance poses a significant challenge, and researchers are diligently seeking new drugs to combat infections and prevent bacterial pathogens from developing resistance. Gold (I and III) complexes are suitable for this purpose. In this study, we tested four gold (I and III) complexes, (1) chlorotrimethylphosphine gold(I); (2) chlorotriphenylphosphine gold(I); (3) dichloro(2-pyridinecarboxylate) gold (III); and (4) 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene gold(I) chloride, for their antibacterial, antibiofilm, antiviral, and anti-quorum sensing activities. Results reveal that 1 significantly inhibits Escherichia coli DSM 1077 and Staphylococcus aureus ATCC 6538, while 2, 3, and 4 only inhibit S. aureus ATCC 6538. The minimum inhibitory concentration (MIC) of 1 for S. aureus ATCC 6538 is 0.59 µg/mL (1.91 µM), and for methicillin-resistant S. aureus strains MRSA 12 and MRSA 15, it is 1.16 µg/mL (3.75 µM). For E. coli DSM 1077 (Gram-negative), the MIC is 4.63 µg/mL (15 µM), and for multi-resistant E. coli I731940778-1, it is 9.25 µg/mL (30 µM). Complex 1 also disrupts biofilm formation in E. coli and S. aureus after 6 h or 24 h exposure. Moreover, 1 and 2 inhibit the replication of two enterobacteria phages. Anti-quorum sensing potential still requires further clarification. These findings highlight the potential of gold complexes as effective agents to combat bacterial and viral infections.

16.
Foods ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835214

RESUMO

In the present study, ethanol extract obtained from the mycelial culture of Agrocybe aegerita was evaluated for its antioxidant activity as well for its potential to inhibit the virulence factor responsible for quorum-sensing activity and antibiofilm activity of pathogenic Pseudomonas aeruginosa PAO1 strain. The extract of mushroom at different concentrations showed percentage inhibition in a dose-dependent manner for DPPH and nitric oxide assays with the lowest as 38.56 ± 0.11% and 38.87 ± 0.04% at 50 µg/mL and the highest as 85.63 ± 0.12% and 82.34 ± 0.12% at 200 µg/mL. FTIR analysis confirmed the presence of functional group -OH, O-H bending bonds, C=C stretching, pyranose ring, and H-C-H stretch, confirming the presence of phenol, carotenoid, and ascorbic acid. HPLC analysis revealed that the concentration of gallic acid present in the extract is 27.94 mg/100 g which is significantly (p < 0.05) more than the concentration of rutin (i.e., 7.35 mg/100 g). GC-MS analysis revealed the presence of 5-methyl-1-heptanol, 2-heptadecenal, phthalic acid, butyl hept-4-yl ester, 2-dodecanol, benzoic acid, TMS derivative. The extract showed significantly (p < 0.05) more inhibition of pyocyanin (61.32%) and pyoverdine (54.02%). At higher concentrations of mushroom extract, there was a significant (p < 0.05) reduction (56.32%) in the swarming motility of the test organism. The extract showed 72.35% inhibition in biofilm formation. Therefore, it has been concluded from the present study that mushroom extract, which is rich in phenolic compounds interferes with the virulence factor responsible for quorum sensing, thereby inhibiting biofilm formation, and can be utilized as therapeutic agents against multi-drug resistant pathogenic microorganisms.

17.
Bioorg Chem ; 141: 106922, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865056

RESUMO

The broad-spectrum antimicrobial ability of de novo designed amphiphilic antimicrobial peptides (AMPs) G(IIKK)3I-NH2 (G3) and C8-G(IIKK)2I-NH2 (C8G2) have been demonstrated. Nonetheless, their potential as anti-quorum-sensing (anti-QS) agents, particularly against the opportunistic pathogen Pseudomonas aeruginosa at subinhibitory concentrations, has received limited attention. In this study, we proved that treating P. aeruginosa PAO1 with both AMPs at subinhibitory concentrations led to significant inhibition of QS-regulated virulence factors, including pyocyanin, elastase, proteases, and bacterial motility. Additionally, the AMPs exhibited remarkable capabilities in suppressing biofilm formation and their elimination rate of mature biofilm exceeded 95%. Moreover, both AMPs substantially downregulated the expression of QS-related genes. CD analysis revealed that both AMPs induced structural alterations in the important QS-related protein LasR in vitro. Molecular docking results indicated that both peptides bind to the hydrophobic groove of the LasR dimer. Notably, upon mutating key binding sites (D5, E11, and F87) to Ala, the binding efficiency of LasR to both peptides significantly decreased. We revealed the potential of antibacterial peptides G3 and C8G2 at their sub-MIC concentrations as QS inhibitors against P. aeruginosa and elucidated their action mechanism. These findings contribute to our understanding of the therapeutic potential of these peptides in combating P. aeruginosa infections by targeting the QS system.


Assuntos
Peptídeos Antimicrobianos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Simulação de Acoplamento Molecular , Percepção de Quorum , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo
18.
Antibiotics (Basel) ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760712

RESUMO

The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37424340

RESUMO

BACKGROUND: An endophytic fungal strain Penicillium crustosum was isolated from the seagrass Posidonia oceanica and investigated to identify its antimicrobial constituents and characterize its metabolome composition. The ethyl acetate extract of this fungus exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) as well as an anti-quorum sensing effect against Pseudomonas aeruginosa. METHODS: The crude extract was profiled by UHPLC-HRMS/MS and the dereplication was assisted by feature-based molecular networking. As a result, more than twenty compounds were annotated in this fungus. To rapidly identify the active compounds, the enriched extract was fractionated by semi-preparative HPLC-UV applying a chromatographic gradient transfer and dry load sample introduction to maximise resolution. The collected fractions were profiled by 1H-NMR and UHPLC-HRMS. RESULTS: The use of molecular networking-assisted UHPLC-HRMS/MS dereplication allowed preliminary identification of over 20 compounds present in the ethyl acetate extract of P. crustosum. The chromatographic approach significantly accelerated the isolation of the majority of compounds present in the active extract. The one-step fractionation allowed the isolation and identification of eight compounds (1-8). CONCLUSION: This study led to the unambiguous identification of eight known secondary metabolites as well as the determination of their antibacterial properties.

20.
Plants (Basel) ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514330

RESUMO

Black locust (Robinia pseudoacacia L.), an invasive tree in Europe, commonly known for its negative impact on biodiversity, is a rich source of phenolic compounds recognized in traditional medicine. Since the metabolite profile depends on the environment and climate, this study aimed to provide the first LC-MS phytochemical screening of the black locust from the Istria region (Croatia). The compounds were extracted from leaves and flowers with 70% ethanol and 80% methanol. Total phenolics (TP) and flavonoids (TF), as well as antioxidant capacity (AC) measured by ABTS (17.49-146.41 mg TE/g DW), DPPH (24.67-118.49 mg TE/g DW), and FRAP (7.38-77.53 mg TE/g DW) assays, were higher in leaf than in flower extracts. Higher TP and total non-flavonoid (TNF) values were displayed in ethanolic than in methanolic extracts. In total, 64 compounds were identified, of which flavonols (20) and hydroxycinnamic acid derivatives (15) were the most represented. Flavanols such as catechin dominated in leaf extracts, followed by flavonols, with kaempferol glucuronyl rhamnosyl hexosides as the main compound, respectively. Flower extracts had the highest share of flavones, followed by ellagitannins, with luteolin dirhamnosyl hexosides and vescalagin, respectively, being predominant. The extracts had good quorum sensing, biofilm formation prevention, and eradicating capacity. The results provided new insights into the phytochemical properties of R. pseudoacacia as the first step toward its potential pharmaceutical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA