Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Methods Mol Biol ; 2835: 307-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105926

RESUMO

Cell therapy and engineered tissue creation based on the use of human stem cells involves cell isolation, expansion, and cell growth and differentiation on the scaffolds. Microbial infections dramatically can affect stem cell survival and increase the risk of implant failure. To prevent these events, it is necessary to develop new materials with antibacterial properties for coating scaffold surfaces as well as medical devices, and all other surfaces at high risk of contamination. This chapter describes strategies for obtaining antibacterial blends for coating inert surfaces (polymethylmethacrylate, polycarbonate, Carbon Fiber Reinforced Polymer (CFRP)). In particular, the procedures for preparing antibacterial blends by mixing polymer resins with two types of antibacterial additives and depositing these blends on inert surfaces are described.


Assuntos
Células-Tronco , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Células-Tronco/citologia , Propriedades de Superfície , Alicerces Teciduais/química , Antibacterianos/farmacologia , Cimento de Policarboxilato/química , Técnicas de Cultura de Células/métodos , Polimetil Metacrilato/química , Fibra de Carbono/química , Carbono/química , Anti-Infecciosos/farmacologia
2.
Biomed Mater ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121890

RESUMO

This study delves into the potential of amorphous titanium oxide (aTiO2) nano-coating to enhance various critical aspects of non-Ti-based metallic orthopedic implants. These implants, such as medical-grade stainless steel (SS), are widely used for orthopedic devices that demand high strength and durability. The aTiO2 nano-coating, deposited via magnetron sputtering, is a unique attempt to improve the osteogenesis, the inflammatory response, and to reduce bacterial colonization on SS substrates. The study characterized the nanocoated surfaces (SS-a TiO2) in topography, roughness, wettability, and chemical composition. Comparative samples included uncoated SS and sandblasted/acid-etched Ti substrates (Ti). The biological effects were assessed using human mesenchymal stem cells (MSCs) and primary murine macrophages. Bacterial tests were carried out with two aerobic pathogens (S. aureus and S. epidermidis) and an anaerobic bacterial consortium representing an oral dental biofilm. Results from this study provide strong evidence of the positive effects of the aTiO2 nano-coating on SS surfaces. The coating enhanced MSC osteoblastic differentiation and exhibited a response similar to that observed on Ti surfaces. Macrophages cultured on aTiO2 nano-coating and Ti surfaces showed comparable anti-inflammatory phenotypes. Most significantly, a reduction in bacterial colonization across tested species was observed compared to uncoated SS substrates, further supporting the potential of aTiO2 nano-coating in biomedical applications. The findings underscore the potential of magnetron-sputtering deposition of aTiO2 nano-coating on non-Ti metallic surfaces such as medical-grade SS as a viable strategy to enhance osteoinductive factors and decrease pathogenic bacterial adhesion. This could significantly improve the performance of metallic-based biomedical devices beyond titanium.

3.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731407

RESUMO

The problem of bacterial resistance has become more and more common with improvements in health care. Worryingly, the misuse of antibiotics leads to an increase in bacterial multidrug resistance and the development of new antibiotics has virtually stalled. These challenges have prompted the need to combat bacterial infections with the use of radically different approaches. Taking lessons from the exciting properties of micro-/nano-natural-patterned surfaces, which can destroy cellular integrity, the construction of artificial surfaces to mimic natural functions provides new opportunities for the innovation and development of biomedicine. Due to the diversity of natural surfaces, functional surfaces inspired by natural surfaces have a wide range of applications in healthcare. Nature-inspired surface structures have emerged as an effective and durable strategy to prevent bacterial infection, opening a new way to alleviate the problem of bacterial drug resistance. The present situation of bactericidal and antifouling surfaces with natural and biomimetic micro-/nano-structures is briefly reviewed. In addition, these innovative nature-inspired methods are used to manufacture a variety of artificial surfaces to achieve extraordinary antibacterial properties. In particular, the physical antibacterial effect of nature-inspired surfaces and the functional mechanisms of chemical groups, small molecules, and ions are discussed, as well as the wide current and future applications of artificial biomimetic micro-/nano-surfaces. Current challenges and future development directions are also discussed at the end. In the future, controlling the use of micro-/nano-structures and their subsequent functions will lead to biomimetic surfaces offering great potential applications in biomedicine.


Assuntos
Antibacterianos , Nanoestruturas , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle
4.
Materials (Basel) ; 17(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673132

RESUMO

Antibacterial coatings are becoming increasingly attractive for application in the field of biomaterials. In this framework, we developed polymer coating zirconia with antibacterial activity using the "grafting from" methodology. First, 1-(4-vinylbenzyl)-3-butylimidazolium chloride monomer was synthesized. Then, the surface modification of zirconia substrates was performed with this monomer via surface-initiated photo atom transfer radical polymerization for antibacterial activity. X-ray photoelectron spectroscopy, ellipsometry, static contact angle measurements, and an atomic force microscope were used to characterize the films for each step of the surface modification. The results revealed that cationic polymers could be successfully deposited on the zirconia surfaces, and the thickness of the grafted layer steadily increased with polymerization time. Finally, the antibacterial adhesion test was used to evaluate the antibacterial activity of the modified zirconia substrates, and we successfully showed the antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa strains.

5.
ACS Appl Mater Interfaces ; 16(8): 9614-9625, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378485

RESUMO

Bacteria are mechanically resistant biological structures that can sustain physical stress. Experimental data, however, have shown that high-aspect-ratio nanopillars deform bacterial cells upon contact. If the deformation is sufficiently large, it lyses the bacterial cell wall, ultimately leading to cell death. This has prompted a novel strategy, known as mechano-bactericide technology, to fabricate antibacterial surfaces. Although adhesion forces were originally proposed as the driving force for mechano-bactericidal action, it has been recently shown that external forces, such as capillary forces arising from an air-water interface at bacterial surfaces, produce sufficient loads to rapidly kill bacteria on nanopillars. This discovery highlights the need to theoretically examine how bacteria respond to external loads and to ascertain the key factors. In this study, we developed a finite element model approximating bacteria as elastic shells filled with cytoplasmic fluid brought into contact with an individual nanopillar or nanopillar array. This model elucidates that bacterial killing caused by external forces on nanopillars is influenced by surface topography and cell biomechanical variables, including the density and arrangement of nanopillars, in addition to the cell wall thickness and elastic modulus. Considering that surface topography is an important design parameter, we performed experiments using nanopillar arrays with precisely controlled nanopillar diameters and spacing. Consistent with model predictions, these demonstrate that nanopillars with a larger spacing increase bacterial susceptibility to mechanical puncture. The results provide salient insights into mechano-bactericidal activity and identify key design parameters for implementing this technology.


Assuntos
Nanoestruturas , Nanoestruturas/química , Fenômenos Biomecânicos , Bactérias , Parede Celular
6.
Chem Asian J ; 19(7): e202400001, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38403839

RESUMO

Bacterial contamination of implant surfaces is one of the primary causes of their failure, and this threat has been further exacerbated due to the emergence of drug-resistant bacteria. Nanostructured mechanobactericidal surfaces that neutralize bacteria via biophysical forces instead of traditional biochemical routes have emerged as a potential remedy against this issue. Here, we report on the bactericidal activity of titania nanotubes (TNTs) prepared by anodization, a well-established and scalable method. We investigate the differences in bacterial behavior between three different topographies and demonstrate the applicability of this technique on complex three-dimensional (3D) geometries. It was found that the metabolic activity of bacteria on such surfaces was lower, indicative of disturbed intracellular processes. The differences in deformations of the cell wall of Gram-negative and positive bacteria were investigated from electron micrographs Finally, nanoindentation experiments show that the nanotubular topography was durable enough against forces typically experienced in daily life and had minimal deformation under forces exerted by bacteria. Our observations highlight the potential of the anodization technique for fabricating mechanobactericidal surfaces for implants, devices, surgical instruments, and other surfaces in a healthcare setting in a cheap, scalable way.


Assuntos
Nanoestruturas , Nanotubos , Nanoestruturas/química , Nanotubos/química , Titânio/química , Antibacterianos/farmacologia , Antibacterianos/química , Propriedades de Superfície
7.
Adv Healthc Mater ; 13(1): e2301810, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37737834

RESUMO

Block copolymer (BCP) self-assembly has emerged as a feasible method for large-scale fabrication with remarkable precision - features that are not common for most of the nanofabrication techniques. In this review, recent advancements in the molecular design of BCP along with state-of-the-art processing methodologies based on microphase separation alone or its combination with different lithography methods are presented. Furthermore, the bioapplications of the generated nanopatterns in the development of protein arrays, cell-selective surfaces, and antibacterial coatings are explored. Finally, the current challenges in the field are outlined and the potential breakthroughs that can be achieved by adopting BCP approaches already applied in the fabrication of electronic devices are discussed.


Assuntos
Antibacterianos , Eletrônica , Membrana Celular , Polímeros
8.
Colloids Surf B Biointerfaces ; 234: 113671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039822

RESUMO

A critical problem with the use of biomaterial implants is associated with bacterial adhesion on the surface of implants and in turn the biofilm formation. Among different strategies that have been reported to resolve this dilemma, surface design combined with both antiadhesive and antimicrobial properties has proven to be highly effective. Physiochemical properties of polymer brush coatings possess non-adhesive capability against bacterial adhesion and create a niche for further functionalization. The current study aims to evaluate the effect of antibiotics incorporated into the polymer brush on bacterial adhesion and biofilm formation. Brushes made of zwitterionic polymers were synthesized, functionalized with vancomycin via both physical and chemical conjugation, and grafted onto the silicon rubber surfaces. Antibacterial and antiadhesive measurements of designed coated biomaterials were mediated through the use of a parallel plate flow chamber against biofilm growth developed by Staphylococcus aureus and Escherichia coli over a period of 24 h. The analysis of biofilm growth on designed coated biomaterials showed that the pristine coated zwitterionic brushes are significantly resistant to bacterial adhesion and biofilm formation but not in the polymer brush coating incorporated with antibiotics.


Assuntos
Aderência Bacteriana , Polímeros , Polímeros/farmacologia , Polímeros/química , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície
9.
Microorganisms ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138082

RESUMO

Although self-service facilities (SSFs) have been used on a large scale worldwide, they can be easily contaminated by microorganisms from the hands of their sequential users. This research aimed to study the prevalence and antimicrobial susceptibility/resistance of bacteria contaminating SSFs in Sakaka, Aljouf, Saudi Arabia. We randomly swabbed the surfaces of 200 SSFs, then used the suitable culture media, standard microbiological methods, and the MicroScan WalkAway Microbiology System, including the identification/antimicrobial susceptibility testing-combo panels. A high SSFs' bacterial contamination load was detected (78.00%). Ninety percent of the samples collected in the afternoon, during the maximum workload of the SSFs, yielded bacterial growth (p < 0.001 *). Most of the contaminated SSFs were supermarket payment machines, self-pumping equipment at gas stations (p = 0.004 *), online banking service machines (p = 0.026 *), and barcode scanners in supermarkets. In the antiseptic-deficient areas, 55.1% of the contaminated SSFs were detected (p = 0.008 *). Fifty percent of the contaminated SSFs were not decontaminated. The most common bacterial contaminants were Escherichia coli (70 isolates), Klebsiella pneumoniae (66 isolates), Staphylococcus epidermidis (34 isolates), methicillin-resistant Staphylococcus aureus (18 isolates), and methicillin-sensitive Staphylococcus aureus (14 isolates), representing 31.53%, 29.73%, 15.32%, 8.11%, and 6.31% of the isolates, respectively. Variable degrees of reduced sensitivity to some antimicrobials were detected among the bacterial isolates. The SSFs represent potential risks for the exchange of antimicrobial-resistant bacteria between the out-hospital environment and the hospitals through the hands of the public. As technology and science advance, there is an urgent need to deploy creative and automated techniques for decontaminating SSFs and make use of recent advancements in materials science for producing antibacterial surfaces.

10.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887949

RESUMO

Bacterial infections and antibiotic resistance remain significant contributors to morbidity and mortality worldwide. Despite recent advances in biomedical research, a substantial number of medical devices and implants continue to be plagued by bacterial colonisation, resulting in severe consequences, including fatalities. The development of nanostructured surfaces with mechano-bactericidal properties has emerged as a promising solution to this problem. These surfaces employ a mechanical rupturing mechanism to lyse bacterial cells, effectively halting subsequent biofilm formation on various materials and, ultimately, thwarting bacterial infections. This review delves into the prevailing research progress within the realm of nanostructured mechano-bactericidal polymeric surfaces. It also investigates the diverse fabrication methods for developing nanostructured polymeric surfaces with mechano-bactericidal properties. We then discuss the significant challenges associated with each approach and identify research gaps that warrant exploration in future studies, emphasizing the potential for polymeric implants to leverage their distinct physical, chemical, and mechanical properties over traditional materials like metals.

11.
Colloids Surf B Biointerfaces ; 232: 113576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862951

RESUMO

Preventing bacterial development on surfaces is essential to avoid problems caused by biofouling. Surfaces decorated with gold nanoparticles have been shown to thermally kill bacteria under high-intensity NIR illumination. In this study, we evaluated the colonization by E. coli of nanostructured surfaces composed of mesoporous zirconia thin films, both with and without gold nanoparticles embedded into the pores. We studied the effect of the nanostructure and of low intensity visible light excitation of the gold nanoparticles on the colonization process. We found that neither the zirconia, nor the presence of pores, or even gold nanoparticles affect bacterial adhesion compared to the bare glass substrate. Therefore, mesoporous zirconia thin films are biologically inert scaffolds that enable the construction of robust surfaces containing functional nanoparticles that can affect bacterial growth. When the gold containing surfaces are irradiated with light, bacterial adhesion shows a remarkable 96 ± 4% reduction. Our studies revealed that these surfaces affect early colonization steps, prior to biofilm formation, preventing bacterial adhesion without affecting its viability. In contrast to related systems where plasmonic excitation induces membrane damage due to strong local heating, the membrane integrity is preserved, showing that these surfaces have a different working principle.


Assuntos
Aderência Bacteriana , Nanopartículas Metálicas , Ouro/farmacologia , Ouro/química , Escherichia coli , Zircônio/farmacologia
12.
Antibiotics (Basel) ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37627695

RESUMO

In this work, the antibacterial properties of nanostructured zinc oxide (ZnO) surfaces are explored by incorporating them as walls in a simple-to-fabricate microchannel device. Bacterial cell lysis is demonstrated and quantified in such a device, which functions due to the action of its nanostructured ZnO surfaces in contact with the working fluid. To shed light on the mechanism responsible for lysis, E. coli bacteria were incubated in zinc and nanostructured ZnO substrates, as well as the here-investigated ZnO-based microfluidic devices. The unprecedented killing efficiency of E. coli in nanostructured ZnO microchannels, effective after a 15 min incubation, paves the way for the implementation of such microfluidic chips in the disinfection of bacteria-containing solutions. In addition, the DNA release was confirmed by off-chip PCR and UV absorption measurements. The results indicate that the present nanostructured ZnO-based microfluidic chip can, under light, achieve partial inactivation of the released bacterial DNA via reactive oxygen species-mediated oxidative damage. The present device concept can find broader applications in cases where the presence of DNA in a sample is not desirable. Furthermore, the present microchannel device enables, in the dark, efficient release of bacterial DNA for downstream genomic DNA analysis. The demonstrated potential of this antibacterial device for tailored dual functionality in light/dark conditions is the main novel contribution of the present work.

13.
Polymers (Basel) ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904499

RESUMO

Antibacterial polymeric materials are promising in the fight against resistant bacteria strains. Amongst them, cationic macromolecules with quaternary ammonium groups are one of intensively studied, as they interact with the bacterial membranes causing cell death. In this work, we propose to use nanostructures composed of polycations with star topology for the preparation of antibacterial materials. First, star polymers of N,N'-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate P(DMAEMA-co-OEGMA-OH) were quaternized with various bromoalkanes and their solution behavior was studied. It was shown that in water two modes of star nanoparticles were observed, of diameters about 30 nm and up to 125 nm, independently of the quaternizing agent. Separately layers of P(DMAEMA-co-OEGMA-OH) stars were obtained. In this case, the chemical grafting of polymers to the silicon wafers modified with imidazole derivatives was applied, followed by the quaternization of the amino groups of polycations. A comparison of the quaternary reaction in solution and on the surface showed that in the solution it is influenced by the alkyl chain length of the quaternary agent, while on the surface such relationship is not observed. After physico-chemical characterization of the obtained nanolayers, their biocidal activity was tested against two strains of bacteria E. coli and B. subtilis. The best antibacterial properties exhibited layers quaternized with shorter alkyl bromide, where 100% growth inhibition of E. coli and B. subtilis after 24 h of contact was observed.

14.
ACS Appl Bio Mater ; 6(3): 1054-1070, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36880728

RESUMO

Despite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward Pseudomonas aeruginosa and Staphylococcus aureus bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (H2SO4), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-H2SO4. The MN-HCl surfaces were characterized by an average surface microroughness (Sa) of 0.8 ± 0.1 µm covered by blade-like nanosheets of 10 ± 2.1 nm thickness, whereas the MN-H2SO4 surfaces exhibited a greater Sa value of 5.8 ± 0.6 µm, with a network of nanosheets of 20 ± 2.6 nm thickness. Both micronanostructured surfaces promoted enhanced MG-63 attachment and differentiation; however, cell proliferation was only significantly increased on MN-HCl surfaces. In addition, the MN-HCl surface exhibited increased levels of bactericidal activity, with only 0.6% of the P. aeruginosa cells and approximately 5% S. aureus cells remaining viable after 24 h when compared to control surfaces. Thus, we propose the modulation of surface roughness and architecture on the micro- and nanoscale to achieve efficient manipulation of osteogenic cell response combined with mechanical antibacterial activity. The outcomes of this study provide significant insight into the further development of advanced multifunctional orthopedic implant surfaces.


Assuntos
Staphylococcus aureus , Titânio , Titânio/farmacologia , Propriedades de Superfície , Osteogênese , Antibacterianos/farmacologia
15.
Adv Mater ; 35(19): e2212315, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36738179

RESUMO

Physical disruption is an important antibacterial means as it is lethal to bacteria without spurring antimicrobial resistance. However, it is very challenging to establish a quantifiable relationship between antibacterial efficacy and physical interactions such as mechanical and electrical forces. Herein, titanium nitride (TN) nanowires with adjustable orientations and capacitances are prepared to exert gradient electro-mechanical forces on bacteria. While vertical nanowires show the strongest mechanical force resulting in an antibacterial efficiency of 0.62 log reduction (vs 0.22 for tiled and 0.36 for inclined nanowires, respectively), the addition of electrical charges maximizes the electro-mechanical interactions and elevates the antibacterial efficacy to more than 3 log reduction. Biophysical and biochemical analyses indicate that electrostatic attraction by electrical charge narrows the interface. The electro-mechanical intervention more easily stiffens and rips the bacteria membrane, disturbing the electron balance and generating intracellular oxidative stress. The antibacterial ability is maintained in vivo and bacteria-challenged rats are protected from serious infection. The physical bacteria-killing process demonstrated here can be controlled by adjusting the electro-mechanical interactions. Overall, these results revealed important principles for rationally designing high-performance antibacterial interfaces for clinical applications.


Assuntos
Nanofios , Nanofios/química , Nanofios/ultraestrutura , Antibacterianos/química , Antibacterianos/farmacologia , Elétrons , Espaço Intracelular , Estresse Oxidativo , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Ratos
16.
ACS Infect Dis ; 9(3): 394-422, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36790073

RESUMO

In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.


Assuntos
Desinfetantes , Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/farmacologia , Antibacterianos/farmacologia , Bactérias , Biofilmes
17.
ACS Appl Bio Mater ; 6(2): 754-764, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36696391

RESUMO

Bacterial colonization and biofilm formation are found on nearly all wet surfaces, representing a serious problem for both human healthcare and industrial applications, where traditional treatments may not be effective. Herein, we describe a synergistic approach for improving the performance of antibacterial surfaces based on microstructured surfaces that embed titanium dioxide nanoparticles (TiO2 NPs). The surfaces were designed to enhance bacteria entrapment, facilitating their subsequent eradication by a combination of UVC disinfection and TiO2 NPs photocatalysis. The efficacy of the engineered TiO2-modified microtopographic surfaces was evaluated using three different designs, and it was found that S2-lozenge and S3-square patterns had a higher concentration of trapped bacteria, with increases of 70 and 76%, respectively, compared to flat surfaces. Importantly, these surfaces showed a significant reduction (99%) of viable bacteria after just 30 min of irradiation with UVC 254 nm light at low intensity, being sixfold more effective than flat surfaces. Overall, our results showed that the synergistic effect of combining microstructured capturing surfaces with the chemical functionality of TiO2 NPs paves the way for developing innovative and efficient antibacterial surfaces with numerous potential applications in the healthcare and biotechnology market.


Assuntos
Aderência Bacteriana , Luz , Humanos , Titânio/farmacologia , Bactérias , Antibacterianos/farmacologia
18.
ACS Biomater Sci Eng ; 9(1): 329-339, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36516234

RESUMO

Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.


Assuntos
Incrustação Biológica , Dopamina , Humanos , Dopamina/farmacologia , Incrustação Biológica/prevenção & controle , Antibacterianos/farmacologia , Antivirais/farmacologia , Aderência Bacteriana , Materiais Revestidos Biocompatíveis/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Polímeros/farmacologia , Bactérias
19.
ACS Appl Mater Interfaces ; 15(1): 220-235, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416784

RESUMO

The present study interrogates the interaction of highly efficient antibacterial surfaces containing sharp nanostructures with blood proteins and the subsequent immunological consequences, processes that are of key importance for the fate of every implantable biomaterial. Studies with human serum and plasma pointed to significant differences in the composition of the protein corona that formed on control and nanostructured surfaces. Quantitative analysis using liquid chromatography-mass spectrometry demonstrated that the nanostructured surface attracted more vitronectin and less complement proteins compared to the untreated control. In turn, the protein corona composition modulated the adhesion and cytokine expression by immune cells. Monocytes produced lower amounts of pro-inflammatory cytokines and expressed more anti-inflammatory factors on the nanostructured surface. Studies using an in vivo subcutaneous mouse model showed reduced fibrous capsule thickness which could be a consequence of the attenuated inflammatory response. The results from this work suggest that antibacterial surface modification with sharp spike-like nanostructures may not only lead to the reduction of inflammation but also more favorable foreign body response and enhanced healing, processes that are beneficial for most medical devices implanted in patients.


Assuntos
Nanoestruturas , Coroa de Proteína , Humanos , Camundongos , Animais , Adsorção , Nanoestruturas/química , Proteínas Sanguíneas , Citocinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Propriedades de Superfície , Adesão Celular/fisiologia
20.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432356

RESUMO

Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA